GDB Internals

A guide to the internals of the GNU debugger

John Gilmore
Cygnus Solutions
Second Edition:
Stan Shebs

Cygnus Solutions

Cygnus Solutions
Revision: 1.142
TEXinfo 1999-09-25.10

Copyright (© 1990-1999 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Chapter 2: Overall Structure 1

Scope of this Document

This document documents the internals of the GNU debugger, GDB. It includes descrip-
tion of GDB’s key algorithms and operations, as well as the mechanisms that adapt GDB
to specific hosts and targets.

1 Requirements

Before diving into the internals, you should understand the formal requirements and
other expectations for GDB. Although some of these may seem obvious, there have been
proposals for GDB that have run counter to these requirements.

First of all, GDB is a debugger. It’s not designed to be a front panel for embedded
systems. It’s not a text editor. It’s not a shell. It’s not a programming environment.

GDB is an interactive tool. Although a batch mode is available, GDB’s primary role is
to interact with a human programmer.

GDB should be responsive to the user. A programmer hot on the trail of a nasty bug, and
operating under a looming deadline, is going to be very impatient of everything, including
the response time to debugger commands.

GDB should be relatively permissive, such as for expressions. While the compiler should
be picky (or have the option to be made picky), since source code lives for a long time
usually, the programmer doing debugging shouldn’t be spending time figuring out to mollify
the debugger.

GDB will be called upon to deal with really large programs. Executable sizes of 50 to
100 megabytes occur regularly, and we’ve heard reports of programs approaching 1 gigabyte
in size.

GDB should be able to run everywhere. No other debugger is available for even half as
many configurations as GDB supports.

2 Overall Structure

GDB consists of three major subsystems: user interface, symbol handling (the “symbol
side”), and target system handling (the “target side”).

Ther user interface consists of several actual interfaces, plus supporting code.

The symbol side consists of object file readers, debugging info interpreters, symbol table
management, source language expression parsing, type and value printing.

The target side consists of execution control, stack frame analysis, and physical target
manipulation.

The target side/symbol side division is not formal, and there are a number of excep-
tions. For instance, core file support involves symbolic elements (the basic core file reader
is in BFD) and target elements (it supplies the contents of memory and the values of reg-
isters). Instead, this division is useful for understanding how the minor subsystems should
fit together.

Chapter 3: Algorithms 2

2.1 The Symbol Side

The symbolic side of GDB can be thought of as “everything you can do in GDB without
having a live program running”. For instance, you can look at the types of variables, and
evaluate many kinds of expressions.

2.2 The Target Side

The target side of GDB is the “bits and bytes manipulator”. Although it may make
reference to symbolic info here and there, most of the target side will run with only a
stripped executable available — or even no executable at all, in remote debugging cases.

Operations such as disassembly, stack frame crawls, and register display, are able to work
with no symbolic info at all. In some cases, such as disassembly, GDB will use symbolic
info to present addresses relative to symbols rather than as raw numbers, but it will work
either way.

2.3 Configurations

Host refers to attributes of the system where GDB runs. Target refers to the system
where the program being debugged executes. In most cases they are the same machine, in
which case a third type of Native attributes come into play.

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format.

Defines and information needed to handle the target format are target dependent. Ex-
amples are the stack frame format, instruction set, breakpoint instruction, registers, and
how to set up and tear down the stack to call a function.

Information that is only needed when the host and target are the same, is native depen-
dent. One example is Unix child process support; if the host and target are not the same,
doing a fork to start the target process is a bad idea. The various macros needed for finding
the registers in the upage, running ptrace, and such are all in the native-dependent files.

Another example of native-dependent code is support for features that are really part
of the target environment, but which require #include files that are only available on the
host system. Core file handling and setjmp handling are two common cases.

When you want to make GDB work “native” on a particular machine, you have to
include all three kinds of information.

3 Algorithms

GDB uses a number of debugging-specific algorithms. They are often not very com-
plicated, but get lost in the thicket of special cases and real-world issues. This chapter
describes the basic algorithms and mentions some of the specific target definitions that
they use.

Chapter 3: Algorithms 3

3.1 Frames

A frame is a construct that GDB uses to keep track of calling and called functions.

FRAME_FP in the machine description has no meaning to the machine-independent part
of GDB, except that it is used when setting up a new frame from scratch, as follows:

create_new_frame (read_register (FP_REGNUM), read_pc ()));

Other than that, all the meaning imparted to FP_REGNUM is imparted by the machine-
dependent code. So, FP_REGNUM can have any value that is convenient for the code that
creates new frames. (create_new_frame calls INIT_EXTRA_FRAME_INFO if it is defined; that
is where you should use the FP_REGNUM value, if your frames are nonstandard.)

Given a GDB frame, define FRAME_CHAIN to determine the address of the calling func-
tion’s frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_
FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

3.2 Breakpoint Handling

In general, a breakpoint is a user-designated location in the program where the user
wants to regain control if program execution ever reaches that location.

There are two main ways to implement breakpoints; either as “hardware” breakpoints
or as “software” breakpoints.

Hardware breakpoints are sometimes available as a builtin debugging features with some
chips. Typically these work by having dedicated register into which the breakpoint address
may be stored. If the PC ever matches a value in a breakpoint registers, the CPU raises an
exception and reports it to GDB. Another possibility is when an emulator is in use; many
emulators include circuitry that watches the address lines coming out from the processor,
and force it to stop if the address matches a breakpoint’s address. A third possibility is
that the target already has the ability to do breakpoints somehow; for instance, a ROM
monitor may do its own software breakpoints. So although these are not literally “hardware
breakpoints”, from GDB’s point of view they work the same; GDB need not do nothing
more than set the breakpoint and wait for something to happen.

Since they depend on hardware resources, hardware breakpoints may be limited in num-
ber; when the user asks for more, GDB will start trying to set software breakpoints.

Software breakpoints require GDB to do somewhat more work. The basic theory is that
GDB will replace a program instruction with a trap, illegal divide, or some other instruction
that will cause an exception, and then when it’s encountered, GDB will take the exception
and stop the program. When the user says to continue, GDB will restore the original
instruction, single-step, re-insert the trap, and continue on.

Since it literally overwrites the program being tested, the program area must be write-
able, so this technique won’t work on programs in ROM. It can also distort the behavior of
programs that examine themselves, although the situation would be highly unusual.

Also, the software breakpoint instruction should be the smallest size of instruction, so
it doesn’t overwrite an instruction that might be a jump target, and cause disaster when
the program jumps into the middle of the breakpoint instruction. (Strictly speaking, the
breakpoint must be no larger than the smallest interval between instructions that may be
jump targets; perhaps there is an architecture where only even-numbered instructions may

Chapter 4: User Interface 4

jumped to.) Note that it’s possible for an instruction set not to have any instructions usable
for a software breakpoint, although in practice only the ARC has failed to define such an
instruction.

The basic definition of the software breakpoint is the macro BREAKPOINT.

Basic breakpoint object handling is in ‘breakpoint.c’. However, much of the interesting
breakpoint action is in ‘infrun.c’.

3.3 Single Stepping

3.4 Signal Handling

3.5 Thread Handling

3.6 Inferior Function Calls

3.7 Longjmp Support

GDB has support for figuring out that the target is doing a longjmp and for stopping
at the target of the jump, if we are stepping. This is done with a few specialized internal
breakpoints, which are visible in the maint info breakpoint command.

To make this work, you need to define a macro called GET_LONGJMP_TARGET, which will
examine the jmp_buf structure and extract the longjmp target address. Since jmp_buf
is target specific, you will need to define it in the appropriate ‘tm-xyz.h’ file. Look in
‘tm-sundos4.h’ and ‘sparc-tdep.c’ for examples of how to do this.

4 User Interface

GDB has several user interfaces. Although the command-line interface is the most
common and most familiar, there are others.

4.1 Command Interpreter

The command interpreter in GDB is fairly simple. It is designed to allow for the set of
commands to be augmented dynamically, and also has a recursive subcommand capability,
where the first argument to a command may itself direct a lookup on a different command
list.

For instance, the set command just starts a lookup on the setlist command list, while
set thread recurses to the set_thread_cmd_list.

To add commands in general, use add_cmd. add_com adds to the main command list,
and should be used for those commands. The usual place to add commands is in the
_initialize_xyz routines at the ends of most source files.

Chapter 5: Symbol Handling 5

Before removing commands from the command set it is a good idea to deprecate them
for some time. Use deprecate_cmd on commands or aliases to set the deprecated flag.
deprecate_cmd takes a struct cmd_list_element as it’s first argument. You can use the
return value from add_com or add_cmd to deprecate the command immediately after it is
created.

The first time a comamnd is used the user will be warned and offered a replacement (if
one exists). Note that the replacement string passed to deprecate_cmd should be the full
name of the command, i.e. the entire string the user should type at the command line.

4.2 Console Printing
4.3 TUI

4.4 libgdb

libgdb was an abortive project of years ago. The theory was to provide an API to
GDB’s functionality.

5 Symbol Handling

Symbols are a key part of GDB’s operation. Symbols include variables, functions, and
types.

5.1 Symbol Reading

GDB reads symbols from “symbol files”. The usual symbol file is the file containing the
program which GDB is debugging. GDB can be directed to use a different file for symbols
(with the symbol-file command), and it can also read more symbols via the “add-file”
and “load” commands, or while reading symbols from shared libraries.

Symbol files are initially opened by code in ‘symfile.c’ using the BFD library. BFD
identifies the type of the file by examining its header. find_sym_fns then uses this identi-
fication to locate a set of symbol-reading functions.

Symbol reading modules identify themselves to GDB by calling add_symtab_fns during
their module initialization. The argument to add_symtab_fns is a struct sym_fns which
contains the name (or name prefix) of the symbol format, the length of the prefix, and
pointers to four functions. These functions are called at various times to process symbol-
files whose identification matches the specified prefix.

The functions supplied by each module are:

xyz_symfile_init(struct sym_fns *sf)
Called from symbol_file_add when we are about to read a new symbol file.
This function should clean up any internal state (possibly resulting from half-
read previous files, for example) and prepare to read a new symbol file. Note
that the symbol file which we are reading might be a new "main" symbol file, or

Chapter 5: Symbol Handling 6

might be a secondary symbol file whose symbols are being added to the existing
symbol table.

The argument to xyz_symfile_init is a newly allocated struct sym_fns
whose bfd field contains the BFD for the new symbol file being read. Its
private field has been zeroed, and can be modified as desired. Typically, a
struct of private information will be malloc’d, and a pointer to it will be
placed in the private field.

There is no result from xyz_symfile_init, but it can call error if it detects
an unavoidable problem.

xXyz_new_init ()
Called from symbol_file_add when discarding existing symbols. This function
need only handle the symbol-reading module’s internal state; the symbol table
data structures visible to the rest of GDB will be discarded by symbol_file_
add. It has no arguments and no result. It may be called after xyz_symfile_
init, if a new symbol table is being read, or may be called alone if all symbols
are simply being discarded.

xyz_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)
Called from symbol_file_add to actually read the symbols from a symbol-file
into a set of psymtabs or symtabs.

sf points to the struct sym_fns originally passed to xyz_sym_init for possible
initialization. addr is the offset between the file’s specified start address and its
true address in memory. mainline is 1 if this is the main symbol table being
read, and 0 if a secondary symbol file (e.g. shared library or dynamically loaded
file) is being read.

In addition, if a symbol-reading module creates psymtabs when xyz_symfile_read is
called, these psymtabs will contain a pointer to a function xyz_psymtab_to_symtab, which
can be called from any point in the GDB symbol-handling code.

xyz_psymtab_to_symtab (struct partial_symtab *pst)
Called from psymtab_to_symtab (or the PSYMTAB_TO_SYMTAB macro) if
the psymtab has not already been read in and had its pst->symtab pointer set.
The argument is the psymtab to be fleshed-out into a symtab. Upon return,
pst->readin should have been set to 1, and pst->symtab should contain a pointer
to the new corresponding symtab, or zero if there were no symbols in that part
of the symbol file.

5.2 Partial Symbol Tables

GDB has three types of symbol tables.
e full symbol tables (symtabs). These contain the main information about symbols and
addresses.
e partial symbol tables (psymtabs). These contain enough information to know when to
read the corresponding part of the full symbol table.
e minimal symbol tables (msymtabs). These contain information gleaned from non-
debugging symbols.

Chapter 5: Symbol Handling 7

This section describes partial symbol tables.

A psymtab is constructed by doing a very quick pass over an executable file’s debugging
information. Small amounts of information are extracted — enough to identify which parts
of the symbol table will need to be re-read and fully digested later, when the user needs
the information. The speed of this pass causes GDB to start up very quickly. Later, as
the detailed rereading occurs, it occurs in small pieces, at various times, and the delay
therefrom is mostly invisible to the user.

The symbols that show up in a file’s psymtab should be, roughly, those visible to the
debugger’s user when the program is not running code from that file. These include external
symbols and types, static symbols and types, and enum values declared at file scope.

The psymtab also contains the range of instruction addresses that the full symbol table
would represent.

The idea is that there are only two ways for the user (or much of the code in the debugger)
to reference a symbol:

e by its address (e.g. execution stops at some address which is inside a function in this
file). The address will be noticed to be in the range of this psymtab, and the full
symtab will be read in. find_pc_function, find_pc_line, and other find_pc_...
functions handle this.

e by its name (e.g. the user asks to print a variable, or set a breakpoint on a function).
Global names and file-scope names will be found in the psymtab, which will cause the
symtab to be pulled in. Local names will have to be qualified by a global name, or a
file-scope name, in which case we will have already read in the symtab as we evaluated
the qualifier. Or, a local symbol can be referenced when we are "in" a local scope, in
which case the first case applies. lookup_symbol does most of the work here.

The only reason that psymtabs exist is to cause a symtab to be read in at the right
moment. Any symbol that can be elided from a psymtab, while still causing that to happen,
should not appear in it. Since psymtabs don’t have the idea of scope, you can’t put local
symbols in them anyway. Psymtabs don’t have the idea of the type of a symbol, either, so
types need not appear, unless they will be referenced by name.

It is a bug for GDB to behave one way when only a psymtab has been read, and another
way if the corresponding symtab has been read in. Such bugs are typically caused by a
psymtab that does not contain all the visible symbols, or which has the wrong instruction
address ranges.

The psymtab for a particular section of a symbol-file (objfile) could be thrown away after
the symtab has been read in. The symtab should always be searched before the psymtab,
so the psymtab will never be used (in a bug-free environment). Currently, psymtabs are
allocated on an obstack, and all the psymbols themselves are allocated in a pair of large
arrays on an obstack, so there is little to be gained by trying to free them unless you want
to do a lot more work.

5.3 Types

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN).

These are the fundamental types that GDB uses internally. Fundamental types from
the various debugging formats (stabs, ELF, etc) are mapped into one of these. They are

Chapter 5: Symbol Handling 8

basically a union of all fundamental types that gdb knows about for all the languages that
GDB knows about.

Type Codes (e.g., TYPE.CODE_PTR, TYPE_.CODE_ARRAY).

Each time GDB builds an internal type, it marks it with one of these types. The
type may be a fundamental type, such as TYPE_CODE_INT, or a derived type, such as
TYPE_CODE_PTR which is a pointer to another type. Typically, several FT_* types map
to one TYPE_CODE_* type, and are distinguished by other members of the type struct,
such as whether the type is signed or unsigned, and how many bits it uses.

Builtin Types (e.g., builtin_type_void, builtin_type_char).

These are instances of type structs that roughly correspond to fundamental types and are
created as global types for GDB to use for various ugly historical reasons. We eventually
want to eliminate these. Note for example that builtin_type_int initialized in gdbtypes.c
is basically the same as a TYPE_CODE_INT type that is initialized in c-lang.c for an
FT_INTEGER fundamental type. The difference is that the builtin_type is not associated
with any particular objfile, and only one instance exists, while c-lang.c builds as many
TYPE_CODE_INT types as needed, with each one associated with some particular objfile.

5.4 Object File Formats

5.4.1 a.out

The ‘a.out’ format is the original file format for Unix. It consists of three sections:
text, data, and bss, which are for program code, initialized data, and uninitialized data,
respectively.

The ‘a.out’ format is so simple that it doesn’t have any reserved place for debugging
information. (Hey, the original Unix hackers used ‘adb’, which is a machine-language de-
bugger.) The only debugging format for ‘a.out’ is stabs, which is encoded as a set of normal
symbols with distinctive attributes.

The basic ‘a.out’ reader is in ‘dbxread.c’.

5.4.2 COFF

The COFF format was introduced with System V Release 3 (SVR3) Unix. COFF files
may have multiple sections, each prefixed by a header. The number of sections is limited.

The COFF specification includes support for debugging. Although this was a step for-
ward, the debugging information was woefully limited. For instance, it was not possible to
represent code that came from an included file.

The COFF reader is in ‘coffread.c’.

5.4.3 ECOFF

ECOFF is an extended COFF originally introduced for Mips and Alpha workstations.
The basic ECOFF reader is in ‘mipsread.c’.

Chapter 5: Symbol Handling 9

5.4.4 XCOFF

The IBM RS/6000 running AIX uses an object file format called XCOFF. The COFF
sections, symbols, and line numbers are used, but debugging symbols are dbx-style stabs
whose strings are located in the ‘.debug’ section (rather than the string table). For more
information, see See section “Top” in The Stabs Debugging Format.

The shared library scheme has a clean interface for figuring out what shared libraries
are in use, but the catch is that everything which refers to addresses (symbol tables and
breakpoints at least) needs to be relocated for both shared libraries and the main executable.
At least using the standard mechanism this can only be done once the program has been
run (or the core file has been read).

5.4.5 PE

Windows 95 and NT use the PE (Portable Executable) format for their executables. PE
is basically COFF with additional headers.

While BFD includes special PE support, GDB needs only the basic COFF reader.

5.4.6 ELF

The ELF format came with System V Release 4 (SVR4) Unix. ELF is similar to COFF
in being organized into a number of sections, but it removes many of COFF’s limitations.

The basic ELF reader is in ‘elfread.c’.

5.4.7 SOM

SOM is HP’s object file and debug format (not to be confused with IBM’s SOM, which
is a cross-language ABI).

The SOM reader is in ‘hpread.c’.

5.4.8 Other File Formats

Other file formats that have been supported by GDB include Netware Loadable Modules
(‘nlmread.c’.

5.5 Debugging File Formats

This section describes characteristics of debugging information that are independent of
the object file format.

5.5.1 stabs

stabs started out as special symbols within the a.out format. Since then, it has been
encapsulated into other file formats, such as COFF and ELF.

While ‘dbxread.c’ does some of the basic stab processing, including for encapsulated
versions, ‘stabsread.c’ does the real work.

Chapter 6: Language Support 10

5.5.2 COFF

The basic COFF definition includes debugging information. The level of support is
minimal and non-extensible, and is not often used.

5.5.3 Mips debug (Third Eye)

ECOFTF includes a definition of a special debug format.

The file ‘mdebugread.c’ implements reading for this format.

5.5.4 DWARF 1

DWARF 1 is a debugging format that was originally designed to be used with ELF in
SVRA4 systems.

The DWAREF 1 reader is in ‘dwarfread.c’.

5.5.5 DWARF 2

DWARF 2 is an improved but incompatible version of DWARF 1.
The DWARF 2 reader is in ‘dwarf2read.c’.

5.5.6 SOM

Like COFF, the SOM definition includes debugging information.

5.6 Adding a New Symbol Reader to GDB

If you are using an existing object file format (a.out, COFF, ELF, etc), there is probably
little to be done.

If you need to add a new object file format, you must first add it to BFD. This is beyond
the scope of this document.

You must then arrange for the BFD code to provide access to the debugging symbols.
Generally GDB will have to call swapping routines from BFD and a few other BFD internal
routines to locate the debugging information. As much as possible, GDB should not depend
on the BFD internal data structures.

For some targets (e.g., COFF), there is a special transfer vector used to call swapping
routines, since the external data structures on various platforms have different sizes and
layouts. Specialized routines that will only ever be implemented by one object file format
may be called directly. This interface should be described in a file ‘bfd/libxyz.h’, which
is included by GDB.

Chapter 6: Language Support 11

6 Language Support

GDB'’s language support is mainly driven by the symbol reader, although it is possible
for the user to set the source language manually.

GDB chooses the source language by looking at the extension of the file recorded in the
debug info; .c means C, .f means Fortran, etc. It may also use a special-purpose language
identifier if the debug format supports it, such as DWARF.

6.1 Adding a Source Language to GDB

To add other languages to GDB’s expression parser, follow the following steps:

Create the expression parser.
This should reside in a file ‘lang-exp.y’. Routines for building parsed expres-
sions into a ‘union exp_element’ list are in ‘parse.c’.

Since we can’t depend upon everyone having Bison, and YACC produces parsers
that define a bunch of global names, the following lines must be included at the
top of the YACC parser, to prevent the various parsers from defining the same
global names:

#define yyparse lang_parse
#define yylex lang_lex
#define yyerror lang_error
#define yylval lang_lval
#define yychar lang_char
#define yydebug lang_debug
#define yypact lang_pact
#define yyrl lang_ri

#define yyr2 lang_r2
#define yydef lang_def
#define yychk lang_chk
#define yypgo lang_pgo
#define yyact lang_act
#define yyexca lang_exca
#define yyerrflag lang_errflag
#define yynerrs lang_nerrs

At the bottom of your parser, define a struct language_defn and initialize
it with the right values for your language. Define an initialize_lang rou-
tine and have it call ‘add_language (lang_language_defn)’ to tell the rest of
GDB that your language exists. You’ll need some other supporting variables
and functions, which will be used via pointers from your lang_language_defn.
See the declaration of struct language_defn in ‘language.h’, and the other
‘x—exp.y’ files, for more information.

Add any evaluation routines, if necessary
If you need new opcodes (that represent the operations of the language), add
them to the enumerated type in ‘expression.h’. Add support code for these
operations in eval.c:evaluate_subexp(). Add cases for new opcodes in two

Chapter 7: Host Definition 12

functions from ‘parse.c’: prefixify_subexp() and length_of_subexp().
These compute the number of exp_elements that a given operation takes up.

Update some existing code
Add an enumerated identifier for your language to the enumerated type enum
language in ‘defs.h’.

Update the routines in ‘language.c’ so your language is included. These rou-
tines include type predicates and such, which (in some cases) are language
dependent. If your language does not appear in the switch statement, an error
is reported.

Also included in ‘language.c’ is the code that updates the variable current_
language, and the routines that translate the language_lang enumerated iden-
tifier into a printable string.

Update the function _initialize_language to include your language. This
function picks the default language upon startup, so is dependent upon which
languages that GDB is built for.

Update allocate_symtab in ‘symfile.c’ and/or symbol-reading code so that
the language of each symtab (source file) is set properly. This is used to deter-
mine the language to use at each stack frame level. Currently, the language is
set based upon the extension of the source file. If the language can be better
inferred from the symbol information, please set the language of the symtab in
the symbol-reading code.

Add helper code to expprint.c:print_subexp() to handle any new expression
opcodes you have added to ‘expression.h’. Also, add the printed representa-
tions of your operators to op_print_tab.

Add a place of call
Add a call to lang_parse() and lang_error in parse.c:parse_exp_1().

Use macros to trim code
The user has the option of building GDB for some or all of the languages. If
the user decides to build GDB for the language lang, then every file dependent
on ‘language.h’ will have the macro _LANG_Ilang defined in it. Use #ifdefs to
leave out large routines that the user won’t need if he or she is not using your
language.

Note that you do not need to do this in your YACC parser, since if GDB is not
build for lang, then ‘lang-exp.tab.o’ (the compiled form of your parser) is not
linked into GDB at all.

See the file ‘configure.in’ for how GDB is configured for different languages.

Edit Makefile.in’
Add dependencies in ‘Makefile.in’. Make sure you update the macro variables
such as HFILES and 0BJS, otherwise your code may not get linked in, or, worse
yet, it may not get tarred into the distribution!

Chapter 7: Host Definition 13

7 Host Definition

With the advent of autoconf, it’s rarely necessary to have host definition machinery
anymore.

7.1 Adding a New Host

Most of GDB’s host configuration support happens via autoconf. It should be rare to
need new host-specific definitions. GDB still uses the host-specific definitions and files listed
below, but these mostly exist for historical reasons, and should eventually disappear.

Several files control GDB’s configuration for host systems:

‘gdb/config/arch/xyz.mh’
Specifies Makefile fragments needed when hosting on machine xyz. In
particular, this lists the required machine-dependent object files, by defining
‘XDEPFILES=...’. Also specifies the header file which describes host xyz,
by defining XM_FILE= xm-xyz.h. You can also define CC, SYSV_DEFINE,
XM_CFLAGS, XM_ADD_FILES, XM_CLIBS, XM_CDEPS, etc.; see ‘Makefile.in’.

‘gdb/config/arch/xm-xyz.h’
(‘xm.h’ is a link to this file, created by configure). Contains C macro definitions
describing the host system environment, such as byte order, host C compiler
and library.

‘gdb/xyz-xdep.c’
Contains any miscellaneous C code required for this machine as a host. On
most machines it doesn’t exist at all. If it does exist, put ‘xyz-xdep.o’ into the
XDEPFILES line in ‘gdb/config/arch/xyz.mh’.

Generic Host Support Files

There are some “generic” versions of routines that can be used by various systems.
These can be customized in various ways by macros defined in your ‘xm-xyz.h’ file. If these
routines work for the xyz host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in XDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xyz-xdep.c, and put
xyz-xdep.o into XDEPFILES.

‘ser-unix.c’
This contains serial line support for Unix systems. This is always included, via
the makefile variable SER_HARDWIRE; override this variable in the ‘.mh’ file to
avoid it.

‘ser-go32.c’
This contains serial line support for 32-bit programs running under DOS, using
the GO32 execution environment.

‘ser-tcp.c’
This contains generic TCP support using sockets.

Chapter 7: Host Definition 14

7.2 Host Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation based on the attributes of the host system. These macros and their
meanings (or if the meaning is not documented here, then one of the source files where they
are used is indicated) are:

GDBINIT_FILENAME
The default name of GDB’s initialization file (normally ‘.gdbinit’).

MEM_FNS_DECLARED
Your host config file defines this if it includes declarations of memcpy and memset.
Define this to avoid conflicts between the native include files and the declara-
tions in ‘defs.h’.

NO_STD_REGS
This macro is deprecated.

NO_SYS_FILE
Define this if your system does not have a <sys/file.h>.

SIGWINCH_HANDLER
If your host defines SIGWINCH, you can define this to be the name of a function
to be called if SIGWINCH is received.

SIGWINCH_HANDLER_BODY
Define this to expand into code that will define the function named by the
expansion of SIGWINCH_HANDLER.

ALIGN_STACK_ON_STARTUP
Define this if your system is of a sort that will crash in tgetent if the stack
happens not to be longword-aligned when main is called. This is a rare situation,
but is known to occur on several different types of systems.

CRLF_SOURCE_FILES
Define this if host files use \r\n rather than \n as a line terminator. This will
cause source file listings to omit \r characters when printing and it will allow
\r\n line endings of files which are "sourced" by gdb. It must be possible to
open files in binary mode using 0_BINARY or, for fopen, "rb".

DEFAULT_PROMPT
The default value of the prompt string (normally " (gdb) ").

DEV_TTY The name of the generic TTY device, defaults to "/dev/tty".

FCLOSE_PROVIDED
Define this if the system declares fclose in the headers included in defs.h.
This isn’t needed unless your compiler is unusually anal.

FOPEN_RB Define this if binary files are opened the same way as text files.

GETENV_PROVIDED
Define this if the system declares getenv in its headers included in defs.h.
This isn’t needed unless your compiler is unusually anal.

Chapter 7: Host Definition 15

HAVE_MMAP
In some cases, use the system call mmap for reading symbol tables. For some
machines this allows for sharing and quick updates.

HAVE_SIGSETMASK
Define this if the host system has job control, but does not define sigsetmask().
Currently, this is only true of the RS/6000.

HAVE_TERMIO
Define this if the host system has termio.h.

HOST_BYTE_ORDER
The ordering of bytes in the host. This must be defined to be either BIG_ENDIAN
or LITTLE_ENDIAN.

INT_MAX
INT_MIN
LONG_MAX
UINT_MAX

ULONG_MAX
Values for host-side constants.

ISATTY Substitute for isatty, if not available.

LONGEST This is the longest integer type available on the host. If not defined, it will
default to long long or long, depending on CC_HAS_LONG_LONG.

CC_HAS_LONG_LONG
Define this if the host C compiler supports “long long”. This is set by the
configure script.

PRINTF_HAS_LONG_LONG
Define this if the host can handle printing of long long integers via the printf
format directive “lI”. This is set by the configure script.

HAVE_LONG_DOUBLE
Define this if the host C compiler supports “long double”. This is set by the
configure script.

PRINTF_HAS_LONG_DOUBLE
Define this if the host can handle printing of long double float-point numbers
via the printf format directive “Lg”. This is set by the configure script.

SCANF_HAS_LONG_DOUBLE
Define this if the host can handle the parsing of long double float-point numbers
via the scanf format directive directive “Lg”. This is set by the configure script.

LSEEK_NOT_LINEAR
Define this if 1seek (n) does not necessarily move to byte number n in the
file. This is only used when reading source files. It is normally faster to define
CRLF_SOURCE_FILES when possible.

Chapter 7: Host Definition 16

L_SET This macro is used as the argument to Iseek (or, most commonly, bfd_seek).
FIXME, should be replaced by SEEK_SET instead, which is the POSIX equiv-
alent.

MALLOC_INCOMPATIBLE
Define this if the system’s prototype for malloc differs from the ANSI defini-
tion.

MMAP_BASE_ADDRESS
When using HAVE_MMAP, the first mapping should go at this address.

MMAP_INCREMENT
when using HAVE_MMAP, this is the increment between mappings.

NEED_POSIX_SETPGID
Define this to use the POSIX version of setpgid to determine whether job
control is available.

NORETURN If defined, this should be one or more tokens, such as volatile, that can be
used in both the declaration and definition of functions to indicate that they
never return. The default is already set correctly if compiling with GCC. This
will almost never need to be defined.

ATTR_NORETURN
If defined, this should be one or more tokens, such as __attribute
((noreturn)), that can be used in the declarations of functions to indicate
that they never return. The default is already set correctly if compiling with
GCC. This will almost never need to be defined.

USE_GENERIC_DUMMY_FRAMES
Define this to 1 if the target is using the generic inferior function call code. See
blockframe.c for more information.

USE_MMALLOC

GDB will use the mmalloc library for memory allocation for symbol reading if
this symbol is defined. Be careful defining it since there are systems on which
mmalloc does not work for some reason. One example is the DECstation, where
its RPC library can’t cope with our redefinition of malloc to call mmalloc.
When defining USE_MMALLOC, you will also have to set MMALLOC in the Makefile,
to point to the mmalloc library. This define is set when you configure with
—with-mmalloc.

NO_MMCHECK
Define this if you are using mmalloc, but don’t want the overhead of checking the
heap with mmcheck. Note that on some systems, the C runtime makes calls to
malloc prior to calling main, and if free is ever called with these pointers after
calling mmcheck to enable checking, a memory corruption abort is certain to
occur. These systems can still use mmalloc, but must define NO_MMCHECK.

MMCHECK_FORCE
Define this to 1 if the C runtime allocates memory prior to mmcheck being called,
but that memory is never freed so we don’t have to worry about it triggering

Chapter 8: Target Architecture Definition 17

a memory corruption abort. The default is 0, which means that mmcheck will
only install the heap checking functions if there has not yet been any memory
allocation calls, and if it fails to install the functions, gdb will issue a warning.
This is currently defined if you configure using —with-mmalloc.

NO_SIGINTERRUPT
Define this to indicate that siginterrupt() is not available.

R_OK Define if this is not in a system .h file.
SEEK_CUR
SEEK_SET Define these to appropriate value for the system lseek(), if not already defined.

STOP_SIGNAL
This is the signal for stopping GDB. Defaults to SIGTSTP. (Only redefined for
the Convex.)

USE_O_NOCTTY
Define this if the interior’s tty should be opened with the O_NOCTTY flag.
(FIXME: This should be a native-only flag, but ‘inflow.c’ is always linked in.)

USG Means that System V (prior to SVR4) include files are in use. (FIXME: This
symbol is abused in ‘infrun.c’, ‘regex.c’, ‘remote-nindy.c’, and ‘utils.c’
for other things, at the moment.)

lint Define this to help placate lint in some situations.

volatile Define this to override the defaults of __volatile__ or /*x/.

8 Target Architecture Definition

GDB’s target architecture defines what sort of machine-language programs GDB can
work with, and how it works with them.

At present, the target architecture definition consists of a number of C macros.

8.1 Registers and Memory

GDB’s model of the target machine is rather simple. GDB assumes the machine includes
a bank of registers and a block of memory. Each register may have a different size.

GDB does not have a magical way to match up with the compiler’s idea of which registers
are which; however, it is critical that they do match up accurately. The only way to make
this work is to get accurate information about the order that the compiler uses, and to
reflect that in the REGISTER_NAME and related macros.

GDB can handle big-endian, little-endian, and bi-endian architectures.

Chapter 8: Target Architecture Definition 18

8.2 Using Different Register and Memory Data
Representations

Some architectures use one representation for a value when it lives in a register, but
use a different representation when it lives in memory. In GDB’s terminology, the raw
representation is the one used in the target registers, and the virtual representation is the
one used in memory, and within GDB struct value objects.

For almost all data types on almost all architectures, the virtual and raw representations
are identical, and no special handling is needed. However, they do occasionally differ. For
example:

e The x86 architecture supports an 80-bit long double type. However, when we store
those values in memory, they occupy twelve bytes: the floating-point number occupies
the first ten, and the final two bytes are unused. This keeps the values aligned on four-
byte boundaries, allowing more efficient access. Thus, the x86 80-bit floating-point
type is the raw representation, and the twelve-byte loosely-packed arrangement is the
virtual representation.

e Some 64-bit MIPS targets present 32-bit registers to GDB as 64-bit registers, with
garbage in their upper bits. GDB ignores the top 32 bits. Thus, the 64-bit form,
with garbage in the upper 32 bits, is the raw representation, and the trimmed 32-bit
representation is the virtual representation.

In general, the raw representation is determined by the architecture, or GDB’s interface
to the architecture, while the virtual representation can be chosen for GDB’s convenience.
GDB’s register file, registers, holds the register contents in raw format, and the GDB
remote protocol transmits register values in raw format.

Your architecture may define the following macros to request raw / virtual conversions:

int REGISTER_CONVERTIBLE (int reg) Target Macro

Return non-zero if register number reg’s value needs different raw and virtual formats.

int REGISTER_RAW _SIZE (int reg) Target Macro
The size of register number reg’s raw value. This is the number of bytes the register
will occupy in registers, or in a GDB remote protocol packet.

int REGISTER_VIRTUAL_SIZE (int reg) Target Macro
The size of register number reg’s value, in its virtual format. This is the size a struct
value’s buffer will have, holding that register’s value.

struct type *REGISTER_VIRTUAL_TYPE (int reg) Target Macro
This is the type of the virtual representation of register number reg. Note that there
is no need for a macro giving a type for the register’s raw form; once the register’s
value has been obtained, GDB always uses the virtual form.

void REGISTER_CONVERT_TO_VIRTUAL (int reg, Target Macro
struct type *type, char *from, char *to)
Convert the value of register number reg to type, which should always be REGISTER_
VIRTUAL_TYPE (reg). The buffer at from holds the register’s value in raw format; the
macro should convert the value to virtual format, and place it at to.

Chapter 8: Target Architecture Definition 19

Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_.CONVERT_TO_RAWN
take their reg and type arguments in different orders.

void REGISTER_CONVERT_TO_RAW (struct type Target Macro
xtype, int reg, char *from, char *to)
Convert the value of register number reg to type, which should always be REGISTER_
VIRTUAL_TYPE (reg). The buffer at from holds the register’s value in raw format; the
macro should convert the value to virtual format, and place it at to.
Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_.CONVERT_TO_RAWN
take their reg and type arguments in different orders.

8.3 Frame Interpretation
8.4 Inferior Call Setup
8.5 Compiler Characteristics

8.6 Target Conditionals

This section describes the macros that you can use to define the target machine.

ADDITIONAL_OPTIONS
ADDITIONAL_OPTION_CASES
ADDITIONAL_OPTION_HANDLER

ADDITIONAL_OPTION_HELP
These are a set of macros that allow the addition of additional command line
options to GDB. They are currently used only for the unsupported 1960 Nindy
target, and should not be used in any other configuration.

ADDR_BITS_REMOVE (addr)
If a raw machine instruction address includes any bits that are not really part
of the address, then define this macro to expand into an expression that zeros
those bits in addr. This is only used for addresses of instructions, and even
then not in all contexts.

For example, the two low-order bits of the PC on the Hewlett-Packard PA
2.0 architecture contain the privilege level of the corresponding instruction.
Since instructions must always be aligned on four-byte boundaries, the pro-
cessor masks out these bits to generate the actual address of the instruction.
ADDR_BITS_REMOVE should filter out these bits with an expression such as
((addr) & 73).

BEFORE_MAIN_LOOP_HOOK
Define this to expand into any code that you want to execute before the main
loop starts. Although this is not, strictly speaking, a target conditional, that
is how it is currently being used. Note that if a configuration were to define it

Chapter 8: Target Architecture Definition 20

one way for a host and a different way for the target, GDB will probably not
compile, let alone run correctly. This is currently used only for the unsupported
1960 Nindy target, and should not be used in any other configuration.

BELIEVE_PCC_PROMOTION
Define if the compiler promotes a short or char parameter to an int, but still
reports the parameter as its original type, rather than the promoted type.

BELIEVE_PCC_PROMOTION_TYPE
Define this if GDB should believe the type of a short argument when compiled
by pcc, but look within a full int space to get its value. Only defined for Sun-3
at present.

BITS_BIG_ENDIAN
Define this if the numbering of bits in the targets does *not* match the endi-
anness of the target byte order. A value of 1 means that the bits are numbered
in a big-endian order, 0 means little-endian.

BREAKPOINT
This is the character array initializer for the bit pattern to put into memory
where a breakpoint is set. Although it’s common to use a trap instruction for
a breakpoint, it’s not required; for instance, the bit pattern could be an invalid
instruction. The breakpoint must be no longer than the shortest instruction of
the architecture.

BREAKPOINT has been deprecated in favour of BREAKPOINT_FROM_PC.

BIG_BREAKPOINT

LITTLE_BREAKPOINT
Similar to BREAKPOINT, but used for bi-endian targets.

BIG.BREAKPOINT and LITTLE_.BREAKPOINT have been deprecated in
favour of BREAKPOINT_FROM_PC.

REMOTE_BREAKPOINT
LITTLE_REMOTE_BREAKPOINT

BIG_REMOTE_BREAKPOINT
Similar to BREAKPOINT, but used for remote targets.

BIG_.REMOTE_BREAKPOINT and LITTLE_REMOTE_BREAKPOINT
have been deprecated in favour of BREAKPOINT_FROM_PC.

BREAKPOINT_FROM_PC (pcptr, lenptr)
Use the program counter to determine the contents and size of a breakpoint
instruction. It returns a pointer to a string of bytes that encode a breakpoint
instruction, stores the length of the string to *lenptr, and adjusts pc (if neces-
sary) to point to the actual memory location where the breakpoint should be
inserted.

Although it is common to use a trap instruction for a breakpoint, it’s not
required; for instance, the bit pattern could be an invalid instruction. The
breakpoint must be no longer than the shortest instruction of the architecture.

Replaces all the other BREAKPOINT macros.

Chapter 8: Target Architecture Definition 21

MEMORY_INSERT_BREAKPOINT (addr, contents_cache)

MEMORY_REMOVE_BREAKPOINT (addr, contents_cache)

Insert or remove memory based breakpoints. Reasonable defaults (default_
memory_insert_breakpoint and default_memory_remove_breakpoint
respectively) have been provided so that it is not necessary to define these
for most architectures. Architectures which may want to define MEM-
ORY_INSERT_BREAKPOINT and MEMORY_REMOVE_BREAKPOINT
will likely have instructions that are oddly sized or are not stored in a
conventional manner.

It may also be desirable (from an efficiency standpoint) to define custom break-
point insertion and removal routines if BREAKPOINT_-FROM_PC needs to
read the target’s memory for some reason.

CALL_DUMMY_P
A C expresson that is non-zero when the target suports inferior function calls.

CALL_DUMMY_WORDS
Pointer to an array of LONGEST words of data containing host-byte-ordered
REGISTER_BYTES sized values that partially specify the sequence of instruc-
tions needed for an inferior function call.

Should be deprecated in favour of a macro that uses target-byte-ordered data.
SIZEOF_CALL_DUMMY_WORDS

The size of CALL_DUMMY_WORDS. When CALL_DUMMY_P this must re-
turn a positive value. See also CALL_DUMMY_LENGTH.

CALL_DUMMY
A static initializer for CALL_DUMMY_WORDS. Deprecated.

CALL_DUMMY_LOCATION
inferior.h

CALL_DUMMY_STACK_ADJUST
Stack adjustment needed when performing an inferior function call.

Should be deprecated in favor of something like STACK_ALIGN.

CALL_DUMMY_STACK_ADJUST_P
Predicate for use of CALL_DUMMY_STACK_ADJUST.

Should be deprecated in favor of something like STACK_ALIGN.

CANNOT_FETCH_REGISTER (regno)
A C expression that should be nonzero if regno cannot be fetched from an
inferior process. This is only relevant if FETCH_INFERIOR_REGISTERS is not
defined.

CANNOT_STORE_REGISTER (regno)
A C expression that should be nonzero if regno should not be written to the
target. This is often the case for program counters, status words, and other
special registers. If this is not defined, GDB will assume that all registers may
be written.

DO_DEFERRED_STORES

Chapter 8: Target Architecture Definition 22

CLEAR_DEFERRED_STORES
Define this to execute any deferred stores of registers into the inferior, and to
cancel any deferred stores.

Currently only implemented correctly for native Sparc configurations?

COERCE_FLOAT_TO_DOUBLE (formal, actual)
If we are calling a function by hand, and the function was declared (according
to the debug info) without a prototype, should we automatically promote floats
to doubles? This macro must evaluate to non-zero if we should, or zero if we
should leave the value alone.

The argument actual is the type of the value we want to pass to the function.
The argument formal is the type of this argument, as it appears in the function’s
definition. Note that formal may be zero if we have no debugging information
for the function, or if we’re passing more arguments than are officially declared
(for example, varargs). This macro is never invoked if the function definitely
has a prototype.

The default behavior is to promote only when we have no type information for
the formal parameter. This is different from the obvious behavior, which would
be to promote whenever we have no prototype, just as the compiler does. It’s
annoying, but some older targets rely on this. If you want GDB to follow the
typical compiler behavior — to always promote when there is no prototype in
scope — your gdbarch init function can call set_gdbarch_coerce_float_to_
double and select the standard_coerce_float_to_double function.

CPLUS_MARKER
Define this to expand into the character that G++ uses to distinguish compiler-
generated identifiers from programmer-specified identifiers. By default, this
expands into ’$’. Most System V targets should define this to *. .

DBX_PARM_SYMBOL_CLASS
Hook for the SYMBOL_CLASS of a parameter when decoding DBX symbol infor-
mation. In the i960, parameters can be stored as locals or as args, depending
on the type of the debug record.

DECR_PC_AFTER_BREAK
Define this to be the amount by which to decrement the PC after the program
encounters a breakpoint. This is often the number of bytes in BREAKPOINT,
though not always. For most targets this value will be 0.

DECR_PC_AFTER_HW_BREAK
Similarly, for hardware breakpoints.

DISABLE_UNSETTABLE_BREAK addr
If defined, this should evaluate to 1 if addr is in a shared library in which
breakpoints cannot be set and so should be disabled.

DO_REGISTERS_INFO
If defined, use this to print the value of a register or all registers.

END_OF_TEXT_DEFAULT
This is an expression that should designate the end of the text section (? FIXME

?)

Chapter 8: Target Architecture Definition 23

EXTRACT _RETURN_VALUE(type,regbuf,valbuf)
Define this to extract a function’s return value of type type from the raw register
state regbuf and copy that, in virtual format, into valbuf.

EXTRACT_STRUCT_VALUE_ADDRESS (regbuf)
When EXTRACT_STRUCT_-VALUE_ADDRESS_P this is used to to extract
from an array regbuf (containing the raw register state) the address in which a
function should return its structure value, as a CORE_ADDR (or an expression
that can be used as one).

EXTRACT_STRUCT_VALUE_ADDRESS_P
Predicate for EXTRACT_STRUCT_VALUE_ADDRESS.

FLOAT_INFO
If defined, then the ‘info float’” command will print information about the pro-
cessor’s floating point unit.

FP_REGNUM
If the virtual frame pointer is kept in a register, then define this macro to be
the number (greater than or equal to zero) of that register.

This should only need to be defined if TARGET_READ_FP and TARGET_WRITE_FP
are not defined.

FRAMELESS_FUNCTION_INVOCATION(fi)
Define this to an expression that returns 1 if the function invocation represented
by fi does not have a stack frame associated with it. Otherwise return 0.

FRAME_ARGS_ADDRESS_CORRECT
stack.c

FRAME_CHAIN (frame)
Given frame, return a pointer to the calling frame.

FRAME_CHAIN_COMBINE(chain,frame)
Define this to take the frame chain pointer and the frame’s nominal address

and produce the nominal address of the caller’s frame. Presently only defined
for HP PA.

FRAME_CHAIN_VALID(chain,thisframe)
Define this to be an expression that returns zero if the given frame is an outer-
most frame, with no caller, and nonzero otherwise. Several common definitions
are available.

file_frame_chain_valid is nonzero if the chain pointer is nonzero and given
frame’s PC is not inside the startup file (such as ‘crt0.0’). func_frame_chain_
valid is nonzero if the chain pointer is nonzero and the given frame’s PC is
not in main() or a known entry point function (such as _start()). generic_
file_frame_chain_valid and generic_func_frame_chain_valid are equiv-
alent implementations for targets using generic dummy frames.

FRAME_INIT_SAVED_REGS(frame)
See ‘frame.h’. Determines the address of all registers in the current stack frame
storing each in frame->saved_regs. Space for frame->saved_regs shall be

Chapter 8: Target Architecture Definition 24

allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc
or frame_obstack_alloc.

FRAME_FIND_SAVED_REGS and EXTRA_FRAME_INFO are deprecated.

FRAME_NUM_ARGS (fi)
For the frame described by fi return the number of arguments that are being
passed. If the number of arguments is not known, return -1.

FRAME_SAVED_PC(frame)
Given frame, return the pc saved there. That is, the return address.

FUNCTION_EPILOGUE_SIZE
For some COFF targets, the x_sym.x_misc.x_fsize field of the function end
symbol is 0. For such targets, you must define FUNCTION_EPILOGUE_SIZE to
expand into the standard size of a function’s epilogue.

FUNCTION_START_OFFSET
An integer, giving the offset in bytes from a function’s address (as used in
the values of symbols, function pointers, etc.), and the function’s first genuine
instruction.

This is zero on almost all machines: the function’s address is usually the address
of its first instruction. However, on the VAX, for example, each function starts
with two bytes containing a bitmask indicating which registers to save upon
entry to the function. The VAX call instructions check this value, and save the
appropriate registers automatically. Thus, since the offset from the function’s
address to its first instruction is two bytes, FUNCTION_START_OFFSET would be
2 on the VAX.

GCC_COMPILED_FLAG_SYMBOL

GCC2_COMPILED_FLAG_SYMBOL
If defined, these are the names of the symbols that GDB will look for to detect
that GCC compiled the file. The default symbols are gcc_compiled. and
gcc2_compiled., respectively. (Currently only defined for the Delta 68.)

GDB_MULTI_ARCH
If defined and non-zero, enables suport for multiple architectures within GDB.

The support can be enabled at two levels. At level one, only definitions for
previously undefined macros are provided; at level two, a multi-arch definition
of all architecture dependant macros will be defined.

GDB_TARGET_IS_HPPA
This determines whether horrible kludge code in dbxread.c and partial-stab.h
is used to mangle multiple-symbol-table files from HPPA’s. This should all be
ripped out, and a scheme like elfread.c used.

GET_LONGJMP_TARGET
For most machines, this is a target-dependent parameter. On the DECstation
and the Iris, this is a native-dependent parameter, since <setjmp.h> is needed
to define it.

This macro determines the target PC address that longjmp() will jump to,
assuming that we have just stopped at a longjmp breakpoint. It takes a

Chapter 8: Target Architecture Definition 25

CORE_ADDR * as argument, and stores the target PC value through this
pointer. It examines the current state of the machine as needed.

GET_SAVED_REGISTER
Define this if you need to supply your own definition for the function get_
saved_register.

HAVE_REGISTER_WINDOWS
Define this if the target has register windows.

REGISTER_IN_WINDOW_P (regnum)
Define this to be an expression that is 1 if the given register is in the window.

IBM6000_TARGET
Shows that we are configured for an IBM RS/6000 target. This conditional
should be eliminated (FIXME) and replaced by feature-specific macros. It was
introduced in haste and we are repenting at leisure.

SYMBOLS_CAN_START_WITH_DOLLAR
Some systems have routines whose names start with ‘¢’. Giving this macro a
non-zero value tells GDB’s expression parser to check for such routines when
parsing tokens that begin with ‘$’.

On HP-UX, certain system routines (millicode) have names beginning with ‘$’
or ‘$$’. For example, $$dyncall is a millicode routine that handles inter-space
procedure calls on PA-RISC.

IEEE_FLOAT
Define this if the target system uses IEEE-format floating point numbers.

INIT_EXTRA_FRAME_INFO (fromleaf, frame)
If additional information about the frame is required this should be stored in
frame->extra_info. Space for frame->extra_info is allocated using frame_
obstack_alloc.

INIT_FRAME_PC (fromleaf, prev)

This is a C statement that sets the pc of the frame pointed to by prev. [By
default...]

INNER_THAN (1lhs,rhs)
Returns non-zero if stack address lhs is inner than (nearer to the stack top) stack
address rhs. Define this as 1hs < rhs if the target’s stack grows downward in
memory, or lhs > rsh if the stack grows upward.

IN_SIGTRAMP (pc, name)
Define this to return true if the given pc and/or name indicates that the current
function is a sigtramp.

SIGTRAMP_START (pc)
SIGTRAMP_END (pc)
Define these to be the start and end address of the sigtramp for the given pc.

On machines where the address is just a compile time constant, the macro
expansion will typically just ignore the supplied pc.

Chapter 8: Target Architecture Definition 26

IN_SOLIB_CALL_TRAMPOLINE pc name
Define this to evaluate to nonzero if the program is stopped in the trampoline
that connects to a shared library.

IN_SOLIB_RETURN_TRAMPOLINE pc name
Define this to evaluate to nonzero if the program is stopped in the trampoline
that returns from a shared library.

IN_SOLIB_DYNSYM_RESOLVE_CODE pc
Define this to evaluate to nonzero if the program is stopped in the dynamic
linker.

SKIP_SOLIB_RESOLVER pc
Define this to evaluate to the (nonzero) address at which execution should
continue to get past the dynamic linker’s symbol resolution function. A zero
value indicates that it is not important or necessary to set a breakpoint to get
through the dynamic linker and that single stepping will suffice.

IS_TRAPPED_INTERNALVAR (name)
This is an ugly hook to allow the specification of special actions that should
occur as a side-effect of setting the value of a variable internal to GDB. Cur-
rently only used by the h8500. Note that this could be either a host or target
conditional.

NEED_TEXT_START_END
Define this if GDB should determine the start and end addresses of the text
section. (Seems dubious.)

NO_HIF_SUPPORT
(Specific to the a29k.)

REGISTER_CONVERTIBLE (reg)
Return non-zero if reg uses different raw and virtual formats. See Chapter 8
[Using Different Register and Memory Data Representations], page 17.
REGISTER_RAW_SIZE (reg)
Return the raw size of reg. See Chapter 8 [Using Different Register and Memory
Data Representations], page 17.

REGISTER_VIRTUAL_SIZE (reg)
Return the virtual size of reg. See Chapter 8 [Using Different Register and
Memory Data Representations], page 17.

REGISTER_VIRTUAL_TYPE (reg)
Return the virtual type of reg. See Chapter 8 [Using Different Register and
Memory Data Representations|, page 17.

REGISTER_CONVERT_TO_VIRTUAL(reg, type, from, to)
Convert the value of register reg from its raw form to its virtual form. See Chap-
ter 8 [Using Different Register and Memory Data Representations|, page 17.

REGISTER_CONVERT_TO_RAW(type, reg, from, to)
Convert the value of register reg from its virtual form to its raw form. See Chap-
ter 8 [Using Different Register and Memory Data Representations|, page 17.

Chapter 8: Target Architecture Definition 27

SOFTWARE_SINGLE_STEP_P
Define this as 1 if the target does not have a hardware single-step mechanism.
The macro SOFTWARE_SINGLE_STEP must also be defined.

SOFTWARE_SINGLE_STEP(signal,insert_breapoints_p)
A function that inserts or removes (dependant on insert_breapoints_p) break-
points at each possible destinations of the next instruction. See sparc-tdep.c
and rs6000-tdep.c for examples.

SOFUN_ADDRESS_MAYBE_MISSING

Somebody clever observed that, the more actual addresses you have in the
debug information, the more time the linker has to spend relocating them. So
whenever there’s some other way the debugger could find the address it needs,
you should omit it from the debug info, to make linking faster.
SOFUN_ADDRESS_MAYBE_MISSING indicates that a particular set of hacks of this
sort are in use, affecting N_S0O and N_FUN entries in stabs-format debugging in-
formation. N_S0 stabs mark the beginning and ending addresses of compilation
units in the text segment. N_FUN stabs mark the starts and ends of functions.
SOFUN_ADDRESS_MAYBE_MISSING means two things:

e N_FUN stabs have an address of zero. Instead, you should find the addresses
where the function starts by taking the function name from the stab, and
then looking that up in the minsyms (the linker/ assembler symbol table).
In other words, the stab has the name, and the linker / assembler symbol
table is the only place that carries the address.

e N_S0 stabs have an address of zero, too. You just look at the N_FUN stabs
that appear before and after the N_SO stab, and guess the starting and
ending addresses of the compilation unit from them.

PCC_SOL_BROKEN
(Used only in the Convex target.)

PC_IN_CALL_DUMMY
inferior.h

PC_LOAD_SEGMENT
If defined, print information about the load segment for the program counter.

(Defined only for the RS/6000.)

PC_REGNUM
If the program counter is kept in a register, then define this macro to be the
number (greater than or equal to zero) of that register.
This should only need to be defined if TARGET_READ_PC and TARGET_WRITE_PC
are not defined.

NPC_REGNUM

The number of the “next program counter” register, if defined.

NNPC_REGNUM
The number of the “next next program counter” register, if defined. Currently,
this is only defined for the Motorola 88K.

Chapter 8: Target Architecture Definition 28

PARM_BOUNDARY
If non-zero, round arguments to a boundary of this many bits before pushing
them on the stack.

PRINT_REGISTER_HOOK (regno)
If defined, this must be a function that prints the contents of the given register
to standard output.

PRINT_TYPELESS_INTEGER
This is an obscure substitute for print_longest that seems to have been de-
fined for the Convex target.

PROCESS_LINENUMBER_HOOK
A hook defined for XCOFF reading.

PROLOGUE_FIRSTLINE_QOVERLAP
(Only used in unsupported Convex configuration.)

PS_REGNUM
If defined, this is the number of the processor status register. (This definition
is only used in generic code when parsing "$ps".)

POP_FRAME
Used in ‘call_function_by_hand’ to remove an artificial stack frame.

PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr)
Define this to push arguments onto the stack for inferior function call. Return
the updated stack pointer value.

PUSH_DUMMY_FRAME
Used in ‘call_function_by_hand’ to create an artificial stack frame.

REGISTER_BYTES
The total amount of space needed to store GDB’s copy of the machine’s register
state.

REGISTER_NAME (1)
Return the name of register i as a string. May return NULL or NUL to indicate
that register i is not valid.

REGISTER_NAMES
Deprecated in favor of REGISTER_NAME.

REG_STRUCT_HAS_ADDR (gcc_p, type)
Define this to return 1 if the given type will be passed by pointer rather than
directly.

SAVE_DUMMY_FRAME_TOS (sp)
Used in ‘call_function_by_hand’ to notify the target dependent code of the
top-of-stack value that will be passed to the the inferior code. This is the value
of the SP after both the dummy frame and space for parameters/results have
been allocated on the stack.

SDB_REG_TO_REGNUM
Define this to convert sdb register numbers into GDB regnums. If not defined,
no conversion will be done.

Chapter 8: Target Architecture Definition 29

SHIFT_INST_REGS
(Only used for m88k targets.)

SKIP_PERMANENT_BREAKPOINT

Advance the inferior’s PC past a permanent breakpoint. GDB normally steps
over a breakpoint by removing it, stepping one instruction, and re-inserting
the breakpoint. However, permanent breakpoints are hardwired into the
inferior, and can’t be removed, so this strategy doesn’t work. Calling
SKIP_PERMANENT_BREAKPOINT adjusts the processor’s state so that
execution will resume just after the breakpoint. This macro does the right
thing even when the breakpoint is in the delay slot of a branch or jump.

SKIP_PROLOGUE (pc)
A C expression that returns the address of the “real” code beyond the function
entry prologue found at pc.

SKIP_PROLOGUE_FRAMELESS_P
A C expression that should behave similarly, but that can stop as soon as the
function is known to have a frame. If not defined, SKIP_PROLOGUE will be used
instead.

SKIP_TRAMPOLINE_CODE (pc)
If the target machine has trampoline code that sits between callers and the
functions being called, then define this macro to return a new PC that is at the
start of the real function.

SP_REGNUM
If the stack-pointer is kept in a register, then define this macro to be the number
(greater than or equal to zero) of that register.

This should only need to be defined if TARGET_WRITE_SP and TARGET_WRITE_SP
are not defined.

STAB_REG_TO_REGNUM
Define this to convert stab register numbers (as gotten from
into GDB regnums. If not defined, no conversion will be done.

‘v’ declarations)

STACK_ALIGN (addr)
Define this to adjust the address to the alignment required for the processor’s
stack.

STEP_SKIPS_DELAY (addr)
Define this to return true if the address is of an instruction with a delay slot.
If a breakpoint has been placed in the instruction’s delay slot, GDB will single-
step over that instruction before resuming normally. Currently only defined for
the Mips.

STORE_RETURN_VALUE (type, valbuf)
A C expression that stores a function return value of type type, where valbuf
is the address of the value to be stored.

SUN_FIXED_LBRAC_BUG
(Used only for Sun-3 and Sun-4 targets.)

Chapter 8: Target Architecture Definition 30

SYMBOL_RELOADING_DEFAULT
The default value of the ‘symbol-reloading’ variable. (Never defined in current
sources.)

TARGET_BYTE_ORDER_DEFAULT
The ordering of bytes in the target. This must be either BIG_ENDIAN or LITTLE_
ENDIAN. This macro replaces TARGET_BYTE_ORDER which is deprecated.

TARGET_BYTE_ORDER_SELECTABLE_P
Non-zero if the target has both BIG_ENDIAN and LITTLE_ENDIAN variants. This
macro replaces TARGET_BYTE_ORDER_SELECTABLE which is deprecated.

TARGET_CHAR_BIT
Number of bits in a char; defaults to 8.

TARGET_COMPLEX_BIT
Number of bits in a complex number; defaults to 2 * TARGET_FLOAT_BIT.
At present this macro is not used.

TARGET_DOUBLE_BIT
Number of bits in a double float; defaults to 8 * TARGET_CHAR_BIT.

TARGET_DOUBLE_COMPLEX_BIT
Number of bits in a double complex; defaults to 2 * TARGET_DOUBLE_BIT.
At present this macro is not used.

TARGET_FLOAT_BIT
Number of bits in a float; defaults to 4 * TARGET _CHAR_BIT.

TARGET_INT_BIT
Number of bits in an integer; defaults to 4 * TARGET_CHAR_BIT.

TARGET_LONG_BIT
Number of bits in a long integer; defaults to 4 * TARGET_CHAR_BIT.

TARGET_LONG_DOUBLE_BIT
Number of bits in a long double float; defaults to 2 * TARGET_DOUBLE_BIT.

TARGET_LONG_LONG_BIT
Number of bits in a long long integer; defaults to 2 * TARGET_LONG_BIT.

TARGET_PTR_BIT
Number of bits in a pointer; defaults to TARGET_INT_BIT.

TARGET_SHORT_BIT
Number of bits in a short integer; defaults to 2 * TARGET_CHAR_BIT.
TARGET_READ_PC
TARGET_WRITE_PC (val, pid)
TARGET_READ_SP
TARGET_WRITE_SP
TARGET_READ_FP

Chapter 8: Target Architecture Definition 31

TARGET_WRITE_FP
These change the behavior of read_pc, write_pc, read_sp, write_sp, read_
fp and write_fp. For most targets, these may be left undefined. GDB will call
the read and write register functions with the relevant _REGNUM argument.

These macros are useful when a target keeps one of these registers in a hard to
get at place; for example, part in a segment register and part in an ordinary
register.

TARGET_VIRTUAL_FRAME_POINTER(pc,regp,offsetp)
Returns a (register, offset) pair representing the virtual frame pointer in
use at the code address "pc". If virtual frame pointers are not used, a default
definition simply returns FP_REGNUM, with an offset of zero.

USE_STRUCT_CONVENTION (gcc_p, type)
If defined, this must be an expression that is nonzero if a value of the given type
being returned from a function must have space allocated for it on the stack.
gece_p is true if the function being considered is known to have been compiled
by GCC; this is helpful for systems where GCC is known to use different calling
convention than other compilers.

VARIABLES_INSIDE_BLOCK (desc, gcc_p)
For dbx-style debugging information, if the compiler puts variable declarations
inside LBRAC/RBRAC blocks, this should be defined to be nonzero. desc is
the value of n_desc from the N_RBRAC symbol, and gcc_p is true if GDB has no-
ticed the presence of either the GCC_COMPILED_SYMBOL or the GCC2_COMPILED_
SYMBOL. By default, this is 0.

OS9K_VARIABLES_INSIDE_BLOCK (desc, gcc_p)
Similarly, for OS/9000. Defaults to 1.

Motorola M68K target conditionals.

BPT_VECTOR
Define this to be the 4-bit location of the breakpoint trap vector. If not defined,
it will default to Oxf.

REMOTE_BPT_VECTOR
Defaults to 1.

8.7 Adding a New Target

The following files define a target to GDB:

‘gdb/config/arch/ttt.mt’
Contains a Makefile fragment specific to this target. Specifies what object files

are needed for target ttt, by defining ‘TDEPFILES=... and ‘TDEPLIBS=...’".
Also specifies the header file which describes ttt, by defining ‘TM_FILE=
tm-ttt.h'.

You can also define ‘TM_CFLAGS’, ‘TM_CLIBS’, ‘TM_CDEPS’, but these are now
deprecated, replaced by autoconf, and may go away in future versions of GDB.

Chapter 9: Target Vector Definition 32

‘gdb/config/arch/tm-ttt.h’
(‘tm.h’ is a link to this file, created by configure). Contains macro definitions
about the target machine’s registers, stack frame format and instructions.

‘gdb/ttt-tdep.c’
Contains any miscellaneous code required for this target machine. On some
machines it doesn’t exist at all. Sometimes the macros in ‘tm-ttt.h’ become
very complicated, so they are implemented as functions here instead, and the
macro is simply defined to call the function. This is vastly preferable, since it
is easier to understand and debug.

‘gdb/config/arch/tm-arch.h’
This often exists to describe the basic layout of the target machine’s processor
chip (registers, stack, etc). If used, it is included by ‘tm-ttt.h’. It can be shared
among many targets that use the same processor.

‘gdb/arch-tdep.c’
Similarly, there are often common subroutines that are shared by all target
machines that use this particular architecture.

If you are adding a new operating system for an existing CPU chip, add a
‘config/tm-os.h’ file that describes the operating system facilities that are unusual (extra
symbol table info; the breakpoint instruction needed; etc). Then write a ‘arch/tm-os.h’
that just #includes ‘tm-arch.h’ and ‘config/tm-os.h’.

9 Target Vector Definition

The target vector defines the interface between GDB’s abstract handling of target sys-
tems, and the nitty-gritty code that actually exercises control over a process or a serial
port. GDB includes some 30-40 different target vectors; however, each configuration of
GDB includes only a few of them.

9.1 File Targets

Both executables and core files have target vectors.

9.2 Standard Protocol and Remote Stubs

GDB’s file ‘remote. ¢’ talks a serial protocol to code that runs in the target system. GDB
provides several sample “stubs” that can be integrated into target programs or operating
systems for this purpose; they are named ‘*-stub.c’.

The GDB user’s manual describes how to put such a stub into your target code. What
follows is a discussion of integrating the SPARC stub into a complicated operating system
(rather than a simple program), by Stu Grossman, the author of this stub.

The trap handling code in the stub assumes the following upon entry to trap_low:
1. %l1 and %12 contain pc and npc respectively at the time of the trap
2. traps are disabled

Chapter 10: Native Debugging 33

3. you are in the correct trap window

As long as your trap handler can guarantee those conditions, then there is no rea-
son why you shouldn’t be able to ‘share’ traps with the stub. The stub has no require-
ment that it be jumped to directly from the hardware trap vector. That is why it calls
exceptionHandler (), which is provided by the external environment. For instance, this
could setup the hardware traps to actually execute code which calls the stub first, and then
transfers to its own trap handler.

For the most point, there probably won’t be much of an issue with ‘sharing’ traps, as
the traps we use are usually not used by the kernel, and often indicate unrecoverable error
conditions. Anyway, this is all controlled by a table, and is trivial to modify. The most
important trap for us is for ta 1. Without that, we can’t single step or do breakpoints.
Everything else is unnecessary for the proper operation of the debugger/stub.

From reading the stub, it’s probably not obvious how breakpoints work. They are simply
done by deposit/examine operations from GDB.

9.3 ROM Monitor Interface
9.4 Custom Protocols
9.5 Transport Layer

9.6 Builtin Simulator

10 Native Debugging

Several files control GDB’s configuration for native support:

‘gdb/config/arch/xyz.mh’
Specifies Makefile fragments needed when hosting or native on machine
xyz. In particular, this lists the required native-dependent object files, by
defining ‘NATDEPFILES=...’. Also specifies the header file which describes
native support on xyz, by defining ‘NAT_FILE= nm-xyz.h’. You can also
define ‘NAT_CFLAGS’, ‘NAT_ADD_FILES’, ‘NAT_CLIBS’, ‘NAT_CDEPS’, etc.; see
‘Makefile.in’.

‘gdb/config/arch/nm-xyz.h’
(‘nm.h’ is a link to this file, created by configure). Contains C macro definitions
describing the native system environment, such as child process control and
core file support.

‘gdb/xyz-nat.c’
Contains any miscellaneous C code required for this native support of this
machine. On some machines it doesn’t exist at all.

Chapter 10: Native Debugging 34

There are some “generic” versions of routines that can be used by various systems.
These can be customized in various ways by macros defined in your ‘nm-xyz.h’ file. If these
routines work for the xyz host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in NATDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xyz-nat.c, and put xyz-
nat.o into NATDEPFILES.

‘inftarg.c’
This contains the target_ops vector that supports Unix child processes on sys-
tems which use ptrace and wait to control the child.

‘procfs.c’
This contains the target_ops vector that supports Unix child processes on sys-
tems which use /proc to control the child.

‘fork-child.c’
This does the low-level grunge that uses Unix system calls to do a "fork and
exec" to start up a child process.

‘infptrace.c’
This is the low level interface to inferior processes for systems using the Unix
ptrace call in a vanilla way.

10.1 Native core file Support

‘core-aout.c::fetch_core_registers()’
Support for reading registers out of a core file. This routine calls
register_addr(), see below. Now that BFD is used to read core files,
virtually all machines should use core-aout.c, and should just provide
fetch_core_registers in xyz-nat.c (or REGISTER_U_ADDR in nm-xyz.h).

‘core-aout.c::register_addr()’

If your nm-xyz.h file defines the macro REGISTER_U_ADDR (addr, blockend,
regno), it should be defined to set addr to the offset within the ‘user’ struct of
GDB register number regno. blockend is the offset within the “upage” of u.u_
ar0. If REGISTER_U_ADDR is defined, ‘core-aout.c’ will define the register_
addr () function and use the macro in it. If you do not define REGISTER_U_
ADDR, but you are using the standard fetch_core_registers(), you will need
to define your own version of register_addr (), put it into your xyz-nat. c file,
and be sure xyz-nat.o is in the NATDEPFILES list. If you have your own fetch_
core_registers(), you may not need a separate register_addr(). Many
custom fetch_core_registers() implementations simply locate the registers
themselves.

When making GDB run native on a new operating system, to make it possible to debug
core files, you will need to either write specific code for parsing your OS’s core files, or
customize ‘bfd/trad-core.c’. First, use whatever #include files your machine uses to
define the struct of registers that is accessible (possibly in the u-area) in a core file (rather
than ‘machine/reg.h’), and an include file that defines whatever header exists on a core

Chapter 10: Native Debugging 35

file (e.g. the u-area or a ‘struct core’). Then modify trad_unix_core_file_p() to use
these values to set up the section information for the data segment, stack segment, any
other segments in the core file (perhaps shared library contents or control information),
“registers” segment, and if there are two discontiguous sets of registers (e.g. integer and
float), the “reg2” segment. This section information basically delimits areas in the core file
in a standard way, which the section-reading routines in BFD know how to seek around in.

Then back in GDB, you need a matching routine called fetch_core_registers(). If
you can use the generic one, it’s in ‘core-aout.c’; if not, it’s in your ‘xyz-nat.c’ file. It
will be passed a char pointer to the entire “registers” segment, its length, and a zero; or a
char pointer to the entire “regs2” segment, its length, and a 2. The routine should suck out
the supplied register values and install them into GDB’s “registers” array.

If your system uses ‘/proc’ to control processes, and uses ELF format core files, then
you may be able to use the same routines for reading the registers out of processes and out
of core files.

10.2 ptrace
10.3 /proc
10.4 win32
10.5 shared libraries

10.6 Native Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation when the host and target systems are the same. These macros should
be defined (or left undefined) in ‘nm-system.h’.

ATTACH_DETACH
If defined, then GDB will include support for the attach and detach com-
mands.

CHILD_PREPARE_TO_STORE
If the machine stores all registers at once in the child process, then define this
to ensure that all values are correct. This usually entails a read from the child.

[Note that this is incorrectly defined in ‘xm-system.h’ files currently.]

FETCH_INFERIOR_REGISTERS
Define this if the native-dependent code will provide its own routines fetch_
inferior_registers and store_inferior_registers in ‘HOST-nat.c’. If
this symbol is not defined, and ‘infptrace.c’ is included in this configuration,
the default routines in ‘infptrace.c’ are used for these functions.

Chapter 10: Native Debugging 36

FILES_INFO_HOOK
(Only defined for Convex.)

FPO_REGNUM
This macro is normally defined to be the number of the first floating point
register, if the machine has such registers. As such, it would appear only in
target-specific code. However, /proc support uses this to decide whether floats
are in use on this target.

GET_LONGJMP_TARGET
For most machines, this is a target-dependent parameter. On the DECstation
and the Iris, this is a native-dependent parameter, since <setjmp.h> is needed
to define it.

This macro determines the target PC address that longjmp() will jump to,
assuming that we have just stopped at a longjmp breakpoint. It takes a
CORE_ADDR * as argument, and stores the target PC value through this
pointer. It examines the current state of the machine as needed.

KERNEL_U_ADDR
Define this to the address of the u structure (the “user struct”, also known as
the “u-page”) in kernel virtual memory. GDB needs to know this so that it can
subtract this address from absolute addresses in the upage, that are obtained
via ptrace or from core files. On systems that don’t need this value, set it to
Z€ro.

KERNEL_U_ADDR_BSD
Define this to cause GDB to determine the address of u at runtime, by using
Berkeley-style nlist on the kernel’s image in the root directory.

KERNEL_U_ADDR_HPUX
Define this to cause GDB to determine the address of u at runtime, by using
HP-style nlist on the kernel’s image in the root directory.

ONE_PROCESS_WRITETEXT
Define this to be able to, when a breakpoint insertion fails, warn the user that
another process may be running with the same executable.

PREPARE_TO_PROCEED select_it
This (ugly) macro allows a native configuration to customize the way the
proceed function in ‘infrun.c’ deals with switching between threads.

In a multi-threaded task we may select another thread and then continue or step.
But if the old thread was stopped at a breakpoint, it will immediately cause
another breakpoint stop without any execution (i.e. it will report a breakpoint
hit incorrectly). So GDB must step over it first.

If defined, PREPARE_TO_PROCEED should check the current thread against the
thread that reported the most recent event. If a step-over is required, it returns
TRUE. If select_it is non-zero, it should reselect the old thread.

PROC_NAME_FMT
Defines the format for the name of a ‘/proc’ device. Should be defined in ‘nm.h’
only in order to override the default definition in ‘procfs.c’.

Chapter 11: Support Libraries 37

PTRACE_FP_BUG
mach386-xdep.c

PTRACE_ARG3_TYPE
The type of the third argument to the ptrace system call, if it exists and is
different from int.

REGISTER_U_ADDR
Defines the offset of the registers in the

SHELL_COMMAND_CONCAT
If defined, is a string to prefix on the shell command used to start the inferior.

SHELL_FILE
If defined, this is the name of the shell to use to run the inferior. Defaults to
"/bin/sh".

SOLIB_ADD (filename, from_tty, targ)
Define this to expand into an expression that will cause the symbols in filename
to be added to GDB’s symbol table.

SOLIB_CREATE_INFERIOR_HOOK
Define this to expand into any shared-library-relocation code that you want to
be run just after the child process has been forked.

START_INFERIOR_TRAPS_EXPECTED
When starting an inferior, GDB normally expects to trap twice; once when
the shell execs, and once when the program itself execs. If the actual number
of traps is something other than 2, then define this macro to expand into the
number expected.

SVR4_SHARED_LIBS
Define this to indicate that SVR4-style shared libraries are in use.

USE_PROC_FS
This determines whether small routines in ‘*-tdep.c’, which translate register
values between GDB'’s internal representation and the /proc representation, are
compiled.

U_REGS_QOFFSET
This is the offset of the registers in the upage. It need only be defined if
the generic ptrace register access routines in ‘infptrace.c’ are being used
(that is, ‘infptrace.c’ is configured in, and FETCH_INFERIOR_REGISTERS is
not defined). If the default value from ‘infptrace.c’ is good enough, leave it
undefined.

“u area”.

The default value means that u.u_ar0 points to the location of the registers. I'm
guessing that #define U_REGS_OFFSET 0 means that u.u_ar(Q s the location of
the registers.

CLEAR_SOLIB
objfiles.c

DEBUG_PTRACE
Define this to debug ptrace calls.

Chapter 11: Support Libraries 38

11 Support Libraries

11.1 BFD

BFED provides support for GDB in several ways:

identifying executable and core files
BEFD will identify a variety of file types, including a.out, coff, and several vari-
ants thereof, as well as several kinds of core files.

access to sections of files
BFD parses the file headers to determine the names, virtual addresses, sizes,
and file locations of all the various named sections in files (such as the text
section or the data section). GDB simply calls BFD to read or write section X
at byte offset Y for length Z.

specialized core file support
BFED provides routines to determine the failing command name stored in a core
file, the signal with which the program failed, and whether a core file matches
(i.e. could be a core dump of) a particular executable file.

locating the symbol information
GDB uses an internal interface of BFD to determine where to find the symbol
information in an executable file or symbol-file. GDB itself handles the reading
of symbols, since BFD does not “understand” debug symbols, but GDB uses
BFD’s cached information to find the symbols, string table, etc.

11.2 opcodes

The opcodes library provides GDB’s disassembler. (It’s a separate library because it’s
also used in binutils, for ‘objdump’).

11.3 readline
11.4 mmalloc
11.5 libiberty

11.6 gnu-regex

Regex conditionals.
C_ALLOCA

NFAILURES
RE_NREGS

Chapter 12: Coding 39

SIGN_EXTEND_CHAR
SWITCH_ENUM_BUG
SYNTAX_TABLE

Sword

sparc

11.7 include

12 Coding

This chapter covers topics that are lower-level than the major algorithms of GDB.

12.1 Cleanups

Cleanups are a structured way to deal with things that need to be done later. When your
code does something (like malloc some memory, or open a file) that needs to be undone
later (e.g. free the memory or close the file), it can make a cleanup. The cleanup will be
done at some future point: when the command is finished, when an error occurs, or when
your code decides it’s time to do cleanups.

You can also discard cleanups, that is, throw them away without doing what they say.
This is only done if you ask that it be done.

Syntax:

struct cleanup *old_chain;
Declare a variable which will hold a cleanup chain handle.

old_chain = make_cleanup (function, arg) ;
Make a cleanup which will cause function to be called with arg (a char x)
later. The result, old_chain, is a handle that can be passed to do_cleanups
or discard_cleanups later. Unless you are going to call do_cleanups or
discard_cleanups yourself, you can ignore the result from make_cleanup.

do_cleanups (old_chain) ;
Perform all cleanups done since make_cleanup returned old_chain. E.g.:
make_cleanup (a, 0);
old = make_cleanup (b, 0);
do_cleanups (old);
will call b() but will not call a(). The cleanup that calls a() will remain in
the cleanup chain, and will be done later unless otherwise discarded.

discard_cleanups (old_chain) ;
Same as do_cleanups except that it just removes the cleanups from the chain
and does not call the specified functions.

Some functions, e.g. fputs_filtered() or error(), specify that they “should not be
called when cleanups are not in place”. This means that any actions you need to reverse
in the case of an error or interruption must be on the cleanup chain before you call these
functions, since they might never return to your code (they ‘longjmp’ instead).

Chapter 12: Coding 40

12.2 Wrapping Output Lines

Output that goes through printf_filtered or fputs_filtered or fputs_demangled
needs only to have calls to wrap_here added in places that would be good breaking points.
The utility routines will take care of actually wrapping if the line width is exceeded.

The argument to wrap_here is an indentation string which is printed only if the line
breaks there. This argument is saved away and used later. It must remain valid until
the next call to wrap_here or until a newline has been printed through the *_filtered
functions. Don’t pass in a local variable and then return!

It is usually best to call wrap_here() after printing a comma or space. If you call it
before printing a space, make sure that your indentation properly accounts for the leading
space that will print if the line wraps there.

Any function or set of functions that produce filtered output must finish by printing a
newline, to flush the wrap buffer, before switching to unfiltered (“printf”) output. Symbol
reading routines that print warnings are a good example.

12.3 GDB Coding Standards

GDB follows the GNU coding standards, as described in ‘etc/standards.texi’. This
file is also available for anonymous FTP from GNU archive sites. GDB takes a strict
interpretation of the standard; in general, when the GNU standard recommends a practice
but does not require it, GDB requires it.

GDB follows an additional set of coding standards specific to GDB, as described in the
following sections.

You can configure with ‘--enable-build-warnings’ to get GCC to check on a
number of these rules. GDB sources ought not to engender any complaints, unless
they are caused by bogus host systems. (The exact set of enabled warnings is
currently ‘-Wall -Wpointer-arith -Wstrict-prototypes -Wmissing-prototypes
-Wmissing-declarations’.

12.3.1 Formatting

The standard GNU recommendations for formatting must be followed strictly.

Note that while in a definition, the function’s name must be in column zero; in a function
declaration, the name must be on the same line as the return type.

In addition, there must be a space between a function or macro name and the opening
parenthesis of its argument list (except for macro definitions, as required by C). There must
not be a space after an open paren/bracket or before a close paren/bracket.

While additional whitespace is generally helpful for reading, do not use more than one
blank line to separate blocks, and avoid adding whitespace after the end of a program line
(as of 1/99, some 600 lines had whitespace after the semicolon). Excess whitespace causes
difficulties for diff and patch.

Chapter 12: Coding 41

12.3.2 Comments

The standard GNU requirements on comments must be followed strictly.

Block comments must appear in the following form, with no ‘/*’- or "*/’-only lines, and
no leading “*’:

/* Wait for control to return from inferior to debugger. If inferior
gets a signal, we may decide to start it up again instead of
returning. That is why there is a loop in this function. When
this function actually returns it means the inferior should be left
stopped and GDB should read more commands. */

(Note that this format is encouraged by Emacs; tabbing for a multi-line comment works
correctly, and M-Q fills the block consistently.)

Put a blank line between the block comments preceding function or variable definitions,
and the definition itself.

In general, put function-body comments on lines by themselves, rather than trying to fit
them into the 20 characters left at the end of a line, since either the comment or the code
will inevitably get longer than will fit, and then somebody will have to move it anyhow.

12.3.3 C Usage

Code must not depend on the sizes of C data types, the format of the host’s floating
point numbers, the alignment of anything, or the order of evaluation of expressions.

Use functions freely. There are only a handful of compute-bound areas in GDB that
might be affected by the overhead of a function call, mainly in symbol reading. Most of
GDB’s performance is limited by the target interface (whether serial line or system call).

However, use functions with moderation. A thousand one-line functions are just as hard
to understand as a single thousand-line function.

12.3.4 Function Prototypes

Prototypes must be used to declare functions, and may be used to define them. Proto-
types for GDB functions must include both the argument type and name, with the name
matching that used in the actual function definition.

All external functions should have a declaration in a header file that callers include,
except for _initialize_x* functions, which must be external so that ‘init.c’ construction
works, but shouldn’t be visible to random source files.

All static functions must be declared in a block near the top of the source file.

12.3.5 Clean Design

In addition to getting the syntax right, there’s the little question of semantics. Some
things are done in certain ways in GDB because long experience has shown that the more
obvious ways caused various kinds of trouble.

Chapter 12: Coding 42

You can’t assume the byte order of anything that comes from a target (including values,
object files, and instructions). Such things must be byte-swapped using SWAP_TARGET _AND_
HOST in GDB, or one of the swap routines defined in ‘bfd.h’, such as bfd_get_32.

You can’t assume that you know what interface is being used to talk to the target system.
All references to the target must go through the current target_ops vector.

You can’t assume that the host and target machines are the same machine (except in
the “native” support modules). In particular, you can’t assume that the target machine’s
header files will be available on the host machine. Target code must bring along its own
header files — written from scratch or explicitly donated by their owner, to avoid copyright
problems.

Insertion of new #ifdef’s will be frowned upon. It’s much better to write the code
portably than to conditionalize it for various systems.

New #ifdef’s which test for specific compilers or manufacturers or operating systems are
unacceptable. All #ifdef’s should test for features. The information about which configu-
rations contain which features should be segregated into the configuration files. Experience
has proven far too often that a feature unique to one particular system often creeps into
other systems; and that a conditional based on some predefined macro for your current sys-
tem will become worthless over time, as new versions of your system come out that behave
differently with regard to this feature.

Adding code that handles specific architectures, operating systems, target interfaces, or
hosts, is not acceptable in generic code. If a hook is needed at that point, invent a generic
hook and define it for your configuration, with something like:

#ifdef WRANGLE_SIGNALS
WRANGLE_SIGNALS (signo);
#endif

In your host, target, or native configuration file, as appropriate, define WRANGLE_SIGNALS
to do the machine-dependent thing. Take a bit of care in defining the hook, so that it can
be used by other ports in the future, if they need a hook in the same place.

If the hook is not defined, the code should do whatever "most" machines want. Using
#ifdef, as above, is the preferred way to do this, but sometimes that gets convoluted, in
which case use

#ifndef SPECIAL_FOO_HANDLING
#define SPECIAL_FOO_HANDLING(pc, sp) (0)
#endif

where the macro is used or in an appropriate header file.

Whether to include a small hook, a hook around the exact pieces of code which are
system-dependent, or whether to replace a whole function with a hook depends on the case.
A good example of this dilemma can be found in get_saved_register. All machines that
GDB 2.8 ran on just needed the FRAME_FIND_SAVED_REGS hook to find the saved registers.
Then the SPARC and Pyramid came along, and HAVE_REGISTER_WINDOWS and REGISTER_
IN_WINDOW_P were introduced. Then the 29k and 88k required the GET_SAVED_REGISTER
hook. The first three are examples of small hooks; the latter replaces a whole function.
In this specific case, it is useful to have both kinds; it would be a bad idea to replace all
the uses of the small hooks with GET_SAVED_REGISTER, since that would result in much

Chapter 13: Porting GDB 43

duplicated code. Other times, duplicating a few lines of code here or there is much cleaner
than introducing a large number of small hooks.

Another way to generalize GDB along a particular interface is with an attribute struct.
For example, GDB has been generalized to handle multiple kinds of remote interfaces — not
by #ifdef’s everywhere, but by defining the "target_ops" structure and having a current
target (as well as a stack of targets below it, for memory references). Whenever something
needs to be done that depends on which remote interface we are using, a flag in the current
target_ops structure is tested (e.g. ‘target_has_stack’), or a function is called through a
pointer in the current target_ops structure. In this way, when a new remote interface is
added, only one module needs to be touched — the one that actually implements the new
remote interface. Other examples of attribute-structs are BFD access to multiple kinds of
object file formats, or GDB’s access to multiple source languages.

Please avoid duplicating code. For example, in GDB 3.x all the code interfacing
between ptrace and the rest of GDB was duplicated in ‘*-dep.c’, and so changing
something was very painful. In GDB 4.x, these have all been consolidated into
‘infptrace.c’. ‘infptrace.c’ can deal with variations between systems the same way any
system-independent file would (hooks, #if defined, etc.), and machines which are radically
different don’t need to use infptrace.c at all.

Don’t put debugging printfs in the code.

13 Porting GDB

Most of the work in making GDB compile on a new machine is in specifying the config-
uration of the machine. This is done in a dizzying variety of header files and configuration
scripts, which we hope to make more sensible soon. Let’s say your new host is called
an xyz (e.g. ‘sund’), and its full three-part configuration name is arch-xvend-xos (e.g.
‘sparc-sun-sunos4’). In particular:

In the top level directory, edit ‘config.sub’ and add arch, xvend, and xos to the lists of
supported architectures, vendors, and operating systems near the bottom of the file. Also,
add xyz as an alias that maps to arch-xvend-xos. You can test your changes by running

./config.sub xyz
and
./config.sub arch-xvend-xos
which should both respond with arch-xvend-xos and no error messages.

You need to port BFD, if that hasn’t been done already. Porting BFD is beyond the
scope of this manual.

To configure GDB itself, edit ‘gdb/configure.host’ to recognize your system and
set gdb_host to xyz, and (unless your desired target is already available) also edit
‘gdb/configure.tgt’, setting gdb_target to something appropriate (for instance, xyz).

Finally, you’ll need to specify and define GDB’s host-, native-, and target-dependent
“.h’ and ‘.c’ files used for your configuration.

Chapter 14: Testsuite 44

13.1 Configuring GDB for Release

From the top level directory (containing ‘gdb’, ‘bfd’, ‘libiberty’, and so on):
make -f Makefile.in gdb.tar.gz

This will properly configure, clean, rebuild any files that are distributed pre-built (e.g.
‘c-exp.tab.c’ or ‘refcard.ps’), and will then make a tarfile. (If the top level directory
has already been configured, you can just do make gdb.tar.gz instead.)

This procedure requires:

symbolic links

makeinfo (texinfo2 level)
o TpX
e dvips

e yacc or bison

. and the usual slew of utilities (sed, tar, etc.).

TEMPORARY RELEASE PROCEDURE FOR
DOCUMENTATION

‘gdb.texinfo’ is currently marked up using the texinfo-2 macros, which are not yet a
default for anything (but we have to start using them sometime).

For making paper, the only thing this implies is the right generation of ‘texinfo.tex’
needs to be included in the distribution.

For making info files, however, rather than duplicating the texinfo2 distribution, generate
‘gdb-all.texinfo’ locally, and include the files ‘gdb.infox’ in the distribution. Note the
plural; makeinfo will split the document into one overall file and five or so included files.

14 Testsuite

The testsuite is an important component of the GDB package. While it is always worth-
while to encourage user testing, in practice this is rarely sufficient; users typically use only
a small subset of the available commands, and it has proven all too common for a change
to cause a significant regression that went unnoticed for some time.

The GDB testsuite uses the DejaGNU testing framework. DejaGNU is built using tcl
and expect. The tests themselves are calls to various tcl procs; the framework runs all the
procs and summarizes the passes and fails.

14.1 Using the Testsuite

To run the testsuite, simply go to the GDB object directory (or to the testsuite’s objdir)
and type make check. This just sets up some environment variables and invokes DejaGNU’s
runtest script. While the testsuite is running, you’ll get mentions of which test file is in
use, and a mention of any unexpected passes or fails. When the testsuite is finished, you’ll
get a summary that looks like this:

Chapter 14: Testsuite 45

=== gdb Summary ===
of expected passes 6016
of unexpected failures 58
of unexpected successes 5
of expected failures 183
of unresolved testcases 3
of untested testcases 5

The ideal test run consists of expected passes only; however, reality conspires to keep
us from this ideal. Unexpected failures indicate real problems, whether in GDB or in the
testsuite. Expected failures are still failures, but ones which have been decided are too hard
to deal with at the time; for instance, a test case might work everywhere except on AIX,
and there is no prospect of the AIX case being fixed in the near future. Expected failures
should not be added lightly, since you may be masking serious bugs in GDB. Unexpected
successes are expected fails that are passing for some reason, while unresolved and untested
cases often indicate some minor catastrophe, such as the compiler being unable to deal with
a test program.

When making any significant change to GDB, you should run the testsuite before and
after the change, to confirm that there are no regressions. Note that truly complete testing
would require that you run the testsuite with all supported configurations and a variety of
compilers; however this is more than really necessary. In many cases testing with a single
configuration is sufficient. Other useful options are to test one big-endian (Sparc) and one
little-endian (x86) host, a cross config with a builtin simulator (powerpc-eabi, mips-elf), or
a 64-bit host (Alpha).

If you add new functionality to GDB, please consider adding tests for it as well; this
way future GDB hackers can detect and fix their changes that break the functionality you
added. Similarly, if you fix a bug that was not previously reported as a test failure, please
add a test case for it. Some cases are extremely difficult to test, such as code that handles
host OS failures or bugs in particular versions of compilers, and it’s OK not to try to write
tests for all of those.

14.2 Testsuite Organization

The testsuite is entirely contained in ‘gdb/testsuite’. While the testsuite includes
some makefiles and configury, these are very minimal, and used for little besides cleaning
up, since the tests themselves handle the compilation of the programs that GDB will run.
The file ‘testsuite/lib/gdb.exp’ contains common utility procs useful for all GDB tests,
while the directory ‘testsuite/config’ contains configuration-specific files, typically used
for special-purpose definitions of procs like gdb_load and gdb_start.

The tests themselves are to be found in ‘testsuite/gdb.*’ and subdirectories of those.
The names of the test files must always end with ‘.exp’. DejaGNU collects the test files
by wildcarding in the test directories, so both subdirectories and individual files get chosen
and run in alphabetical order.

The following table lists the main types of subdirectories and what they are for. Since
DejaGNU finds test files no matter where they are located, and since each test file sets up

Chapter 15: Hints 46

its own compilation and execution environment, this organization is simply for convenience
and intelligibility.

gdb.base

This is the base testsuite. The tests in it should apply to all configurations of
GDB (but generic native-only tests may live here). The test programs should
be in the subset of C that is valid K&R, ANSI/ISO, and C++ (ifdefs are allowed
if necessary, for instance for prototypes).

gdb.lang

Language-specific tests for all languages besides C. Examples are ‘gdb.c++’ and
‘gdb. java’.

gdb. platform
Non-portable tests. The tests are specific to a specific configuration (host or
target), such as HP-UX or eCos. Example is ‘gdb.hp’, for HP-UX.

gdb. compiler
Tests specific to a particular compiler. As of this writing (June 1999), there
aren’t currently any groups of tests in this category that couldn’t just as sensibly
be made platform-specific, but one could imagine a gdb.gcc, for tests of GDB’s
handling of GCC extensions.

gdb. subsystem
Tests that exercise a specific GDB subsystem in more depth. For instance,
‘gdb.disasm’ exercises various disassemblers, while ‘gdb.stabs’ tests pathways
through the stabs symbol reader.

14.3 Writing Tests

In many areas, the GDB tests are already quite comprehensive; you should be able to
copy existing tests to handle new cases.

You should try to use gdb_test whenever possible, since it includes cases to handle all
the unexpected errors that might happen. However, it doesn’t cost anything to add new test
procedures; for instance, ‘gdb.base/exprs.exp’ defines a test_expr that calls gdb_test
multiple times.

Only use send_gdb and gdb_expect when absolutely necessary, such as when GDB has
several valid responses to a command.

The source language programs do not need to be in a consistent style. Since GDB is
used to debug programs written in many different styles, it’s worth having a mix of styles
in the testsuite; for instance, some GDB bugs involving the display of source lines would
never manifest themselves if the programs used GNU coding style uniformly.

15 Hints

Check the ‘README’ file, it often has useful information that does not appear anywhere
else in the directory.

Chapter 15: Hints 47

15.1 Getting Started

GDB is a large and complicated program, and if you first starting to work on it, it can
be hard to know where to start. Fortunately, if you know how to go about it, there are
ways to figure out what is going on.

This manual, the GDB Internals manual, has information which applies generally to
many parts of GDB.

Information about particular functions or data structures are located in comments with
those functions or data structures. If you run across a function or a global variable which
does not have a comment correctly explaining what is does, this can be thought of as a bug
in GDB; feel free to submit a bug report, with a suggested comment if you can figure out
what the comment should say. If you find a comment which is actually wrong, be especially
sure to report that.

Comments explaining the function of macros defined in host, target, or native dependent
files can be in several places. Sometimes they are repeated every place the macro is defined.
Sometimes they are where the macro is used. Sometimes there is a header file which supplies
a default definition of the macro, and the comment is there. This manual also documents
all the available macros.

Start with the header files. Once you have some idea of how GDB’s internal symbol
tables are stored (see ‘symtab.h’; ‘gdbtypes.h’), you will find it much easier to understand
the code which uses and creates those symbol tables.

You may wish to process the information you are getting somehow, to enhance your
understanding of it. Summarize it, translate it to another language, add some (perhaps
trivial or non-useful) feature to GDB, use the code to predict what a test case would do
and write the test case and verify your prediction, etc. If you are reading code and your
eyes are starting to glaze over, this is a sign you need to use a more active approach.

Once you have a part of GDB to start with, you can find more specifically the part you
are looking for by stepping through each function with the next command. Do not use step
or you will quickly get distracted; when the function you are stepping through calls another
function try only to get a big-picture understanding (perhaps using the comment at the
beginning of the function being called) of what it does. This way you can identify which of
the functions being called by the function you are stepping through is the one which you
are interested in. You may need to examine the data structures generated at each stage,
with reference to the comments in the header files explaining what the data structures are
supposed to look like.

Of course, this same technique can be used if you are just reading the code, rather than
actually stepping through it. The same general principle applies—when the code you are
looking at calls something else, just try to understand generally what the code being called
does, rather than worrying about all its details.

A good place to start when tracking down some particular area is with a command which
invokes that feature. Suppose you want to know how single-stepping works. As a GDB user,
you know that the step command invokes single-stepping. The command is invoked via
command tables (see ‘command.h’); by convention the function which actually performs
the command is formed by taking the name of the command and adding ‘_command’, or
in the case of an info subcommand, ‘_info’. For example, the step command invokes

Chapter 15: Hints 48

the step_command function and the info display command invokes display_info. When
this convention is not followed, you might have to use grep or M-x tags-search in emacs,
or run GDB on itself and set a breakpoint in execute_command.

If all of the above fail, it may be appropriate to ask for information on bug-gdb. But
never post a generic question like “I was wondering if anyone could give me some tips
about understanding GDB”—if we had some magic secret we would put it in this manual.
Suggestions for improving the manual are always welcome, of course.

15.2 Debugging GDB with itself

If GDB is limping on your machine, this is the preferred way to get it fully functional.
Be warned that in some ancient Unix systems, like Ultrix 4.2, a program can’t be running
in one process while it is being debugged in another. Rather than typing the command
./gdb ./gdb, which works on Suns and such, you can copy ‘gdb’ to ‘gdb2’ and then type
./gdb ./gdb2.

When you run GDB in the GDB source directory, it will read a ‘. gdbinit’ file that sets
up some simple things to make debugging gdb easier. The info command, when executed
without a subcommand in a GDB being debugged by gdb, will pop you back up to the top
level gdb. See ‘.gdbinit’ for details.

If you use emacs, you will probably want to do a make TAGS after you configure your
distribution; this will put the machine dependent routines for your local machine where
they will be accessed first by M-.

Also, make sure that you've either compiled GDB with your local cc, or have run
fixincludes if you are compiling with gcc.

15.3 Submitting Patches

Thanks for thinking of offering your changes back to the community of GDB users. In
general we like to get well designed enhancements. Thanks also for checking in advance
about the best way to transfer the changes.

The GDB maintainers will only install “cleanly designed” patches. This manual sum-
marizes what we believe to be clean design for GDB.

If the maintainers don’t have time to put the patch in when it arrives, or if there is any
question about a patch, it goes into a large queue with everyone else’s patches and bug
reports.

The legal issue is that to incorporate substantial changes requires a copyright assign-
ment from you and/or your employer, granting ownership of the changes to the Free Soft-
ware Foundation. You can get the standard documents for doing this by sending mail to
gnu@gnu.org and asking for it. We recommend that people write in "All programs owned
by the Free Software Foundation" as "NAME OF PROGRAM", so that changes in many
programs (not just GDB, but GAS, Emacs, GCC, etc) can be contributed with only one
piece of legalese pushed through the bureacracy and filed with the FSF. We can’t start
merging changes until this paperwork is received by the FSF (their rules, which we follow
since we maintain it for them).

Chapter 15: Hints 49

Technically, the easiest way to receive changes is to receive each feature as a small context
diff or unidiff, suitable for "patch". Each message sent to me should include the changes to
C code and header files for a single feature, plus ChangeLog entries for each directory where
files were modified, and diffs for any changes needed to the manuals (gdb/doc/gdb.texinfo
or gdb/doc/gdbint.texinfo). If there are a lot of changes for a single feature, they can be
split down into multiple messages.

In this way, if we read and like the feature, we can add it to the sources with a single
patch command, do some testing, and check it in. If you leave out the Changelog, we have
to write one. If you leave out the doc, we have to puzzle out what needs documenting. Etc.

The reason to send each change in a separate message is that we will not install some
of the changes. They’ll be returned to you with questions or comments. If we're doing our
job correctly, the message back to you will say what you have to fix in order to make the
change acceptable. The reason to have separate messages for separate features is so that
the acceptable changes can be installed while one or more changes are being reworked. If
multiple features are sent in a single message, we tend to not put in the effort to sort out
the acceptable changes from the unacceptable, so none of the features get installed until all
are acceptable.

If this sounds painful or authoritarian, well, it is. But we get a lot of bug reports and
a lot of patches, and many of them don’t get installed because we don’t have the time to
finish the job that the bug reporter or the contributor could have done. Patches that arrive
complete, working, and well designed, tend to get installed on the day they arrive. The
others go into a queue and get installed as time permits, which, since the maintainers have
many demands to meet, may not be for quite some time.

Please send patches directly to the GDB maintainers at gdb-patches@sourceware. cygnus. com.|]

15.4 Obsolete Conditionals

Fragments of old code in GDB sometimes reference or set the following configuration
macros. They should not be used by new code, and old uses should be removed as those
parts of the debugger are otherwise touched.

STACK_END_ADDR
This macro used to define where the end of the stack appeared, for use in
interpreting core file formats that don’t record this address in the core file itself.
This information is now configured in BFD, and GDB gets the info portably
from there. The values in GDB’s configuration files should be moved into BFD
configuration files (if needed there), and deleted from all of GDB’s config files.

Any ‘foo-xdep.c’ file that references STACK_END_ADDR is so old that it has
never been converted to use BFD. Now that’s old!
PYRAMID_CONTROL_FRAME_DEBUGGING
pyr-xdep.c
PYRAMID_CORE
pyr-xdep.c

PYRAMID_PTRACE
pyr-xdep.c

Chapter 15: Hints

REG_STACK_SEGMENT
exec.c

50

Table of Contents

Scope of this Document 1
1 Requirements.............................. 1
2 Overall Structure 1
2.1 The Symbol Side............o 2

2.2 The Target Side. ... 2

2.3 Configurations ... 2

3 Algorithms............... 2
3.1 Frameso i 3

3.2 Breakpoint Handling 3

3.3 Single Stepping 4

3.4 Signal Handling 4

3.5 Thread Handling 4

3.6 Inferior Function Calls............ 4

3.7 Longjmp SUpportot 4

4 UserInterface............................. 4
4.1 Command Interpreter 4

4.2 Console Printing 5

4.3 TUL. . 5

4.4 Tibgdb ..o 5

5 Symbol Handling 5
5.1 Symbol Reading............c.o i 5

5.2 Partial Symbol Tables 6

0.3 TYPES oot 7

5.4 Object File Formats............. 8

5.4.1 @.0Ub ... 8

54.2 COFF ... 8

543 ECOFF 8

544 XCOFF 9

545 PE 9

54.6 ELF ... 9

BAT SOM oo 9

5.4.8 Other File Formats 9

5.5 Debugging File Formats 9

5.5.1 stabs ... 9

5.5.2 COFF 10

5.5.3 Mips debug (Third Eye)........................ 10

55.4 DWARF 1 10

555 DWARF 2 ... 10
5.5.6 SOM ..o 10
5.6 Adding a New Symbol Reader to GDB................... 10
6 Language Support 11
6.1 Adding a Source Language to GDB...................... 11
7 Host Definition........................... 13
7.1 Addinga New Host 13
7.2 Host Conditionals 14
8 Target Architecture Definition............. 17
8.1 Registers and Memory........... 17
8.2 Using Different Register and Memory Data Representations
... 18
8.3 Frame Interpretation 19
8.4 Inferior Call Setupo i 19
8.5 Compiler Characteristics............. 19
8.6 Target Conditionals, 19
8.7 Adding a New Target............ooiiiiiiii. .. 31
9 Target Vector Definition 32
9.1 File Targets. 32
9.2 Standard Protocol and Remote Stubs.................... 32
9.3 ROM Monitor Interface................................. 33
9.4 Custom Protocols i 33
9.5 Transport Layer........ 33
9.6 Builtin Simulator....................................... 33
10 Native Debugging 33
10.1 Native core file Support......... 34
10.2 ptrace. ... e 3D
10.3° /PrOC .o 35
104 Win32 ..o 35
10.5 shared libraries 3D
10.6 Native Conditionals 35
11 Support Libraries........................ 38
11.1 BED oo 38
11.2 0pCOdes ..o v e 38
11.3 readlineoo i 38
11.4 mmalloc. ... 38
11.5 dibiberty..... ..o 38
11.6 gnU-TeEeX oot 38

11.7 include e o039

12 Coding......coviiiiiiiiiiiiiiiinnnn. 39
12,1 Cleanups . ..o oottt e e e e 39

12.2 Wrapping Output Lines 40

12.3 GDB Coding Standards 40

12.3.1 Formatting........... ... 40

12.3.2 Commentsooonee 41

12.3.3 CUSAZE .o v et 41

12.3.4 Function Prototypes.............. 41

12.3.5 Clean Design 41

13 Porting GDB............., 43
13.1 Configuring GDB for Release........................... 44

14 Testsuite..........ccoiiiiiiiiinnnn.. 44
14.1 Using the Testsuite......... i 44

14.2 Testsuite Organization.................. 45

14.3 Writing Tests 46

15 Hints ...ttt 46
15.1 Getting Started 47

15.2 Debugging GDB with itself 48

15.3 Submitting Patches L. 48

15.4 Obsolete Conditionals 49

iii

	Scope of this Document
	Requirements
	Overall Structure
	The Symbol Side
	The Target Side
	Configurations

	Algorithms
	Frames
	Breakpoint Handling
	Single Stepping
	Signal Handling
	Thread Handling
	Inferior Function Calls
	Longjmp Support

	User Interface
	Command Interpreter
	Console Printing
	TUI
	libgdb

	Symbol Handling
	Symbol Reading
	Partial Symbol Tables
	Types
	Object File Formats
	a.out
	COFF
	ECOFF
	XCOFF
	PE
	ELF
	SOM
	Other File Formats

	Debugging File Formats
	stabs
	COFF
	Mips debug (Third Eye)
	DWARF 1
	DWARF 2
	SOM

	Adding a New Symbol Reader to GDB

	Language Support
	Adding a Source Language to GDB

	Host Definition
	Adding a New Host
	Host Conditionals

	Target Architecture Definition
	Registers and Memory
	Using Different Register and Memory Data Representations
	Frame Interpretation
	Inferior Call Setup
	Compiler Characteristics
	Target Conditionals
	Adding a New Target

	Target Vector Definition
	File Targets
	Standard Protocol and Remote Stubs
	ROM Monitor Interface
	Custom Protocols
	Transport Layer
	Builtin Simulator

	Native Debugging
	Native core file Support
	ptrace
	/proc
	win32
	shared libraries
	Native Conditionals

	Support Libraries
	BFD
	opcodes
	readline
	mmalloc
	libiberty
	gnu-regex
	include

	Coding
	Cleanups
	Wrapping Output Lines
	GDB Coding Standards
	Formatting
	Comments
	C Usage
	Function Prototypes
	Clean Design

	Porting GDB
	Configuring GDB for Release

	Testsuite
	Using the Testsuite
	Testsuite Organization
	Writing Tests

	Hints
	Getting Started
	Debugging GDB with itself
	Submitting Patches
	Obsolete Conditionals

