
Using and Porting the GNU Compiler Collection

Richard M. Stallman

Last updated 22 June 2001

for GCC 3.1

Copyright c© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001 Free Software
Foundation, Inc.

For GCC Version 3.1

Published by the Free Software Foundation
59 Temple Place—Suite 330
Boston, MA 02111-1307, USA
Last printed April, 1998.
Printed copies are available for $50 each.
ISBN 1-882114-37-X

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

1 Compile C, C++, Objective-C, Fortran, Java or CHILL 3

2 Language Standards Supported by GCC 5

3 GCC Command Options . 7

4 Installing GNU CC . 137

5 Extensions to the C Language Family. 149

6 Extensions to the C++ Language 199

7 GNU Objective-C runtime features 211

8 gcov: a Test Coverage Program 217

9 Known Causes of Trouble with GCC 223

10 Reporting Bugs . 243

11 How To Get Help with GCC . 251

12 Contributing to GCC Development 253

13 Using GCC on VMS . 255

14 Additional Makefile and configure information. 261

15 GCC and Portability . 265

16 Interfacing to GCC Output . 267

17 Passes and Files of the Compiler 269

18 Trees: The intermediate representation used by the C and C++

front ends . 277

19 RTL Representation. 309

20 Machine Descriptions . 351

21 Target Description Macros and Functions 417

22 The Configuration File . 541

23 Makefile Fragments . 545

Funding Free Software . 549

Linux and the GNU Project . 551

GNU GENERAL PUBLIC LICENSE 553

GNU Free Documentation License . 561

Contributors to GCC . 569

Option Index. 577

Index . 587

ii Using and Porting the GNU Compiler Collection (GCC)

iii

Table of Contents

Introduction . 1

1 Compile C, C++, Objective-C, Fortran, Java or
CHILL . 3

2 Language Standards Supported by GCC 5

3 GCC Command Options 7
3.1 Option Summary . 7
3.2 Options Controlling the Kind of Output 15
3.3 Compiling C++ Programs . 18
3.4 Options Controlling C Dialect . 18
3.5 Options Controlling C++ Dialect . 23
3.6 Options Controlling Objective-C Dialect 28
3.7 Options to Control Diagnostic Messages Formatting 29
3.8 Options to Request or Suppress Warnings 30
3.9 Options for Debugging Your Program or GCC 41
3.10 Options That Control Optimization . 49
3.11 Options Controlling the Preprocessor 59
3.12 Passing Options to the Assembler . 63
3.13 Options for Linking . 63
3.14 Options for Directory Search . 66
3.15 Specifying subprocesses and the switches to pass to them

. 68
3.16 Specifying Target Machine and Compiler Version 74
3.17 Hardware Models and Configurations 75

3.17.1 M680x0 Options . 75
3.17.2 M68hc1x Options . 77
3.17.3 VAX Options . 78
3.17.4 SPARC Options . 78
3.17.5 Convex Options . 82
3.17.6 AMD29K Options . 83
3.17.7 ARM Options . 84
3.17.8 MN10200 Options . 88
3.17.9 MN10300 Options . 89
3.17.10 M32R/D Options . 89
3.17.11 M88K Options . 90
3.17.12 IBM RS/6000 and PowerPC Options 93
3.17.13 IBM RT Options . 100
3.17.14 MIPS Options . 101
3.17.15 Intel 386 Options . 105
3.17.16 HPPA Options . 108

iv Using and Porting the GNU Compiler Collection (GCC)

3.17.17 Intel 960 Options . 110
3.17.18 DEC Alpha Options . 111
3.17.19 Clipper Options . 115
3.17.20 H8/300 Options . 115
3.17.21 SH Options . 115
3.17.22 Options for System V . 117
3.17.23 TMS320C3x/C4x Options 117
3.17.24 V850 Options . 119
3.17.25 ARC Options . 120
3.17.26 NS32K Options . 120
3.17.27 AVR Options . 122
3.17.28 MCore Options . 123
3.17.29 IA-64 Options . 123
3.17.30 D30V Options . 125
3.17.31 S/390 and zSeries Options 125

3.18 Options for Code Generation Conventions 126
3.19 Environment Variables Affecting GCC 132
3.20 Running Protoize . 134

4 Installing GNU CC . 137
4.1 Files Created by configure . 138
4.2 Configurations Supported by GNU CC 138
4.3 Building and Installing a Cross-Compiler 139

4.3.1 Steps of Cross-Compilation . 140
4.3.2 Configuring a Cross-Compiler 140
4.3.3 Tools and Libraries for a Cross-Compiler 140
4.3.4 Cross-Compilers and Header Files 141
4.3.5 Actually Building the Cross-Compiler 142

4.4 Installing GNU CC on VMS . 142
4.5 collect2 . 146
4.6 Standard Header File Directories . 146

5 Extensions to the C Language Family 149
5.1 Statements and Declarations in Expressions 149
5.2 Locally Declared Labels . 150
5.3 Labels as Values . 151
5.4 Nested Functions . 152
5.5 Constructing Function Calls . 153
5.6 Naming an Expression’s Type . 154
5.7 Referring to a Type with typeof . 155
5.8 Generalized Lvalues . 155
5.9 Conditionals with Omitted Operands 156
5.10 Double-Word Integers . 157
5.11 Complex Numbers . 157
5.12 Hex Floats . 158
5.13 Arrays of Length Zero . 158
5.14 Arrays of Variable Length . 159
5.15 Macros with a Variable Number of Arguments. 160

v

5.16 Slightly Looser Rules for Escaped Newlines 161
5.17 String Literals with Embedded Newlines 161
5.18 Non-Lvalue Arrays May Have Subscripts 162
5.19 Arithmetic on void- and Function-Pointers. 162
5.20 Non-Constant Initializers . 162
5.21 Compound Literals . 162
5.22 Designated Initializers . 163
5.23 Case Ranges . 165
5.24 Cast to a Union Type . 165
5.25 Mixed Declarations and Code . 165
5.26 Declaring Attributes of Functions . 166
5.27 Attribute Syntax . 173
5.28 Prototypes and Old-Style Function Definitions 175
5.29 C++ Style Comments . 176
5.30 Dollar Signs in Identifier Names . 176
5.31 The Character 〈ESC〉 in Constants . 177
5.32 Inquiring on Alignment of Types or Variables 177
5.33 Specifying Attributes of Variables . 177
5.34 Specifying Attributes of Types . 181
5.35 An Inline Function is As Fast As a Macro 183
5.36 Assembler Instructions with C Expression Operands 185

5.36.1 i386 floating point asm operands 189
5.37 Controlling Names Used in Assembler Code 190
5.38 Variables in Specified Registers . 190

5.38.1 Defining Global Register Variables 191
5.38.2 Specifying Registers for Local Variables 192

5.39 Alternate Keywords . 193
5.40 Incomplete enum Types . 193
5.41 Function Names as Strings . 193
5.42 Getting the Return or Frame Address of a Function 195
5.43 Other built-in functions provided by GCC 195
5.44 Pragmas Accepted by GCC . 197

5.44.1 ARM Pragmas . 197
5.44.2 Darwin Pragmas . 198

6 Extensions to the C++ Language 199
6.1 Minimum and Maximum Operators in C++ 199
6.2 When is a Volatile Object Accessed? . 199
6.3 Restricting Pointer Aliasing . 200
6.4 Vague Linkage . 201
6.5 Declarations and Definitions in One Header 202
6.6 Where’s the Template? . 204
6.7 Extracting the function pointer from a bound pointer to

member function . 206
6.8 C++-Specific Variable, Function, and Type Attributes 207
6.9 Java Exceptions . 207
6.10 Deprecated Features . 208
6.11 Backwards Compatibility . 208

vi Using and Porting the GNU Compiler Collection (GCC)

7 GNU Objective-C runtime features 211
7.1 +load: Executing code before main . 211

7.1.1 What you can and what you cannot do in +load
. 212

7.2 Type encoding . 213
7.3 Garbage Collection . 214
7.4 Constant string objects . 215
7.5 compatibility alias. 216

8 gcov: a Test Coverage Program 217
8.1 Introduction to gcov . 217
8.2 Invoking gcov . 218
8.3 Using gcov with GCC Optimization . 220
8.4 Brief description of gcov data files . 220

9 Known Causes of Trouble with GCC 223
9.1 Actual Bugs We Haven’t Fixed Yet . 223
9.2 Cross-Compiler Problems . 223
9.3 Interoperation . 224
9.4 Problems Compiling Certain Programs 227
9.5 Incompatibilities of GCC . 228
9.6 Fixed Header Files . 231
9.7 Standard Libraries . 232
9.8 Disappointments and Misunderstandings 232
9.9 Common Misunderstandings with GNU C++ 234

9.9.1 Declare and Define Static Members 234
9.9.2 Temporaries May Vanish Before You Expect 234
9.9.3 Implicit Copy-Assignment for Virtual Bases 235

9.10 Caveats of using protoize . 236
9.11 Certain Changes We Don’t Want to Make 237
9.12 Warning Messages and Error Messages 240

10 Reporting Bugs . 243
10.1 Have You Found a Bug? . 243
10.2 Where to Report Bugs . 244
10.3 How to Report Bugs . 244
10.4 The gccbug script . 247
10.5 Sending Patches for GCC . 248

11 How To Get Help with GCC 251

12 Contributing to GCC Development 253

vii

13 Using GCC on VMS . 255
13.1 Include Files and VMS . 255
13.2 Global Declarations and VMS . 256
13.3 Other VMS Issues . 258

14 Additional Makefile and configure
information. 261
14.1 Makefile Targets . 261
14.2 Configure Terms and History . 262

15 GCC and Portability 265

16 Interfacing to GCC Output 267

17 Passes and Files of the Compiler 269

18 Trees: The intermediate representation used
by the C and C++ front ends 277
18.1 Deficiencies . 277
18.2 Overview . 277

18.2.1 Trees . 278
18.2.2 Identifiers . 279
18.2.3 Containers . 279

18.3 Types . 280
18.4 Scopes . 284

18.4.1 Namespaces . 284
18.4.2 Classes . 285

18.5 Declarations . 287
18.6 Functions . 289

18.6.1 Function Basics . 290
18.6.2 Function Bodies . 293

18.6.2.1 Statements . 293
18.7 Attributes in trees . 298
18.8 Expressions . 299

viii Using and Porting the GNU Compiler Collection (GCC)

19 RTL Representation . 309
19.1 RTL Object Types . 309
19.2 RTL Classes and Formats . 310
19.3 Access to Operands . 312
19.4 Flags in an RTL Expression . 313
19.5 Machine Modes . 317
19.6 Constant Expression Types . 320
19.7 Registers and Memory . 322
19.8 RTL Expressions for Arithmetic . 326
19.9 Comparison Operations . 329
19.10 Bit-Fields . 330
19.11 Vector Operations . 331
19.12 Conversions . 332
19.13 Declarations . 333
19.14 Side Effect Expressions . 333
19.15 Embedded Side-Effects on Addresses 338
19.16 Assembler Instructions as Expressions 339
19.17 Insns . 340
19.18 RTL Representation of Function-Call Insns. 348
19.19 Structure Sharing Assumptions . 349
19.20 Reading RTL . 350

20 Machine Descriptions 351
20.1 Overview of How the Machine Description is Used 351
20.2 Everything about Instruction Patterns 351
20.3 Example of define_insn . 352
20.4 RTL Template . 353
20.5 Output Templates and Operand Substitution 357
20.6 C Statements for Assembler Output 359
20.7 Operand Constraints . 360

20.7.1 Simple Constraints . 360
20.7.2 Multiple Alternative Constraints 364
20.7.3 Register Class Preferences . 365
20.7.4 Constraint Modifier Characters 365
20.7.5 Constraints for Particular Machines 366

20.8 Standard Pattern Names For Generation 374
20.9 When the Order of Patterns Matters 388
20.10 Interdependence of Patterns . 388
20.11 Defining Jump Instruction Patterns 390
20.12 Defining Looping Instruction Patterns 391
20.13 Canonicalization of Instructions . 393
20.14 Defining RTL Sequences for Code Generation 394
20.15 Defining How to Split Instructions . 397
20.16 Machine-Specific Peephole Optimizers 400

20.16.1 RTL to Text Peephole Optimizers 401
20.16.2 RTL to RTL Peephole Optimizers 403

20.17 Instruction Attributes . 404
20.17.1 Defining Attributes and their Values 404

ix

20.17.2 Attribute Expressions . 405
20.17.3 Assigning Attribute Values to Insns 408
20.17.4 Example of Attribute Specifications 409
20.17.5 Computing the Length of an Insn 410
20.17.6 Constant Attributes . 411
20.17.7 Delay Slot Scheduling . 412
20.17.8 Specifying Function Units 413

20.18 Conditional Execution . 414
20.19 Constant Definitions . 415

21 Target Description Macros and Functions
. 417
21.1 The Global targetm Variable . 417
21.2 Controlling the Compilation Driver, ‘gcc’ 417
21.3 Run-time Target Specification . 425
21.4 Defining data structures for per-function information. . . . 427
21.5 Storage Layout . 428
21.6 Layout of Source Language Data Types 435
21.7 Target Character Escape Sequences . 439
21.8 Register Usage . 439

21.8.1 Basic Characteristics of Registers 440
21.8.2 Order of Allocation of Registers 442
21.8.3 How Values Fit in Registers 442
21.8.4 Handling Leaf Functions . 444
21.8.5 Registers That Form a Stack 445

21.9 Register Classes . 445
21.10 Stack Layout and Calling Conventions 452

21.10.1 Basic Stack Layout . 452
21.10.2 Exception Handling Support 454
21.10.3 Specifying How Stack Checking is Done 456
21.10.4 Registers That Address the Stack Frame 457
21.10.5 Eliminating Frame Pointer and Arg Pointer . . 459
21.10.6 Passing Function Arguments on the Stack 460
21.10.7 Passing Arguments in Registers 462
21.10.8 How Scalar Function Values Are Returned. . . . 466
21.10.9 How Large Values Are Returned 467
21.10.10 Caller-Saves Register Allocation 469
21.10.11 Function Entry and Exit 469
21.10.12 Generating Code for Profiling 473
21.10.13 Permitting inlining of functions with attributes

. 476
21.10.14 Permitting tail calls to functions 476

21.11 Implementing the Varargs Macros . 476
21.12 Trampolines for Nested Functions . 479
21.13 Implicit Calls to Library Routines . 481
21.14 Addressing Modes . 483
21.15 Condition Code Status . 487
21.16 Describing Relative Costs of Operations 490

x Using and Porting the GNU Compiler Collection (GCC)

21.17 Dividing the Output into Sections (Texts, Data, . . .) . . 494
21.18 Position Independent Code . 496
21.19 Defining the Output Assembler Language 497

21.19.1 The Overall Framework of an Assembler File . . 497
21.19.2 Output of Data . 499
21.19.3 Output of Uninitialized Variables 502
21.19.4 Output and Generation of Labels 504
21.19.5 How Initialization Functions Are Handled 509
21.19.6 Macros Controlling Initialization Routines 510
21.19.7 Output of Assembler Instructions 512
21.19.8 Output of Dispatch Tables 515
21.19.9 Assembler Commands for Exception Regions . . 516
21.19.10 Assembler Commands for Alignment 517

21.20 Controlling Debugging Information Format 519
21.20.1 Macros Affecting All Debugging Formats 519
21.20.2 Specific Options for DBX Output 520
21.20.3 Open-Ended Hooks for DBX Format 522
21.20.4 File Names in DBX Format 523
21.20.5 Macros for SDB and DWARF Output 524

21.21 Cross Compilation and Floating Point 526
21.22 Mode Switching Instructions . 528
21.23 Miscellaneous Parameters . 529

22 The Configuration File 541

23 Makefile Fragments . 545
23.1 The Target Makefile Fragment . 545
23.2 The Host Makefile Fragment . 547

Funding Free Software . 549

Linux and the GNU Project 551

GNU GENERAL PUBLIC LICENSE 553
Preamble . 553
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 554
How to Apply These Terms to Your New Programs 558

GNU Free Documentation License 561
ADDENDUM: How to use this License for your documents 567

Contributors to GCC . 569

Option Index . 577

Index . 587

Introduction 1

Introduction

This manual documents how to run, install and port the GNU compiler, as well as its
new features and incompatibilities, and how to report bugs. It corresponds to GCC version
3.1.

2 Using and Porting the GNU Compiler Collection (GCC)

Chapter 1: Compile C, C++, Objective-C, Fortran, Java or CHILL 3

1 Compile C, C++, Objective-C, Fortran, Java or
CHILL

Several versions of the compiler (C, C++, Objective-C, Fortran, Java and CHILL) are
integrated; this is why we use the name “GNU Compiler Collection”. GCC can compile
programs written in any of these languages. The Fortran, CHILL, and Java compilers are
described in separate manuals.

“GCC” is a common shorthand term for the GNU Compiler Collection. This is both the
most general name for the compiler, and the name used when the emphasis is on compiling
C programs (as the abbreviation formerly stood for “GNU C Compiler”).

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is
only one compiler, it is also accurate to call it “GCC” no matter what the language context;
however, the term “G++” is more useful when the emphasis is on compiling C++ programs.

We use the name “GCC” to refer to the compilation system as a whole, and more
specifically to the language-independent part of the compiler. For example, we refer to the
optimization options as affecting the behavior of “GCC” or sometimes just “the compiler”.

Front ends for other languages, such as Ada 95 and Pascal exist but have not yet been
integrated into GCC. These front ends, like that for C++, are built in subdirectories of GCC
and link to it. The result is an integrated compiler that can compile programs written in
C, C++, Objective-C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers
and those of the GCC core. Consult the documentation of the other front ends for the
options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast,
for example, some other implementations use a program that generates a C program from
your C++ source.) Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive C++ source-level
editing capabilities (see section “C and C++” in Debugging with GDB).

4 Using and Porting the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to
follow one or more versions of that standard, possibly with some exceptions, and possibly
with some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘-std=iso9899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 18.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMD1; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=iso9899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/c99status.html for details. To select this standard, use ‘-std=c99’
or ‘-std=iso9899:1999’. (While in development, drafts of this standard version were re-
ferred to as C9X.)

GCC also has some limited support for traditional (pre-ISO) C with the ‘-traditional’
option. This support may be of use for compiling some very old programs that have not
been updated to ISO C, but should not be used for new programs. It will not work with
some modern C libraries such as the GNU C library.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 149.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘-std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMD1,

http://gcc.gnu.org/c99status.html

6 Using and Porting the GNU Compiler Collection (GCC)

also those in <iso646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The
standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler
for a hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the
names of ISO C functions are used, they have the semantics defined in the standard. To
make it act as a conforming freestanding implementation for a freestanding environment,
use the option ‘-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make
assumptions about the meanings of function names from the standard library. To build an
OS kernel, you may well still need to make your own arrangements for linking and startup.
See Section 3.4 [Options Controlling C Dialect], page 18.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 9.7 [Standard Libraries], page 232.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C. The most authoritative manual
is “Object-Oriented Programming and the Objective-C Language”, available at a number
of web sites; http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/ has a
recent version, while http://www.toodarkpark.org/computers/objc/ is an older exam-
ple. http://www.gnustep.org includes useful information as well.

See section “The GNU Fortran Language” in Using and Porting GNU Fortran, for details
of the Fortran language supported by GCC.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

See section “Language Definition References” in GNU Chill, for details of the CHILL
standard.

http://gcc.gnu.org/readings.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/
http://www.toodarkpark.org/computers/objc/
http://www.gnustep.org

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and link-
ing. The “overall options” allow you to stop this process at an intermediate stage. For
example, the ‘-c’ option says not to run the linker. Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing. Some options control the pre-
processor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs], page 18, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example,
‘-fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This
manual documents only one of these two forms, whichever one is not the default.

See [Option Index], page 577, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 15.

-c -S -E -o file -pipe -pass-exit-codes -x language
-v --target-help --help

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 18.

-ansi -std=standard -aux-info filename
-fno-asm -fno-builtin
-fhosted -ffreestanding
-trigraphs -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
-fwritable-strings -fshort-wchar

8 Using and Porting the GNU Compiler Collection (GCC)

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 23.

-fno-access-control -fcheck-new -fconserve-space
-fno-const-strings -fdollars-in-identifiers
-fno-elide-constructors
-fno-enforce-eh-specs -fexternal-templates
-falt-external-templates
-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive
-frepo -fno-rtti -fstats -ftemplate-depth-n
-fuse-cxa-atexit -fvtable-gc -fno-weak -nostdinc++
-fno-default-inline -Wctor-dtor-privacy
-Wnon-virtual-dtor -Wreorder
-Weffc++ -Wno-deprecated
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo -Wsynth

Objective-C Language Options
See Section 3.6 [Options Controlling Objective-C Dialect], page 28.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime -gen-decls
-Wno-protocol -Wselector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 29.

-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings], page 30.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return
-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wdisabled-optimization -Werror
-Wfloat-equal -Wformat -Wformat=2
-Wformat-nonliteral -Wformat-security
-Wimplicit -Wimplicit-int
-Wimplicit-function-declaration
-Werror-implicit-function-declaration
-Wimport -Winline
-Wlarger-than-len -Wlong-long
-Wmain -Wmissing-braces -Wmissing-declarations
-Wmissing-format-attribute -Wmissing-noreturn
-Wmultichar -Wno-format-extra-args -Wno-format-y2k
-Wno-import -Wpacked -Wpadded

Chapter 3: GCC Command Options 9

-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wswitch -Wsystem-headers
-Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-prototypes -Wnested-externs
-Wstrict-prototypes -Wtraditional

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 41.

-a -ax -dletters -dumpspecs -dumpmachine -dumpversion
-fdump-unnumbered -fdump-translation-unit[-n]
-fdump-class-hierarchy[-n]
-fdump-ast-original[-n] -fdump-ast-optimized[-n]
-fdump-ast-inlined[-n]
-fmem-report -fpretend-float
-fprofile-arcs -ftest-coverage -ftime-report
-g -glevel -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-prog-name=program -print-search-dirs -Q
-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization], page 49.

-falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n
-fbranch-probabilities -fcaller-saves
-fcse-follow-jumps -fcse-skip-blocks -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -fforce-mem -ffunction-sections
-fgcse -fgcse-lm -fgcse-sm
-finline-functions -finline-limit=n -fkeep-inline-functions
-fkeep-static-consts -fmove-all-movables
-fno-default-inline -fno-defer-pop
-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -fno-trapping-math
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -freduce-all-givs
-fregmove -frename-registers
-frerun-cse-after-loop -frerun-loop-opt
-fschedule-insns -fschedule-insns2
-fsingle-precision-constant -fssa -fssa-ccp -fssa-dce

10 Using and Porting the GNU Compiler Collection (GCC)

-fstrength-reduce -fstrict-aliasing -fthread-jumps -ftrapv
-funroll-all-loops -funroll-loops
--param name=value -O -O0 -O1 -O2 -O3 -Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 59.

-$ -Aquestion=answer -A-question[=answer]
-C -dD -dI -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MM -MF -MG -MP -MQ -MT -nostdinc -P -remap
-trigraphs -undef -Umacro -Wp,option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 63.

-Wa,option

Linker Options
See Section 3.13 [Options for Linking], page 63.

object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 66.

-Bprefix -Idir -I- -Ldir -specs=file

Target Options
See Section 3.16 [Target Options], page 74.

-b machine -V version

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 75. M680x0 Op-
tions

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020
-mfpa -mnobitfield -mrtd -mshort -msoft-float -mpcrel
-malign-int -mstrict-align

M68hc1x Options
-m6811 -m6812 -m68hc11 -m68hc12
-mauto-incdec -mshort -msoft-reg-count=count

VAX Options
-mg -mgnu -munix

SPARC Options

Chapter 3: GCC Command Options 11

-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-m32 -m64
-mapp-regs -mbroken-saverestore -mcypress
-mepilogue -mfaster-structs -mflat
-mfpu -mhard-float -mhard-quad-float
-mimpure-text -mlive-g0 -mno-app-regs
-mno-epilogue -mno-faster-structs -mno-flat -mno-fpu
-mno-impure-text -mno-stack-bias -mno-unaligned-doubles
-msoft-float -msoft-quad-float -msparclite -mstack-bias
-msupersparc -munaligned-doubles -mv8

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs-frame -mno-apcs-frame
-mapcs-26 -mapcs-32
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-malignment-traps -mno-alignment-traps
-msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpe=name
-mstructure-size-boundary=n
-mbsd -mxopen -mno-symrename
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking

MN10200 Options

12 Using and Porting the GNU Compiler Collection (GCC)

-mrelax

MN10300 Options
-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mno-crt0 -mrelax

M32R/D Options
-mcode-model=model-type -msdata=sdata-type
-G num

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu-type
-mtune=cpu-type
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mpowerpc64 -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mold-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-call -mno-xl-call -mthreads -mpe
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mcall-netbsd -mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -G num

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -march=cpu-type -mtune=cpu=type
-mcpu=cpu-type -membedded-data -muninit-const-in-rodata
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64

Chapter 3: GCC Command Options 13

-mgpopt -mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mips4 -mlong64 -mlong32 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-uninit-const-in-rodata
-mno-embedded-pic -mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -EL -EB -G num -nocpp
-mabi=32 -mabi=n32 -mabi=64 -mabi=eabi
-mfix7000 -mno-crt0

i386 Options
-mcpu=cpu-type -march=cpu-type
-mintel-syntax -mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -momit-leaf-frame-pointer

HPPA Options
-march=architecture-type
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mjump-in-delay
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs

Intel 960 Options
-mcpu-type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float -msoft-float
-malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type

14 Using and Porting the GNU Compiler Collection (GCC)

-mbwx -mno-bwx -mcix -mno-cix -mmax -mno-max
-mmemory-latency=time

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh -ms -mint32 -malign-300

SH Options
-m1 -m2 -m3 -m3e
-m4-nofpu -m4-single-only -m4-single -m4
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mnomacsave
-mieee -misize -mpadstruct -mspace
-mprefergot -musermode

System V Options
-Qy -Qn -YP,paths -Ym,dir

ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section

TMS320C3x/C4x Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mv850 -mbig-switch

NS32K Options
-m32032 -m32332 -m32532 -m32081 -m32381
-mmult-add -mnomult-add -msoft-float -mrtd -mnortd
-mregparam -mnoregparam -msb -mnosb
-mbitfield -mnobitfield -mhimem -mnohimem

AVR Options
-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

IA-64 Options

Chapter 3: GCC Command Options 15

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mb-step -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-divide-min-latency
-minline-divide-max-throughput -mno-dwarf2-asm
-mfixed-range=register-range

S/390 and zSeries Options

-mhard-float -msoft-float -mbackchain -mno-backchain
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle
-m64 -m31 -mdebug -mno-debug

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions], page 126.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -fexceptions
-fnon-call-exceptions -funwind-tables
-finhibit-size-directive -finstrument-functions
-fcheck-memory-usage -fprefix-function-name
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile
-fvolatile-global -fvolatile-static
-fverbose-asm -fpack-struct -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fargument-alias -fargument-noalias
-fargument-noalias-global -fleading-underscore

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The first three stages apply to an individual source
file, and end by producing an object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.

file.h C header file (not to be compiled or linked).

16 Using and Porting the GNU Compiler Collection (GCC)

file.cc
file.cp
file.cxx
file.cpp
file.c++
file.C C++ source code which must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.f
file.for
file.FOR Fortran source code which should not be preprocessed.

file.F
file.fpp
file.FPP Fortran source code which must be preprocessed (with the traditional prepro-

cessor).

file.r Fortran source code which must be preprocessed with a RATFOR preprocessor
(not included with GCC).
See section “Options Controlling the Kind of Output” in Using and Porting
GNU Fortran, for more details of the handling of Fortran input files.

file.ch
file.chi CHILL source code (preprocessed with the traditional preprocessor).

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

c c-header cpp-output
c++ c++-cpp-output
objective-c objc-cpp-output
assembler assembler-with-cpp
f77 f77-cpp-input ratfor
java chill

-x none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,

Chapter 3: GCC Command Options 17

the gcc program will instead return with numerically highest error produced
by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.
By default, the object file name for a source file is made by replacing the suffix
‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.
By default, the assembler file name for a source file is made by replacing the
suffix ‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.
Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.
Since only one output file can be specified, it does not make sense to use ‘-o’
when compiling more than one input file, unless you are producing an executable
file as output.
If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, and
all preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘-v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display
the command line options they accept. If the ‘-W’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

18 Using and Porting the GNU Compiler Collection (GCC)

--target-help
Print (on the standard output) a description of target specific command line
options for each tool.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.c++’, ‘.cp’, or
‘.cxx’; preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these names
and compiles them as C++ programs even if you call the compiler the same way as for
compiling C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that under-
stands the C++ language—and under some circumstances, you might want to compile pro-
grams from standard input, or otherwise without a suffix that flags them as C++ programs.
g++ is a program that calls GCC with the default language set to C++, and automatically
specifies linking against the C++ library. On many systems, g++ is also installed with the
name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 18, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 23, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective-C) that the compiler accepts:

-ansi In C mode, support all ISO C89 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.
This turns off certain features of GCC that are incompatible with ISO C89
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ‘//’ comments as well as the inline keyword.
The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options], page 30.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain

Chapter 3: GCC Command Options 19

functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.
Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.43 [Other built-in functions provided by GCC], page 195,
for details of the functions affected.

-std= Determine the language standard. This option is currently only supported when
compiling C. A value for this option must be provided; possible values are

‘c89’
‘iso9899:1990’

ISO C89 (same as ‘-ansi’).

‘iso9899:199409’
ISO C89 as modified in amendment 1.

‘c99’
‘c9x’
‘iso9899:1999’
‘iso9899:199x’

ISO C99. Note that this standard is not yet fully supported; see
http://gcc.gnu.org/c99status.html for more information. The
names ‘c9x’ and ‘iso9899:199x’ are deprecated.

‘gnu89’ Default, ISO C89 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.
The ‘-std’ options specifying some version of ISO C have the same effects as
‘-ansi’, except that features that were not in ISO C89 but are in the specified
version (for example, ‘//’ comments and the inline keyword in ISO C99) are
not disabled.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

-aux-info filename
Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.
Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or

http://gcc.gnu.org/c99status.html

20 Using and Porting the GNU Compiler Collection (GCC)

unprototyped (‘I’, ‘N’ for new or ‘O’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.43 [Other built-in functions provided by GCC], page 195, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.

In C++, ‘-fno-builtin’ is always in effect. The ‘-fbuiltin’ option has no
effect. Therefore, in C++, the only way to get the optimization benefits of built-
in functions is to call the function using the ‘__builtin_’ prefix. The GNU
C++ Standard Library uses built-in functions to implement many functions (like
std::strchr), so that you automatically get efficient code.

-fhosted

Assert that compilation takes place in a hosted environment. This implies
‘-fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding
Assert that compilation takes place in a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘-fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Chapter 3: GCC Command Options 21

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘-trigraphs’.

-traditional
Attempt to support some aspects of traditional C compilers. Specifically:
• All extern declarations take effect globally even if they are written inside

of a function definition. This includes implicit declarations of functions.
• The newer keywords typeof, inline, signed, const and volatile are not

recognized. (You can still use the alternative keywords such as __typeof_
_, __inline__, and so on.)

• Comparisons between pointers and integers are always allowed.
• Integer types unsigned short and unsigned char promote to unsigned

int.
• Out-of-range floating point literals are not an error.
• Certain constructs which ISO regards as a single invalid preprocessing num-

ber, such as ‘0xe-0xd’, are treated as expressions instead.
• String “constants” are not necessarily constant; they are stored in writable

space, and identical looking constants are allocated separately. (This is the
same as the effect of ‘-fwritable-strings’.)

• All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ISO C: automatic variables not declared
volatile may be clobbered.

• The character escape sequences ‘\x’ and ‘\a’ evaluate as the literal char-
acters ‘x’ and ‘a’ respectively. Without ‘-traditional’, ‘\x’ is a prefix for
the hexadecimal representation of a character, and ‘\a’ produces a bell.

You may wish to use ‘-fno-builtin’ as well as ‘-traditional’ if your program
uses names that are normally GNU C built-in functions for other purposes of
its own.
You cannot use ‘-traditional’ if you include any header files that rely on
ISO C features. Some vendors are starting to ship systems with ISO C header
files and you cannot use ‘-traditional’ on such systems to compile files that
include any system headers.
The ‘-traditional’ option also enables ‘-traditional-cpp’, which is de-
scribed next.

-traditional-cpp
Attempt to support some aspects of traditional C preprocessors. Specifically:
• Comments convert to nothing at all, rather than to a space. This allows

traditional token concatenation.
• In a preprocessing directive, the ‘#’ symbol must appear as the first char-

acter of a line.
• Macro arguments are recognized within string constants in a macro def-

inition (and their values are stringified, though without additional quote

22 Using and Porting the GNU Compiler Collection (GCC)

marks, when they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

• The predefined macro __STDC__ is not defined when you use
‘-traditional’, but __GNUC__ is (since the GNU extensions which
__GNUC__ indicates are not affected by ‘-traditional’). If you need
to write header files that work differently depending on whether
‘-traditional’ is in use, by testing both of these predefined macros
you can distinguish four situations: GNU C, traditional GNU C, other
ISO C compilers, and other old C compilers. The predefined macro
__STDC_VERSION__ is also not defined when you use ‘-traditional’. See
section “Standard Predefined Macros” in The C Preprocessor, for more
discussion of these and other predefined macros.

• The preprocessor considers a string constant to end at a newline (unless the
newline is escaped with ‘\’). (Without ‘-traditional’, string constants
can contain the newline character as typed.)

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

Chapter 3: GCC Command Options 23

However, when ‘-traditional’ is used, bit-fields are all unsigned no matter
what.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. The option ‘-traditional’ also has this effect.
Writing into string constants is a very bad idea; “constants” should be constant.

-fallow-single-precision
Do not promote single precision math operations to double precision, even when
compiling with ‘-traditional’.
Traditional K&R C promotes all floating point operations to double precision,
regardless of the sizes of the operands. On the architecture for which you are
compiling, single precision may be faster than double precision. If you must use
‘-traditional’, but want to use single precision operations when the operands
are single precision, use this option. This option has no effect when compiling
with ISO or GNU C conventions (the default).

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ pro-
grams; but you can also use most of the GNU compiler options regardless of what language
your program is in. For example, you might compile a file firstClass.C like this:

g++ -g -frepo -O -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. The current Working Paper requires that
operator new never return a null pointer, so this check is normally unnecessary.
An alternative to using this option is to specify that your operator new does
not throw any exceptions; if you declare it ‘throw()’, G++ will check the return
value. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing

24 Using and Porting the GNU Compiler Collection (GCC)

duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.
This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘-fno-const-strings’, you cannot actually modify the value of a string con-
stant, unless you also use ‘-fwritable-strings’.
This option might be removed in a future release of G++. For maximum porta-
bility, you should structure your code so that it works with string constants
that have type const char *.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of ‘$’ with the
option ‘-fno-dollars-in-identifiers’. (GNU C allows ‘$’ by default on
most target systems, but there are a few exceptions.) Traditional C allowed the
character ‘$’ to form part of identifiers. However, ISO C and C++ forbid ‘$’ in
identifiers.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t check for violation of exception specifications at runtime. This option
violates the C++ standard, but may be useful for reducing code size in produc-
tion builds, much like defining ‘NDEBUG’. The compiler will still optimize based
on the exception specifications.

-fexternal-templates
Cause template instantiations to obey ‘#pragma interface’ and
‘implementation’; template instances are emitted or not according to the
location of the template definition. See Section 6.6 [Template Instantiation],
page 204, for more information.
This option is deprecated.

-falt-external-templates
Similar to ‘-fexternal-templates’, but template instances are emitted or not
according to the place where they are first instantiated. See Section 6.6 [Tem-
plate Instantiation], page 204, for more information.
This option is deprecated.

-ffor-scope
-fno-for-scope

If ‘-ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.

Chapter 3: GCC Command Options 25

If ‘-fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.6 [Template
Instantiation], page 204, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade messages about nonconformant code from errors to warnings. By
default, G++ effectively sets ‘-pedantic-errors’ without ‘-pedantic’; this op-
tion reverses that. This behavior and this option are superseded by ‘-pedantic’,
which works as it does for GNU C.

26 Using and Porting the GNU Compiler Collection (GCC)

-frepo Enable automatic template instantiation. This option also implies
‘-fno-implicit-templates’. See Section 6.6 [Template Instantiation],
page 204, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fvtable-gc
Emit special relocations for vtables and virtual function references so that
the linker can identify unused virtual functions and zero out vtable slots
that refer to them. This is most useful with ‘-ffunction-sections’ and
‘-Wl,--gc-sections’, in order to also discard the functions themselves.
This optimization requires GNU as and GNU ld. Not all systems support this
option. ‘-Wl,--gc-sections’ is ignored without ‘-static’.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings
only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 49. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

Chapter 3: GCC Command Options 27

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable, because all the constructors or destructors
in a class are private and the class has no friends or public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class declares a non-virtual destructor that should probably be
virtual, because it looks like the class will be used polymorphically.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {
int i;
int j;
A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for ‘i’ and ‘j’ will be
rearranged to match the declaration order of the members.

The following ‘-W...’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of various style guidelines from Scott Meyers’ Effective
C++ books. If you use this option, you should be aware that the standard
library headers do not obey all of these guidelines; you can use ‘grep -v’ to
filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features], page 208.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a
template. With the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots, and is on by default. This new
compiler behavior can be turned off with ‘-Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast is used within a C++ program. The new-
style casts (‘static_cast’, ‘reinterpret_cast’, and ‘const_cast’) are less
vulnerable to unintended effects, and much easier to grep for.

28 Using and Porting the GNU Compiler Collection (GCC)

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:

struct A {
virtual void f();

};

struct B: public A {
void f(int);

};

the A class version of f is hidden in B, and code like this:
B* b;
b->f();

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumeral
type to a signed type over a conversion to an unsigned type of the same size.
Previous versions of G++ would try to preserve unsignedness, but the standard
mandates the current behavior.

-Wsynth (C++ only)
Warn when G++’s synthesis behavior does not match that of cfront. For in-
stance:

struct A {
operator int ();
A& operator = (int);

};

main ()
{

A a,b;
a = b;

}

In this example, G++ will synthesize a default ‘A& operator = (const A&);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C Dialect

This section describes the command-line options that are only meaningful for Objective-
C programs; but you can also use most of the GNU compiler options regardless of what
language your program is in. For example, you might compile a file some_class.m like this:

gcc -g -fgnu-runtime -O -c some_class.m

Chapter 3: GCC Command Options 29

In this example, only ‘-fgnu-runtime’ is an option meant only for Objective-C programs;
you can use the other options with any language supported by GCC.

Here is a list of options that are only for compiling Objective-C programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wno-protocol
Do not warn if methods required by a protocol are not implemented in the class
adopting it.

-Wselector
Warn if a selector has multiple methods of different types defined.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output de-
vice’s aspect (e.g. its width, . . .). The options described below can be used to control the
diagnostic messages formatting algorithm, e.g. how many characters per line, how often
source location information should be reported. Right now, only the C++ front end can
honor these options. However it is expected, in the near future, that the remaining front
ends would be able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behaviour.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical

30 Using and Porting the GNU Compiler Collection (GCC)

lines that result from the process of breaking a a message which is too long to
fit on a single line.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of warnings produced by GCC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.
Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.
‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 5.39 [Alternate Keywords], page 193.
Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.
A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.
Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-

Chapter 3: GCC Command Options 31

tures the compiler supports with the given option, and there would be nothing
to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions,
and others specified by format attributes (see Section 5.26 [Function Attributes],
page 166), in the printf, scanf, strftime and strfmon (an X/Open extension,
not in the C standard) families.
The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C89 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 18.
‘-Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wno-format-y2k’, ‘-Wno-format-extra-args’,
‘-Wformat-nonliteral’, ‘-Wformat-security’ and ‘-Wformat=2’ are available,
but are not included in ‘-Wall’.

-Wno-format-y2k
If ‘-Wformat’ is specified, do not warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

32 Using and Porting the GNU Compiler Collection (GCC)

-Wformat-security
If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security’.

-Wimplicit-int
Warn when a declaration does not specify a type.

-Wimplicit-function-declaration
-Werror-implicit-function-declaration

Give a warning (or error) whenever a function is used before being declared.

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wmultichar
Warn if a multicharacter constant (‘’FOOF’’) is used. Usually they indicate a
typo in the user’s code, as they have implementation-defined values, and should
not be used in portable code.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

Chapter 3: GCC Command Options 33

{
if (a)

if (b)
foo ();

else
bar ();

}

In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The
resulting code would look like this:

{
if (a)

{
if (b)

foo ();
else

bar ();
}

}

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.
The C standard defines the order in which expressions in a C program are eval-
uated in terms of sequence points, which represent a partial ordering between
the execution of parts of the program: those executed before the sequence point,
and those executed after it. These occur after the evaluation of a full expression
(one which is not part of a larger expression), after the evaluation of the first
operand of a &&, ||, ? : or , (comma) operator, before a function is called (but
after the evaluation of its arguments and the expression denoting the called
function), and in certain other places. Other than as expressed by the sequence
point rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee have ruled that function calls do
not overlap.
It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C standard specifies that “Between the previous and next se-
quence point an object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be read only to
determine the value to be stored.”. If a program breaks these rules, the results
on any particular implementation are entirely unpredictable.

34 Using and Porting the GNU Compiler Collection (GCC)

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
a[i++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.
The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.
There is some controversy over the precise meaning of the sequence
point rules in subtle cases. Links to papers with alternative formal
definitions and other related discussions may be found on our readings page
http://gcc.gnu.org/readings.html.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.
For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about).

-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline
static function is unused.

-Wunused-label
Warn whenever a label is declared but not used.
To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 177).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 177).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration
To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 177).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used.
To suppress this warning cast the expression to ‘void’.

http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 35

-Wunused All all the above ‘-Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-W -Wunused’ or separately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.
These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-O’, you simply won’t get these warnings.
These warnings occur only for variables that are candidates for register alloca-
tion. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.
These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

{
int x;
switch (y)

{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.
The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a

36 Using and Porting the GNU Compiler Collection (GCC)

result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.26 [Function Attributes],
page 166.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wall All of the above ‘-W’ options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros.

-Wsystem-headers
Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘-Wunknown-pragmas’ must also be used.

The following ‘-W...’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-W Print extra warning messages for these events:

• A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)

return a;
}

• An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i,j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

• An unsigned value is compared against zero with ‘<’ or ‘<=’.

Chapter 3: GCC Command Options 37

• A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y ? 1 : 0)
<= z’, which is a different interpretation from that of ordinary mathemat-
ical notation.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• The return type of a function has a type qualifier such as const. Such a
type qualifier has no effect, since the value returned by a function is not an
lvalue. (But don’t warn about the GNU extension of volatile void return
types. That extension will be warned about if ‘-pedantic’ is specified.)

• If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.
• A comparison between signed and unsigned values could produce an in-

correct result when the signed value is converted to unsigned. (But don’t
warn if ‘-Wno-sign-compare’ is also specified.)

• An aggregate has a partly bracketed initializer. For example, the following
code would evoke such a warning, because braces are missing around the
initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer which does not initialize all members. For
example, the following code would cause such a warning, because x.h would
be implicitly initialized to zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };

-Wfloat-equal
Warn if floating point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analysing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.
• Macro parameters that appear within string literals in the macro body. In

traditional C macro replacement takes place within string literals, but does
not in ISO C.

• In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared

38 Using and Porting the GNU Compiler Collection (GCC)

in column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#’ does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognise ‘#elif’, so it suggests
avoiding it altogether.

• A function-like macro that appears without arguments.

• The unary plus operator.

• The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
gcc’s integrated preprocessor has enough context to avoid warning in these
cases.

• A function declared external in one block and then used after the end of
the block.

• A switch statement has an operand of type long.

• A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

• The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

• Usage of ISO string concatenation is detected.

• Initialization of automatic aggregates.

• Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

• Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

• Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

Chapter 3: GCC Command Options 39

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string con-
stants to char *. These warnings will help you find at compile time code that
can try to write into a string constant, but only if you have been very careful
about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-W’; to get the other warnings of ‘-W’ without this warning,
use ‘-W -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

40 Using and Porting the GNU Compiler Collection (GCC)

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute
If ‘-Wformat’ is enabled, also warn about functions which might be candidates
for format attributes. Note these are only possible candidates, not absolute
ones. GCC will guess that format attributes might be appropriate for any
function that calls a function like vprintf or vscanf, but this might not always
be the case, and some functions for which format attributes are appropriate
may not be detected. This option has no effect unless ‘-Wformat’ is enabled
(possibly by ‘-Wall’).

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {
int x;
char a, b, c, d;

} __attribute__((packed));
struct bar {
char z;
struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

Chapter 3: GCC Command Options 41

-Wunreachable-code
Warn if the compiler detects that code will never be executed.
This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.
It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.
For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.
This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of
the program and is, hopefully, unreachable because the program does work.
Another common use of unreachable code is to provide behaviour which is
selectable at compile-time.

-Winline Warn if a function can not be inlined and it was declared as inline.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-Wno-long-long’
are taken into account only when ‘-pedantic’ flag is used.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Werror Make all warnings into errors.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or
GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.
On most systems that use stabs format, ‘-g’ enables use of extra debugging in-
formation that only GDB can use; this extra information makes debugging work
better in GDB but will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf-1+’,
or ‘-gdwarf-1’ (see below).
Unlike most other C compilers, GCC allows you to use ‘-g’ with ‘-O’. The
shortcuts taken by optimized code may occasionally produce surprising results:

42 Using and Porting the GNU Compiler Collection (GCC)

some variables you declared may not exist at all; flow of control may briefly move
where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements
may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf Produce debugging information in DWARF version 1 format (if that is sup-
ported). This is the format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF version 1 format (if that is sup-
ported), using GNU extensions understood only by the GNU debugger (GDB).
The use of these extensions is likely to make other debuggers crash or refuse to
read the program.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6.

Chapter 3: GCC Command Options 43

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel
-gdwarf-2level

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.
Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.
Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-a Generate extra code to write profile information for basic blocks, which will
record the number of times each basic block is executed, the basic block start
address, and the function name containing the basic block. If ‘-g’ is used, the
line number and filename of the start of the basic block will also be recorded.
If not overridden by the machine description, the default action is to append
to the text file ‘bb.out’.
This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should
be extended to process this data.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-ax Generate extra code to profile basic blocks. Your executable will produce output
that is a superset of that produced when ‘-a’ is used. Additional output is the
source and target address of the basic blocks where a jump takes place, the
number of times a jump is executed, and (optionally) the complete sequence of
basic blocks being executed. The output is appended to file ‘bb.out’.

44 Using and Porting the GNU Compiler Collection (GCC)

You can examine different profiling aspects without recompilation. Your ex-
ecutable will read a list of function names from file ‘bb.in’. Profiling starts
when a function on the list is entered and stops when that invocation is ex-
ited. To exclude a function from profiling, prefix its name with ‘-’. If a func-
tion name is not unique, you can disambiguate it by writing it in the form
‘/path/filename.d:functionname’. Your executable will write the available
paths and filenames in file ‘bb.out’.
Several function names have a special meaning:

__bb_jumps__
Write source, target and frequency of jumps to file ‘bb.out’.

__bb_hidecall__
Exclude function calls from frequency count.

__bb_showret__
Include function returns in frequency count.

__bb_trace__
Write the sequence of basic blocks executed to file ‘bbtrace.gz’.
The file will be compressed using the program ‘gzip’, which must
exist in your PATH. On systems without the ‘popen’ function, the
file will be named ‘bbtrace’ and will not be compressed. Profiling
for even a few seconds on these systems will produce a very large
file. Note: __bb_hidecall__ and __bb_showret__ will not affect
the sequence written to ‘bbtrace.gz’.

Here’s a short example using different profiling parameters in file ‘bb.in’. As-
sume function foo consists of basic blocks 1 and 2 and is called twice from block
3 of function main. After the calls, block 3 transfers control to block 4 of main.
With __bb_trace__ and main contained in file ‘bb.in’, the following sequence
of blocks is written to file ‘bbtrace.gz’: 0 3 1 2 1 2 4. The return from block 2
to block 3 is not shown, because the return is to a point inside the block and not
to the top. The block address 0 always indicates, that control is transferred to
the trace from somewhere outside the observed functions. With ‘-foo’ added
to ‘bb.in’, the blocks of function foo are removed from the trace, so only 0 3
4 remains.
With __bb_jumps__ and main contained in file ‘bb.in’, jump frequencies will
be written to file ‘bb.out’. The frequencies are obtained by constructing a trace
of blocks and incrementing a counter for every neighbouring pair of blocks in
the trace. The trace 0 3 1 2 1 2 4 displays the following frequencies:

Jump from block 0x0 to block 0x3 executed 1 time(s)
Jump from block 0x3 to block 0x1 executed 1 time(s)
Jump from block 0x1 to block 0x2 executed 2 time(s)
Jump from block 0x2 to block 0x1 executed 1 time(s)
Jump from block 0x2 to block 0x4 executed 1 time(s)

With __bb_hidecall__, control transfer due to call instructions is removed
from the trace, that is the trace is cut into three parts: 0 3 4, 0 1 2 and 0 1 2.
With __bb_showret__, control transfer due to return instructions is added to

Chapter 3: GCC Command Options 45

the trace. The trace becomes: 0 3 1 2 3 1 2 3 4. Note, that this trace is not the
same, as the sequence written to ‘bbtrace.gz’. It is solely used for counting
jump frequencies.

-fprofile-arcs
Instrument arcs during compilation. For each function of your program, GCC
creates a program flow graph, then finds a spanning tree for the graph. Only
arcs that are not on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are executed. When an
arc is the only exit or only entrance to a block, the instrumentation code can
be added to the block; otherwise, a new basic block must be created to hold
the instrumentation code.

Since not every arc in the program must be instrumented, programs compiled
with this option run faster than programs compiled with ‘-a’, which adds in-
strumentation code to every basic block in the program. The tradeoff: since
gcov does not have execution counts for all branches, it must start with the
execution counts for the instrumented branches, and then iterate over the pro-
gram flow graph until the entire graph has been solved. Hence, gcov runs a
little more slowly than a program which uses information from ‘-a’.

‘-fprofile-arcs’ also makes it possible to estimate branch probabilities, and
to calculate basic block execution counts. In general, basic block execution
counts do not give enough information to estimate all branch probabilities.
When the compiled program exits, it saves the arc execution counts to a file
called ‘sourcename.da’. Use the compiler option ‘-fbranch-probabilities’
(see Section 3.10 [Options that Control Optimization], page 49) when recom-
piling, to optimize using estimated branch probabilities.

-ftest-coverage
Create data files for the gcov code-coverage utility (see Chapter 8 [gcov: a
GCC Test Coverage Program], page 217). The data file names begin with the
name of your source file:

sourcename.bb
A mapping from basic blocks to line numbers, which gcov uses to
associate basic block execution counts with line numbers.

sourcename.bbg
A list of all arcs in the program flow graph. This allows gcov
to reconstruct the program flow graph, so that it can compute
all basic block and arc execution counts from the information
in the sourcename.da file (this last file is the output from
‘-fprofile-arcs’).

-dletters Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the compiler. The file names for most of the dumps
are made by appending a pass number and a word to the source file name (e.g.
‘foo.c.00.rtl’ or ‘foo.c.01.sibling’). Here are the possible letters for use
in letters, and their meanings:

46 Using and Porting the GNU Compiler Collection (GCC)

‘A’ Annotate the assembler output with miscellaneous debugging in-
formation.

‘b’ Dump after computing branch probabilities, to ‘file.14.bp’.

‘B’ Dump after block reordering, to ‘file.28.bbro’.

‘c’ Dump after instruction combination, to the file ‘file.16.combine’.

‘C’ Dump after the first if conversion, to the file ‘file.17.ce’.

‘d’ Dump after delayed branch scheduling, to ‘file.31.dbr’.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

‘e’ Dump after SSA optimizations, to ‘file.04.ssa’ and ‘file.07.ussa’.

‘E’ Dump after the second if conversion, to ‘file.26.ce2’.

‘f’ Dump after life analysis, to ‘file.15.life’.

‘F’ Dump after purging ADDRESSOF codes, to ‘file.09.addressof’.

‘g’ Dump after global register allocation, to ‘file.21.greg’.

‘h’ Dump after finalization of EH handling code, to ‘file.02.eh’.

‘o’

‘o’ Dump after post-reload CSE and other optimizations, to
‘file.22.postreload’.

‘G’ Dump after GCSE, to ‘file.10.gcse’.

‘i’ Dump after sibling call optimizations, to ‘file.01.sibling’.

‘j’ Dump after the first jump optimization, to ‘file.03.jump’.

‘k’ Dump after conversion from registers to stack, to ‘file.32.stack’.

‘l’ Dump after local register allocation, to ‘file.20.lreg’.

‘L’ Dump after loop optimization, to ‘file.11.loop’.

‘M’ Dump after performing the machine dependent reorganisation pass,
to ‘file.30.mach’.

‘n’ Dump after register renumbering, to ‘file.25.rnreg’.

‘N’ Dump after the register move pass, to ‘file.18.regmove’.

‘r’ Dump after RTL generation, to ‘file.00.rtl’.

‘R’ Dump after the second instruction scheduling pass, to
‘file.27.sched2’.

‘s’ Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.08.cse’.

‘S’ Dump after the first instruction scheduling pass, to ‘file.19.sched’.

Chapter 3: GCC Command Options 47

‘t’ Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.12.cse2’.

‘w’ Dump after the second flow pass, to ‘file.23.flow2’.

‘X’ Dump after SSA aggressive dead code elimination, to
‘file.06.ssadce’.

‘z’ Dump after the peephole pass, to ‘file.24.peephole2’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard
error.

‘p’ Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

‘P’ Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

‘v’ For each of the other indicated dump files (except for ‘file.00.rtl’),
dump a representation of the control flow graph suitable for viewing
with VCG to ‘file.pass.vcg’.

‘x’ Just generate RTL for a function instead of compiling it. Usually
used with ‘r’.

‘y’ Dump debugging information during parsing, to standard error.

-fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers and line number note output. This makes it more feasible to use
diff on debugging dumps for compiler invocations with different options, in
particular with and without ‘-g’.

-fdump-translation-unit (C and C++ only)
-fdump-translation-unit-number (C and C++ only)

Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘-number’ form is used, number controls the details of the dump as described
for the ‘-fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-number (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-number’ form is used, number controls the details of the dump as
described for the ‘-fdump-tree’ options.

-fdump-ast-switch (C++ only)
-fdump-ast-switch-number (C++ only)

Control the dumping at various stages of processing the abstract syntax tree to
a file. The file name is generated by appending a switch specific suffix to the

48 Using and Porting the GNU Compiler Collection (GCC)

source file name. If the ‘-number’ form is used, number is a bit mask which
controls the details of the dump. The following bits are meaningful (these are
not set symbolically, as the primary function of these dumps is for debugging
gcc itself):

‘bit0 (1)’ Print the address of each node. Usually this is not meaningful as
it changes according to the environment and source file.

‘bit1 (2)’ Inhibit dumping of members of a scope or body of a function, unless
they are reachable by some other path.

The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘inlined’ Dump after inlining within the body of the function, to
‘file.inlined’.

-fpretend-float
When running a cross-compiler, pretend that the target machine uses the same
floating point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GCC would make when running on the target machine.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

-time Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

cc1 0.12 0.01
as 0.00 0.01

The first number on each line is the “user time,” that is time spent executing
the program itself. The second number is “system time,” time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

Chapter 3: GCC Command Options 49

-print-multi-lib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.
This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp0: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ’/’. See Section 3.19
[Environment Variables], page 132.

-dumpmachine
Print the compiler’s target machine (for example, ‘i686-pc-linux-gnu’)—and
don’t do anything else.

-dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files], page 68.

3.10 Options That Control Optimization

These options control various sorts of optimizations:

-O
-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.
Without ‘-O’, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent:
if you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from
the source code.

50 Using and Porting the GNU Compiler Collection (GCC)

Without ‘-O’, the compiler only allocates variables declared register in reg-
isters. The resulting compiled code is a little worse than produced by PCC
without ‘-O’.

With ‘-O’, the compiler tries to reduce code size and execution time.

When you specify ‘-O’, the compiler turns on ‘-fthread-jumps’ and
‘-fdefer-pop’ on all machines. The compiler turns on ‘-fdelayed-branch’
on machines that have delay slots, and ‘-fomit-frame-pointer’ on machines
that can support debugging even without a frame pointer. On some machines
the compiler also turns on other flags.

-O2 Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-O2’. As compared to ‘-O’, this
option increases both compilation time and the performance of the generated
code.

‘-O2’ turns on all optional optimizations except for loop unrolling, function
inlining, and register renaming. It also turns on the ‘-fforce-mem’ option on
all machines and frame pointer elimination on machines where doing so does
not interfere with debugging.

Please note the warning under ‘-fgcse’ about invoking ‘-O2’ on programs that
use computed gotos.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified by ‘-O2’ and also
turns on the ‘-finline-functions’ and ‘-frename-registers’ options.

-O0 Do not optimize.

-Os Optimize for size. ‘-Os’ enables all ‘-O2’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

If you use multiple ‘-O’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table
below, only one of the forms is listed—the one which is not the default. You can figure out
the other form by either removing ‘no-’ or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

Chapter 3: GCC Command Options 51

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-O’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. The ‘-O2’ option
turns on this option.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as ‘-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
Section 21.8 [Registers], page 439.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.

-ftrapv This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.
If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

52 Using and Porting the GNU Compiler Collection (GCC)

-finline-limit=n
By default, gcc limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (ie
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 10000. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way, it represents a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.
This switch does not affect extern inline functions.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘-fno-keep-static-consts’ option.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’, and
‘-fno-trapping-math’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno
Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

Chapter 3: GCC Command Options 53

This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.
The default is ‘-fmath-errno’. The ‘-ffast-math’ option sets
‘-fno-math-errno’.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.
This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.
The default is ‘-fno-unsafe-math-optimizations’. The ‘-ffast-math’ op-
tion sets ‘-funsafe-math-optimizations’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. Setting this option may allow faster code if one relies on “non-
stop” IEEE arithmetic, for example.
This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.
The default is ‘-ftrapping-math’. The ‘-ffast-math’ option sets
‘-fno-trapping-math’.

The following options control specific optimizations. The ‘-O2’ option turns on all of
these optimizations except ‘-funroll-loops’ and ‘-funroll-all-loops’. On most ma-
chines, the ‘-O’ option turns on the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options,
but specific machines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

54 Using and Porting the GNU Compiler Collection (GCC)

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

-frerun-loop-opt
Run the loop optimizer twice.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elmination pass by adding ‘-fno-gcse’ to the command line.

-fgcse-lm
When ‘-fgcse-lm’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, A store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘-fgcse-lm’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless null
pointer checks. Programs which rely on NULL pointer dereferences
not halting the program may not work properly with this option. Use
‘-fno-delete-null-pointer-checks’ to disable this optimizing for programs
which depend on that behavior.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

-foptimize-register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions. GCC
enables this optimization by default with ‘-O2’ or higher.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Chapter 3: GCC Command Options 55

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to im-
prove locality of reference in the instruction space. HPPA processors running
HP-UX and Sparc processors running Solaris 2 have linkers with such optimiza-
tions. Other systems using the ELF object format as well as AIX may have
these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

For all machines, optimization level 2 and higher enables this flag by default.

-funroll-loops
Perform the optimization of loop unrolling. This is only done for
loops whose number of iterations can be determined at compile time
or run time. ‘-funroll-loops’ implies both ‘-fstrength-reduce’ and
‘-frerun-cse-after-loop’.

56 Using and Porting the GNU Compiler Collection (GCC)

-funroll-all-loops
Perform the optimization of loop unrolling. This is done for all loops and
usually makes programs run more slowly. ‘-funroll-all-loops’ implies
‘-fstrength-reduce’ as well as ‘-frerun-cse-after-loop’.

-fmove-all-movables
Forces all invariant computations in loops to be moved outside the loop.

-freduce-all-givs
Forces all general-induction variables in loops to be strength-reduced.
Note: When compiling programs written in Fortran, ‘-fmove-all-movables’
and ‘-freduce-all-givs’ are enabled by default when you use the optimizer.
These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.
These two options are intended to be removed someday, once they have helped
determine the efficacy of various approaches to improving loop optimizations.
Please let us (gcc@gcc.gnu.org and fortran@gnu.org) know how use of these
options affects the performance of your production code. We’re very interested
in code that runs slower when these options are enabled.

-fno-peephole
-fno-peephole2

Disable any machine-specific peephole optimizations. The difference between
‘-fno-peephole’ and ‘-fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gcc], page 41), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based on
guessing the path a branch might take.
With ‘-fbranch-probabilities’, GCC puts a ‘REG_EXEC_COUNT’ note on
the first instruction of each basic block, and a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

-fno-guess-branch-probability
Sometimes gcc will opt to guess branch probabilities when none are
available from either profile directed feedback (‘-fprofile-arcs’) or
‘__builtin_expect’. In a hard real-time system, people don’t want different
runs of the compiler to produce code that has different behavior; minimizing
non-determinism is of paramount import. This switch allows users to reduce
non-determinism, possibly at the expense of inferior optimization.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based

mailto:gcc@gcc.gnu.org
mailto:fortran@gnu.org

Chapter 3: GCC Command Options 57

on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.
Pay special attention to code like this:

union a_union {
int i;
double d;

};

int f() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int f() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;

}

Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C
front-end function c_get_alias_set.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24’ would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions will not be aligned.
Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.
If n is not specified, use a machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because

58 Using and Porting the GNU Compiler Collection (GCC)

it must insert dummy operations for when the branch target is reached in the
usual flow of the code.
If ‘-falign-loops’ or ‘-falign-jumps’ are applicable and are greater than this
value, then their values are used instead.
If n is not specified, use a machine-dependent default which is very likely to be
‘1’, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘-falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘-falign-functions’. In this case, no dummy operations need be executed.
If n is not specified, use a machine-dependent default.

-fssa Perform optimizations in static single assignment form. Each function’s flow
graph is translated into SSA form, optimizations are performed, and the flow
graph is translated back from SSA form. Users should not specify this option,
since it is not yet ready for production use.

-fssa-ccp
Perform Sparse Conditional Constant Propagation in SSA form. Requires
‘-fssa’. Like ‘-fssa’, this is an experimental feature.

-fssa-dce
Perform aggressive dead-code elimination in SSA form. Requires ‘-fssa’. Like
‘-fssa’, this is an experimental feature.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of reg-
isters left over after register allocation. This optimization will most benefit
processors with lots of registers. It can, however, make debugging impossible,
since variables will no longer stay in a “home register”.

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.
In each case, the value is a integer. The allowable choices for name are given
in the following table:

Chapter 3: GCC Command Options 59

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run.

max-pending-list-length
The maximum number of pending dependancies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns
If an function contains more than this many instructions, it will not
be inlined. This option is precisely equivalent to ‘-finline-limit’.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these op-
tions make sense only together with ‘-E’ because they cause the preprocessor output to be
unsuitable for actual compilation.

-include file
Process file as input before processing the regular input file. In effect, the
contents of file are compiled first. Any ‘-D’ and ‘-U’ options on the command
line are always processed before ‘-include file’, regardless of the order in which
they are written. All the ‘-include’ and ‘-imacros’ options are processed in
the order in which they are written.

60 Using and Porting the GNU Compiler Collection (GCC)

-imacros file
Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of ‘-imacros file’ is to make the macros defined in file available for use
in the main input. All the ‘-include’ and ‘-imacros’ options are processed in
the order in which they are written.

-idirafter dir
Add the directory dir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the directories
in the main include path (the one that ‘-I’ adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’ options.

-iwithprefix dir
Add a directory to the second include path. The directory’s name is made
by concatenating prefix and dir, where prefix was specified previously with
‘-iprefix’. If you have not specified a prefix yet, the directory containing the
installed passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s name is made by
concatenating prefix and dir, as in the case of ‘-iwithprefix’.

-isystem dir
Add a directory to the beginning of the second include path, marking it as a
system directory, so that it gets the same special treatment as is applied to the
standard system directories.

-nostdinc
Do not search the standard system directories for header files. Only the di-
rectories you have specified with ‘-I’ options (and the current directory, if
appropriate) are searched. See Section 3.14 [Directory Options], page 66, for
information on ‘-I’.
By using both ‘-nostdinc’ and ‘-I-’, you can limit the include-file search path
to only those directories you specify explicitly.

-remap When searching for a header file in a directory, remap file names if a file named
‘header.gcc’ exists in that directory. This can be used to work around limita-
tions of file systems with file name restrictions. The ‘header.gcc’ file should
contain a series of lines with two tokens on each line: the first token is the name
to map, and the second token is the actual name to use.

-undef Do not predefine any nonstandard macros. (Including architecture flags).

-E Run only the C preprocessor. Preprocess all the C source files specified and
output the results to standard output or to the specified output file.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ directives. Used with the ‘-E’
option.

Chapter 3: GCC Command Options 61

-M Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files. Unless overridden explicitly, the object file
name consists of the basename of the source file with any suffix replaced with
object file suffix. If there are many included files then the rule is split into
several lines using ‘\’-newline.
‘-M’ implies ‘-E’.

-MM Like ‘-M’, but mention only the files included with ‘#include "file"’. System
header files included with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to a file rather than stdout.
gcc will use the same file name and directory as the object file, but with the
suffix ‘.d’ instead.
This is in addition to compiling the main file as specified—‘-MD’ does not inhibit
ordinary compilation the way ‘-M’ does, unless you also specify ‘-MG’.
With Mach, you can use the utility md to merge multiple dependency files into
a single dependency file suitable for using with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system -header files.

-MF file When used with ‘-M’ or ‘-MM’, specifies a file to write the dependencies to. This
allows the preprocessor to write the preprocessed file to stdout normally. If
no ‘-MF’ switch is given, CPP sends the rules to stdout and suppresses normal
preprocessed output.
Another way to specify output of a make rule is by setting the environment
variable DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 132).

-MG When used with ‘-M’ or ‘-MM’, ‘-MG’ says to treat missing header files as gen-
erated files and assume they live in the same directory as the source file. It
suppresses preprocessed output, as a missing header file is ordinarily an error.
This feature is used in automatic updating of makefiles.

-MP This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
Makefile to match.
This is typical output:-

/tmp/test.o: /tmp/test.c /tmp/test.h

/tmp/test.h:

-MQ target

-MT target By default CPP uses the main file name, including any path, and appends
the object suffix, normally “.o”, to it to obtain the name of the target for
dependency generation. With ‘-MT’ you can specify a target yourself, overriding
the default one.

62 Using and Porting the GNU Compiler Collection (GCC)

If you want multiple targets, you can specify them as a single argument to ‘-MT’,
or use multiple ‘-MT’ options.
The targets you specify are output in the order they appear on the command
line. ‘-MQ’ is identical to ‘-MT’, except that the target name is quoted for Make,
but with ‘-MT’ it isn’t. For example, ‘-MT ’$(objpfx)foo.o’’ gives

$(objpfx)foo.o: /tmp/foo.c

but ‘-MQ ’$(objpfx)foo.o’’ gives
$$(objpfx)foo.o: /tmp/foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

-H Print the name of each header file used, in addition to other normal activities.

-Aquestion(answer)
Assert the answer answer for question, in case it is tested with a preprocess-
ing conditional such as ‘#if #question(answer)’. ‘-A-’ disables the standard
assertions that normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of ‘-D’ on the command line are
processed before any ‘-U’ options.
Any ‘-D’ and ‘-U’ options on the command line are processed in order, and
always before ‘-imacros file’, regardless of the order in which they are written.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but
before any ‘-include’ and ‘-imacros’ options.
Any ‘-D’ and ‘-U’ options on the command line are processed in order, and
always before ‘-imacros file’, regardless of the order in which they are written.

-dM Tell the preprocessor to output only a list of the macro definitions that are in
effect at the end of preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their
proper sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only
‘#define name’ is included in the output.

-dI Output ‘#include’ directives in addition to the result of preprocessing.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.
‘-fpreprocessed’ is implicit if the input file has one of the extensions ‘i’, ‘ii’
or ‘mi’. These are the extensions that GCC uses for preprocessed files created
by ‘-save-temps’.

Chapter 3: GCC Command Options 63

-trigraphs
Process ISO standard trigraph sequences. These are three-character sequences,
all starting with ‘??’, that are defined by ISO C to stand for single characters.
For example, ‘??/’ stands for ‘\’, so ‘’??/n’’ is a character constant for a
newline. By default, GCC ignores trigraphs, but in standard-conforming modes
it converts them. See the ‘-std’ and ‘-ansi’ options.
The nine trigraph sequences are

‘??(’ 7→ ‘[’

‘??)’ 7→ ‘]’

‘??<’ 7→ ‘{’

‘??>’ 7→ ‘}’

‘??=’ 7→ ‘#’

‘??/’ 7→ ‘\’

‘??’’ 7→ ‘^’

‘??!’ 7→ ‘|’

‘??-’ 7→ ‘~’

Trigraph support is not popular, so many compilers do not implement it prop-
erly. Portable code should not rely on trigraphs being either converted or
ignored.

-Wp,option
Pass option as an option to the preprocessor. If option contains commas, it is
split into multiple options at the commas.

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable
output file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

64 Using and Porting the GNU Compiler Collection (GCC)

-c
-S
-E If any of these options is used, then the linker is not run, and object file names

should not be used as arguments. See Section 3.2 [Overall Options], page 15.

-llibrary
-l library Search the library named library when linking. (The second alternative with

the library as a separate argument is only for POSIX compliance and is not
recommended.)
It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -lz bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.
The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.
The directories searched include several standard system directories plus any
that you specify with ‘-L’.
Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-l’ option and specifying a file
name is that ‘-l’ surrounds library with ‘lib’ and ‘.a’ and searches several
directories.

-lobjc You need this special case of the ‘-l’ option in order to link an Objective-C
program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, and memcpy for System V (and ISO C) environments or to bcopy and
bzero for BSD environments. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

-nostdlib
Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, and memcpy for System V
(and ISO C) environments or to bcopy and bzero for BSD environments. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

Chapter 3: GCC Command Options 65

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Chapter 16 [Interfacing to GCC Output], page 267, for more discussion of
‘libgcc.a’.) In most cases, you need ‘libgcc.a’ even when you want to avoid
other standard libraries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as well. This ensures that
you have no unresolved references to internal GCC library subroutines. (For ex-
ample, ‘__main’, used to ensure C++ constructors will be called; see Section 4.5
[collect2], page 146.)

-s Remove all symbol table and relocation information from the executable.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.1

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, whenever you specify the ‘-shared’ option, the GCC driver automat-
ically adds ‘-shared-libgcc’, unless you explicitly specify ‘-static-libgcc’.
The G++ driver automatically adds ‘-shared-libgcc’ when you build a main
executable as well because for C++ programs that is typically the right thing to
do. (Exception-handling will not work reliably otherwise.)

However, when linking a main executable written in C, you must explicitly say
‘-shared-libgcc’ if you want to use the shared ‘libgcc’.

-symbolic
Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker
-z -Xlinker defs’). Only a few systems support this option.

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

66 Using and Porting the GNU Compiler Collection (GCC)

-Xlinker option
Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.
If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

-u symbol Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of
the compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.
If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, it will be searched only in the position requested
by ‘-I’. Also, it will not be considered a system include directory. If that
directory really does contain system headers, there is a good chance that they
will break. For instance, if GCC’s installation procedure edited the headers in
‘/usr/include’ to fix bugs, ‘-I/usr/include’ will cause the original, buggy
headers to be found instead of the corrected ones. GCC will issue a warning
when a system include directory is hidden in this way.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’ option are searched
only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’.
If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ direc-
tories are used this way.)
In addition, the ‘-I-’ option inhibits the use of the current directory (where the
current input file came from) as the first search directory for ‘#include "file"’.
There is no way to override this effect of ‘-I-’. With ‘-I.’ you can specify

Chapter 3: GCC Command Options 67

searching the directory which was current when the compiler was invoked. That
is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

‘-I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’,
‘as’ and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 74).

For each subprogram to be run, the compiler driver first tries the ‘-B’
prefix, if any. If that name is not found, or if ‘-B’ was not specified,
the driver tries two standard prefixes, which are ‘/usr/lib/gcc/’ and
‘/usr/local/lib/gcc-lib/’. If neither of those results in a file name that
is found, the unmodified program name is searched for using the directories
specified in your PATH environment variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 132.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults that the ‘gcc’ driver program uses when determining what
switches to pass to ‘cc1’, ‘cc1plus’, ‘as’, ‘ld’, etc. More than one ‘-specs=file’
can be specified on the command line, and they are processed in order, from
left to right.

68 Using and Porting the GNU Compiler Collection (GCC)

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs
to do the work of compiling, assembling and linking. GCC interprets its command-line
parameters and uses these to deduce which programs it should invoke, and which command-
line options it ought to place on their command lines. This behaviour is controlled by spec
strings. In most cases there is one spec string for each program that GCC can invoke, but a
few programs have multiple spec strings to control their behaviour. The spec strings built
into GCC can be overridden by using the ‘-specs=’ command-line switch to specify a spec
file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following:

%command
Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

%rename old name new name
Rename the spec string old name to new name.

*[spec name]:
This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘+’ character, in which case the text
will be appended to the spec.

[suffix]: Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

.ZZ:
z-compile -input %i

This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘-input’ and with the result of performing the ‘%i’ substitution. (See below.)

Chapter 3: GCC Command Options 69

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

@language This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:

.ZZ:
@c++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:
name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler
asm_final Options to pass to the assembler post-processor
cpp Options to pass to the C preprocessor
cc1 Options to pass to the C compiler
cc1plus Options to pass to the C++ compiler
endfile Object files to include at the end of the link
link Options to pass to the linker
lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker
predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether char is signed

by default
startfile Object files to include at the start of the link

Here is a small example of a spec file:

%rename lib old_lib

*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)

This example renames the spec called ‘lib’ to ‘old_lib’ and then overrides the previous
definition of ‘lib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding
program. In addition, the spec strings can contain ‘%’-prefixed sequences to substitute
variable text or to conditionally insert text into the command line. Using these constructs
it is possible to generate quite complex command lines.

70 Using and Porting the GNU Compiler Collection (GCC)

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

%% Substitute one ‘%’ into the program name or argument.

%i Substitute the name of the input file being processed.

%b Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

%B This is the same as ‘%b’, but include the file suffix (text after the last period).

%d Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

%gsuffix Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
%g.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%O’, which is treated
exactly as if ‘%O’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

%usuffix Like ‘%g’, but generates a new temporary file name even if ‘%usuffix’ was already
seen.

%Usuffix Substitutes the last file name generated with ‘%usuffix’, generating a new one if
there is no such last file name. In the absence of any ‘%usuffix’, this is just like
‘%gsuffix’, except they don’t share the same suffix space, so ‘%g.s ... %U.s ...
%g.s ... %U.s’ would involve the generation of two distinct file names, one for
each ‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’ was simply substituted
with a file name chosen for the previous ‘%u’, without regard to any appended
suffix.

%jSUFFIX
Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

%.SUFFIX
Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

%w Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

Chapter 3: GCC Command Options 71

%o Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%o’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

%O Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%O’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%O’ as they would following, for
example, ‘.o’.

%p Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start with ‘__’ or with ‘_L’, where L is an uppercase
letter. This is for ISO C.

%I Substitute a ‘-iprefix’ option made from GCC_EXEC_PREFIX.

%s Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.

%estr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%| Output ‘-’ if the input for the current command is coming from a pipe.

%(name) Substitute the contents of spec string name at this point.

%[name] Like ‘%(...)’ but put ‘__’ around ‘-D’ arguments.

%x{option}
Accumulate an option for ‘%X’.

%X Output the accumulated linker options specified by ‘-Wl’ or a ‘%x’ spec string.

%Y Output the accumulated assembler options specified by ‘-Wa’.

%Z Output the accumulated preprocessor options specified by ‘-Wp’.

%v1 Substitute the major version number of GCC. (For version 2.9.5, this is 2.)

%v2 Substitute the minor version number of GCC. (For version 2.9.5, this is 9.)

%v3 Substitute the patch level number of GCC. (For version 2.9.5, this is 5.)

%a Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an
assembler post-processor, if such a program is needed.

%l Process the link spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

72 Using and Porting the GNU Compiler Collection (GCC)

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

%M Output the multilib directory with directory separators replaced with ‘_’. If
multilib directories are not set, or the multilib directory is ‘.’ then this option
emits nothing.

%L Process the lib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files
should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.o’.

%E Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

%C Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

%c Process the signed_char spec. This is intended to be used to tell cpp whether
a char is signed. It typically has the definition:

%{funsigned-char:-D__CHAR_UNSIGNED__}

%1 Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘cc1’).

%2 Process the cc1plus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cc1plus’).

%* Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

%{S} Substitutes the -S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ would match the command-line
option ‘-foo’ and would output the command line option ‘-foo’.

%W{S} Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

%{S*} Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’,
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{o*} would substitute this text, including the space. Thus two arguments
would be generated.

%{^S*} Like %{S*}, but don’t put a blank between a switch and its argument. Thus
%{^o*} would only generate one argument, not two.

Chapter 3: GCC Command Options 73

%{S*&T*} Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘%{D*&U*&A*}’.

%{<S} Remove all occurrences of -S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this option will see
-S, ‘%’ commands in the spec string after this option will not.

%{S*:X} Substitutes X if one or more switches whose names start with -S are specified
to GCC. Note that the tail part of the -S option (i.e. the part matched by the
‘*’) will be substituted for each occurrence of ‘%*’ within X.

%{S:X} Substitutes X, but only if the ‘-S’ switch was given to GCC.

%{!S:X} Substitutes X, but only if the ‘-S’ switch was not given to GCC.

%{|S:X} Like %{S:X}, but if no S switch, substitute ‘-’.

%{|!S:X} Like %{!S:X}, but if there is an S switch, substitute ‘-’.

%{.S:X} Substitutes X, but only if processing a file with suffix S.

%{!.S:X} Substitutes X, but only if not processing a file with suffix S.

%{S|P:X} Substitutes X if either -S or -P was given to GCC. This may be combined with
‘!’ and ‘.’ sequences as well, although they have a stronger binding than the
‘|’. For example a spec string like this:

%{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}

will output the following command-line options from the following input
command-line options:

fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle

The conditional text X in a %{S:X} or %{!S:X} construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.

The ‘-O’, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If
another value of ‘-O’ or the negated form of a ‘-f’, ‘-m’, or ‘-W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a com-
mand should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-l’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

74 Using and Porting the GNU Compiler Collection (GCC)

3.16 Specifying Target Machine and Compiler Version

By default, GCC compiles code for the same type of machine that you are using. How-
ever, it can also be installed as a cross-compiler, to compile for some other type of machine.
In fact, several different configurations of GCC, for different target machines, can be in-
stalled side by side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GCC can be installed side by side. One of them
(probably the newest) will be the default, but you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for compilation. This is
useful when you have installed GCC as a cross-compiler.

The value to use for machine is the same as was specified as the machine type
when configuring GCC as a cross-compiler. For example, if a cross-compiler was
configured with ‘configure i386v’, meaning to compile for an 80386 running
System V, then you would specify ‘-b i386v’ to run that cross compiler.

When you do not specify ‘-b’, it normally means to compile for the same type
of machine that you are using.

-V version The argument version specifies which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be ‘2.0’,
meaning to run GCC version 2.0.

The default version, when you do not specify ‘-V’, is the last version of GCC
that you installed.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file name used for the
executable files and libraries used for compilation. A given version of GCC, for a given target
machine, is normally kept in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing the names
of these directories or adding alternate names (or symbolic links). If in directory
‘/usr/local/lib/gcc-lib/’ the file ‘80386’ is a link to the file ‘i386v’, then ‘-b 80386’
becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different compiler: the
top-level driver program gcc that you originally invoked continues to run and invoke the
other executables (preprocessor, compiler per se, assembler and linker) that do the real
work. However, since no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the specified target. It is common for
the interface to the other executables to change incompatibly between compiler versions, so
unless the version specified is very close to that of the driver (for example, ‘-V 3.0’ with a
driver program from GCC version 3.0.1), use of ‘-V’ may not work; for example, using ‘-V
2.95.2’ will not work with a driver program from GCC 3.0.

The only way that the driver program depends on the target machine is in the parsing
and handling of special machine-specific options. However, this is controlled by a file which
is found, along with the other executables, in the directory for the specified version and
target machine. As a result, a single installed driver program adapts to any specified target
machine, and sufficiently similar compiler versions.

Chapter 3: GCC Command Options 75

The driver program executable does control one significant thing, however: the default
version and target machine. Therefore, you can install different instances of the driver
program, compiled for different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is
installed as gcc, then the command gcc will use version 2.1 by default, while ogcc will use
2.0 by default. However, you can choose either version with either command with the ‘-V’
option.

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed
compilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description.
The default for the options is also defined by that macro, which enables you to change the
defaults.

3.17.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these
options depends on which style of 68000 was selected when the compiler was configured;
the defaults for the most common choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured

for 68000-based systems.
Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured

for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unless ‘--nfp’ was specified when the compiler
was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.
This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

76 Using and Porting the GNU Compiler Collection (GCC)

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems.
This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-mcpu32 Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems.
Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X “coldfire” family cpu. This is the default when the
compiler is configured for 520X-based systems.
Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

-mfpa Generate output containing Sun FPA instructions for floating point.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all m68k targets. Normally the facilities
of the machine’s usual C compiler are used, but this can’t be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘m68k-*-aout’
and ‘m68k-*-coff’ do provide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’
options imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

Chapter 3: GCC Command Options 77

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)
The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int
-mno-align-int

Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code
that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.
Warning: if you use the ‘-malign-int’ switch, GCC will align structures con-
taining the above types differently than most published application binary in-
terface specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘-fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘-fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align

Do not (do) assume that unaligned memory references will be handled by the
system.

3.17.2 M68hc1x Options

These are the ‘-m’ options defined for the 68hc11 and 68hc12 microcontrollers. The
default values for these options depends on which style of microcontroller was selected
when the compiler was configured; the defaults for the most common choices are given
below.

-m6811
-m68hc11 Generate output for a 68HC11. This is the default when the compiler is con-

figured for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is con-

figured for 68HC12-based systems.

-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

78 Using and Porting the GNU Compiler Collection (GCC)

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code gener-
ation. The maximum number is 32. Using more pseudo-soft register may or
may not result in better code depending on the program. The default is 4 for
68HC11 and 2 for 68HC12.

3.17.3 VAX Options

These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.17.4 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.
To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*’ do provide software floating point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

Chapter 3: GCC Command Options 79

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.
As of this writing, there are no sparc implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-epilogue
-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits code for function
exit at the end of each function. Any function exit in the middle of the function
(such as a return statement in C) will generate a jump to the exit code at the
end of the function.
With ‘-mno-epilogue’, the compiler tries to emit exit code inline at every
function exit.

-mno-flat
-mflat With ‘-mflat’, the compiler does not generate save/restore instructions and

will use a “flat” or single register window calling convention. This model uses
%i7 as the frame pointer and is compatible with the normal register window
model. Code from either may be intermixed. The local registers and the input
registers (0–5) are still treated as “call saved” registers and will be saved on the
stack as necessary.
With ‘-mno-flat’ (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.
With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating point code.

-mno-faster-structs
-mfaster-structs

With ‘-mfaster-structs’, the compiler assumes that structures should have
8 byte alignment. This enables the use of pairs of ldd and std instructions
for copies in structure assignment, in place of twice as many ld and st pairs.
However, the use of this changed alignment directly violates the Sparc ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code will not be directly in line with the rules of the ABI.

80 Using and Porting the GNU Compiler Collection (GCC)

-mv8
-msparclite

These two options select variations on the SPARC architecture.
By default (unless specifically configured for the Fujitsu SPARClite), GCC gen-
erates code for the v7 variant of the SPARC architecture.
‘-mv8’ will give you SPARC v8 code. The only difference from v7 code is that
the compiler emits the integer multiply and integer divide instructions which
exist in SPARC v8 but not in SPARC v7.
‘-msparclite’ will give you SPARClite code. This adds the integer multiply,
integer divide step and scan (ffs) instructions which exist in SPARClite but
not in SPARC v7.
These options are deprecated and will be deleted in a future GCC release. They
have been replaced with ‘-mcpu=xxx’.

-mcypress
-msupersparc

These two options select the processor for which the code is optimised.
With ‘-mcypress’ (the default), the compiler optimizes code for the Cypress
CY7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is also
appropriate for the older SparcStation 1, 2, IPX etc.
With ‘-msupersparc’ the compiler optimizes code for the SuperSparc cpu, as
used in the SparcStation 10, 1000 and 2000 series. This flag also enables use of
the full SPARC v8 instruction set.
These options are deprecated and will be deleted in a future GCC release. They
have been replaced with ‘-mcpu=xxx’.

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘hypersparc’, ‘sparclite86x’, ‘f930’, ‘f934’,
‘sparclet’, ‘tsc701’, ‘v9’, and ‘ultrasparc’.
Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9’.
Here is a list of each supported architecture and their supported implementa-
tions.

v7: cypress
v8: supersparc, hypersparc
sparclite: f930, f934, sparclite86x
sparclet: tsc701
v9: ultrasparc

-mtune=cpu type
Set the instruction scheduling parameters for machine type cpu type, but do not
set the instruction set or register set that the option ‘-mcpu=cpu type’ would.
The same values for ‘-mcpu=cpu type’ are used for ‘-mtune=cpu type’, though
the only useful values are those that select a particular cpu implementation:

Chapter 3: GCC Command Options 81

‘cypress’, ‘supersparc’, ‘hypersparc’, ‘f930’, ‘f934’, ‘sparclite86x’,
‘tsc701’, ‘ultrasparc’.

These ‘-m’ switches are supported in addition to the above on the SPARCLET processor.

-mlittle-endian
Generate code for a processor running in little-endian mode.

-mlive-g0
Treat register %g0 as a normal register. GCC will continue to clobber it as
necessary but will not assume it always reads as 0.

-mbroken-saverestore
Generate code that does not use non-trivial forms of the save and restore in-
structions. Early versions of the SPARCLET processor do not correctly handle
save and restore instructions used with arguments. They correctly handle
them used without arguments. A save instruction used without arguments in-
crements the current window pointer but does not allocate a new stack frame.
It is assumed that the window overflow trap handler will properly handle this
case as will interrupt handlers.

These ‘-m’ switches are supported in addition to the above on SPARC V9 processors in
64-bit environments.

-mlittle-endian
Generate code for a processor running in little-endian mode.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mcmodel=medlow
Generate code for the Medium/Low code model: the program must be linked
in the low 32 bits of the address space. Pointers are 64 bits. Programs can be
statically or dynamically linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: the program must be linked
in the low 44 bits of the address space, the text segment must be less than 2G
bytes, and data segment must be within 2G of the text segment. Pointers are
64 bits.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: the program may be
linked anywhere in the address space, the text segment must be less than 2G
bytes, and data segment must be within 2G of the text segment. Pointers are
64 bits.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems:
assume a 32-bit text and a 32-bit data segment, both starting anywhere (de-
termined at link time). Register %g4 points to the base of the data segment.
Pointers are still 64 bits. Programs are statically linked, PIC is not supported.

82 Using and Porting the GNU Compiler Collection (GCC)

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by −2047 which must be added back when making stack
frame references. Otherwise, assume no such offset is present.

3.17.5 Convex Options

These ‘-m’ options are defined for Convex:

-mc1 Generate output for C1. The code will run on any Convex machine. The
preprocessor symbol __convex__c1__ is defined.

-mc2 Generate output for C2. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C2. The preprocessor
symbol __convex_c2__ is defined.

-mc32 Generate output for C32xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C32. The prepro-
cessor symbol __convex_c32__ is defined.

-mc34 Generate output for C34xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C34. The prepro-
cessor symbol __convex_c34__ is defined.

-mc38 Generate output for C38xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C38. The prepro-
cessor symbol __convex_c38__ is defined.

-margcount
Generate code which puts an argument count in the word preceding each argu-
ment list. This is compatible with regular CC, and a few programs may need
the argument count word. GDB and other source-level debuggers do not need
it; this info is in the symbol table.

-mnoargcount
Omit the argument count word. This is the default.

-mvolatile-cache
Allow volatile references to be cached. This is the default.

-mvolatile-nocache
Volatile references bypass the data cache, going all the way to memory. This is
only needed for multi-processor code that does not use standard synchroniza-
tion instructions. Making non-volatile references to volatile locations will not
necessarily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.

-mlong64 Type long is 64 bits, the same as type long long. This option is useless, because
no library support exists for it.

Chapter 3: GCC Command Options 83

3.17.6 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e., that byte and halfword
operations are directly supported by the hardware. This is the default.

-mndw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports byte and halfword write op-
erations. This is the default.

-mnbw Generate code that assumes the systems does not support byte and halfword
write operations. ‘-mnbw’ implies ‘-mndw’.

-msmall Use a small memory model that assumes that all function addresses are either
within a single 256 KB segment or at an absolute address of less than 256k.
This allows the call instruction to be used instead of a const, consth, calli
sequence.

-mnormal Use the normal memory model: Generate call instructions only when calling
functions in the same file and calli instructions otherwise. This works if each
file occupies less than 256 KB but allows the entire executable to be larger than
256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you expect a single file to
compile into more than 256 KB of code.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gr64-gr95 instead of to registers gr96-gr127.
This option can be used when compiling kernel code that wants a set of global
registers disjoint from that used by user-mode code.

Note that when this option is used, register names in ‘-f’ flags must use the
normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gr96-gr127. This is the default.

-mstack-check
-mno-stack-check

Insert (or do not insert) a call to __msp_check after each stack adjustment.
This is often used for kernel code.

-mstorem-bug
-mno-storem-bug

‘-mstorem-bug’ handles 29k processors which cannot handle the separation of
a mtsrim insn and a storem instruction (most 29000 chips to date, but not the
29050).

84 Using and Porting the GNU Compiler Collection (GCC)

-mno-reuse-arg-regs
-mreuse-arg-regs

‘-mno-reuse-arg-regs’ tells the compiler to only use incoming argument reg-
isters for copying out arguments. This helps detect calling a function with fewer
arguments than it was declared with.

-mno-impure-text
-mimpure-text

‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘-assert pure-text’ to the linker when linking a shared object.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

-mno-multm
Do not generate multm or multmu instructions. This is useful for some embed-
ded systems which do not have trap handlers for these instructions.

3.17.7 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘-fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mapcs-26
Generate code for a processor running with a 26-bit program counter, and
conforming to the function calling standards for the APCS 26-bit option. This
option replaces the ‘-m2’ and ‘-m3’ options of previous releases of the compiler.

-mapcs-32
Generate code for a processor running with a 32-bit program counter, and
conforming to the function calling standards for the APCS 32-bit option. This
option replaces the ‘-m6’ option of previous releases of the compiler.

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code
is generated when ‘-mthumb-interwork’ is specified.

Chapter 3: GCC Command Options 85

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that
all functions will start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

-malignment-traps
Generate code that will not trap if the MMU has alignment traps enabled. On
ARM architectures prior to ARMv4, there were no instructions to access half-
word objects stored in memory. However, when reading from memory a feature
of the ARM architecture allows a word load to be used, even if the address
is unaligned, and the processor core will rotate the data as it is being loaded.
This option tells the compiler that such misaligned accesses will cause a MMU
trap and that it should instead synthesise the access as a series of byte accesses.
The compiler can still use word accesses to load half-word data if it knows that
the address is aligned to a word boundary.
This option is ignored when compiling for ARM architecture 4 or later, since
these processors have instructions to directly access half-word objects in mem-
ory.

86 Using and Porting the GNU Compiler Collection (GCC)

-mno-alignment-traps
Generate code that assumes that the MMU will not trap unaligned accesses.
This produces better code when the target instruction set does not have half-
word memory operations (i.e. implementations prior to ARMv4).
Note that you cannot use this option to access unaligned word objects, since
the processor will only fetch one 32-bit aligned object from memory.
The default setting for most targets is ‘-mno-alignment-traps’, since this pro-
duces better code when there are no half-word memory instructions available.

-mshort-load-bytes
-mno-short-load-words

These are deprecated aliases for ‘-malignment-traps’.

-mno-short-load-bytes
-mshort-load-words

This are deprecated aliases for ‘-mno-alignment-traps’.

-mbsd This option only applies to RISC iX. Emulate the native BSD-mode compiler.
This is the default if ‘-ansi’ is not specified.

-mxopen This option only applies to RISC iX. Emulate the native X/Open-mode com-
piler.

-mno-symrename
This option only applies to RISC iX. Do not run the assembler post-processor,
‘symrename’, after code has been assembled. Normally it is necessary to modify
some of the standard symbols in preparation for linking with the RISC iX C
library; this option suppresses this pass. The post-processor is never run when
the compiler is built for cross-compilation.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly
code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’,
‘arm600’, ‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’,
‘arm7dmi’, ‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm8’, ‘strongarm’, ‘strongarm110’,
‘strongarm1100’, ‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’,
‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’, ‘xscale’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code as
if the target were of the type specified in this option, but still choosing the in-
structions that it will generate based on the cpu specified by a ‘-mcpu=’ option.
For some ARM implementations better performance can be obtained by using
this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly

Chapter 3: GCC Command Options 87

code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armv5’, ‘armv5t’, ‘armv5te’.

-mfpe=number
-mfp=number

This specifies the version of the floating point emulation available on the tar-
get. Permissible values are 2 and 3. ‘-mfp=’ is a synonym for ‘-mfpe=’, for
compatibility with older versions of GCC.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8 and 32. The default
value varies for different toolchains. For the COFF targeted toolchain the de-
fault value is 8. Specifying the larger number can produce faster, more efficient
code, but can also increase the size of the program. The two values are poten-
tially incompatible. Code compiled with one value cannot necessarily expect
to work with code or libraries compiled with the other value, if they exchange
information using structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.
Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.
This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behaviour, as will placing the function calls within the scope
of a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the dllimport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The run-time system is responsible for
initialising this register with an appropriate value before execution begins.

88 Using and Porting the GNU Compiler Collection (GCC)

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:

t0
.ascii "arm_poke_function_name", 0
.align

t1
.word 0xff000000 + (t1 - t0)

arm_poke_function_name
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0xff000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the
32-bit ARM instruction set.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruc-
tion set header which switches to Thumb mode before executing the rest of the
function. This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer if
this option is enabled.

3.17.8 MN10200 Options

These ‘-m’ options are defined for Matsushita MN10200 architectures:

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.

Chapter 3: GCC Command Options 89

This option makes symbolic debugging impossible.

3.17.9 MN10300 Options

These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This
is the default.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.

3.17.10 M32R/D Options

These ‘-m’ options are defined for Mitsubishi M32R/D architectures:

-mcode-model=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.
The addressability of a particular object can be set with the model attribute.

-mcode-model=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mcode-model=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/jl instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.

90 Using and Porting the GNU Compiler Collection (GCC)

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

3.17.11 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100 and the m88110.

-m88100 Generate code that works best for the m88100, but that also runs on the
m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.

-mbig-pic
Obsolete option to be removed from the next revision. Use ‘-fPIC’.

-midentify-revision
Include an ident directive in the assembler output recording the source file
name, compiler name and version, timestamp, and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an underscore charac-
ter at the beginning of each name. The default is to use an underscore as prefix
on each name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in
each stack frame) as specified in the 88open Object Compatibility Standard,
“OCS”. This extra information allows debugging of code that has had the
frame pointer eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2
is to include this information; other 88k configurations omit this information
by default.

Chapter 3: GCC Command Options 91

-mocs-frame-position
When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the offset from the canonical frame address,
which is the stack pointer (register 31) on entry to the function. The DG/UX,
SVr4, Delta88 SVr3.2, and BCS configurations use ‘-mocs-frame-position’;
other 88k configurations have the default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the offset from the frame pointer register
(register 30). When this option is in effect, the frame pointer is not eliminated
when debugging information is selected by the -g switch.

-moptimize-arg-area
-mno-optimize-arg-area

Control how function arguments are stored in stack frames.
‘-moptimize-arg-area’ saves space by optimizing them, but this
conflicts with the 88open specifications. The opposite alternative,
‘-mno-optimize-arg-area’, agrees with 88open standards. By default GCC
does not optimize the argument area.

-mshort-data-num
Generate smaller data references by making them relative to r0, which allows
loading a value using a single instruction (rather than the usual two). You con-
trol which data references are affected by specifying num with this option. For
example, if you specify ‘-mshort-data-512’, then the data references affected
are those involving displacements of less than 512 bytes. ‘-mshort-data-num’
is not effective for num greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consistency of volatile mem-
ory references. By default, consistency is guaranteed.

The order of memory references made by the MC88110 processor does not
always match the order of the instructions requesting those references. In par-
ticular, a load instruction may execute before a preceding store instruction.
Such reordering violates sequential consistency of volatile memory references,
when there are multiple processors. When consistency must be guaranteed,
GCC generates special instructions, as needed, to force execution in the proper
order.

The MC88100 processor does not reorder memory references and so always
provides sequential consistency. However, by default, GCC generates the special
instructions to guarantee consistency even when you use ‘-m88100’, so that the
code may be run on an MC88110 processor. If you intend to run your code
only on the MC88100 processor, you may use ‘-mno-serialize-volatile’.

The extra code generated to guarantee consistency may affect the performance
of your application. If you know that you can safely forgo this guarantee, you
may use ‘-mno-serialize-volatile’.

92 Using and Porting the GNU Compiler Collection (GCC)

-msvr4
-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions related to System V

release 4 (SVr4). This controls the following:

1. Which variant of the assembler syntax to emit.

2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma weak’ that is used
on System V release 4.

3. ‘-msvr4’ makes GCC issue additional declaration directives used in SVr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k
configurations. ‘-msvr3’ is the default for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don’t, generate code to guarantee that integer division by zero will be
detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon integer division by
zero under certain conditions. By default, when compiling code that might be
run on such a processor, GCC generates code that explicitly checks for zero-
valued divisors and traps with exception number 503 when one is detected. Use
of mno-check-zero-division suppresses such checking for code generated to run
on an MC88100 processor.

GCC assumes that the MC88110 processor correctly detects all in-
stances of integer division by zero. When ‘-m88110’ is specified, both
‘-mcheck-zero-division’ and ‘-mno-check-zero-division’ are ignored, and
no explicit checks for zero-valued divisors are generated.

-muse-div-instruction
Use the div instruction for signed integer division on the MC88100 processor.
By default, the div instruction is not used.

On the MC88100 processor the signed integer division instruction div) traps to
the operating system on a negative operand. The operating system transpar-
ently completes the operation, but at a large cost in execution time. By default,
when compiling code that might be run on an MC88100 processor, GCC em-
ulates signed integer division using the unsigned integer division instruction
divu), thereby avoiding the large penalty of a trap to the operating system.
Such emulation has its own, smaller, execution cost in both time and space.
To the extent that your code’s important signed integer division operations are
performed on two nonnegative operands, it may be desirable to use the div
instruction directly.

On the MC88110 processor the div instruction (also known as the divs instruc-
tion) processes negative operands without trapping to the operating system.
When ‘-m88110’ is specified, ‘-muse-div-instruction’ is ignored, and the div
instruction is used for signed integer division.

Chapter 3: GCC Command Options 93

Note that the result of dividing INT_MIN by −1 is undefined. In particular, the
behavior of such a division with and without ‘-muse-div-instruction’ may
differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such
shifts or emit code to handle them properly. By default GCC makes no special
provision for large bit shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or result. Structure-
passing conventions have changed during the evolution of the C language, and
are often the source of portability problems. By default, GCC issues no such
warning.

3.17.12 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpc64

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx microprocessors.
Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER architecture.
You use these options to specify which instructions are available on the pro-
cessor you are using. The default value of these options is determined when
configuring GCC. Specifying the ‘-mcpu=cpu type’ overrides the specification
of these options. We recommend you use the ‘-mcpu=cpu type’ option rather
than the options listed above.
The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2’
implies ‘-power’ and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.

94 Using and Porting the GNU Compiler Collection (GCC)

The ‘-mpowerpc’ option allows GCC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies
‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.
The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.
If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GCC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code.
‘-mnew-mnemonics’ requests output that uses the assembler mnemonics
defined for the PowerPC architecture, while ‘-mold-mnemonics’ requests the
assembler mnemonics defined for the POWER architecture. Instructions
defined in only one architecture have only one mnemonic; GCC uses that
mnemonic irrespective of which of these options is specified.
GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying ‘-mcpu=cpu type’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu type
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu type. Supported values for
cpu type are ‘rios’, ‘rios1’, ‘rsc’, ‘rios2’, ‘rs64a’, ‘601’, ‘602’, ‘603’,
‘603e’, ‘604’, ‘604e’, ‘620’, ‘630’, ‘740’, ‘750’, ‘power’, ‘power2’, ‘powerpc’,
‘403’, ‘505’, ‘801’, ‘821’, ‘823’, and ‘860’ and ‘common’. ‘-mcpu=power’,
‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’ specify generic
POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601), and 64-bit
PowerPC architecture machine types, with an appropriate, generic processor
model assumed for scheduling purposes.
Specifying any of the following options: ‘-mcpu=rios1’, ‘-mcpu=rios2’,
‘-mcpu=rsc’, ‘-mcpu=power’, or ‘-mcpu=power2’ enables the ‘-mpower’ option
and disables the ‘-mpowerpc’ option; ‘-mcpu=601’ enables both the ‘-mpower’
and ‘-mpowerpc’ options. All of ‘-mcpu=rs64a’, ‘-mcpu=602’, ‘-mcpu=603’,
‘-mcpu=603e’, ‘-mcpu=604’, ‘-mcpu=620’, ‘-mcpu=630’, ‘-mcpu=740’, and
‘-mcpu=750’ enable the ‘-mpowerpc’ option and disable the ‘-mpower’ option.

Chapter 3: GCC Command Options 95

Exactly similarly, all of ‘-mcpu=403’, ‘-mcpu=505’, ‘-mcpu=821’, ‘-mcpu=860’
and ‘-mcpu=powerpc’ enable the ‘-mpowerpc’ option and disable the ‘-mpower’
option. ‘-mcpu=common’ disables both the ‘-mpower’ and ‘-mpowerpc’ options.
AIX versions 4 or greater selects ‘-mcpu=common’ by default, so that code will
operate on all members of the RS/6000 POWER and PowerPC families. In
that case, GCC will use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will not use the
MQ register. GCC assumes a generic processor model for scheduling purposes.
Specifying any of the options ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’,
‘-mcpu=power’, or ‘-mcpu=power2’ also disables the ‘new-mnemonics’ option.
Specifying ‘-mcpu=601’, ‘-mcpu=602’, ‘-mcpu=603’, ‘-mcpu=603e’, ‘-mcpu=604’,
‘-mcpu=620’, ‘-mcpu=630’, ‘-mcpu=403’, ‘-mcpu=505’, ‘-mcpu=821’,
‘-mcpu=860’ or ‘-mcpu=powerpc’ also enables the ‘new-mnemonics’ option.
Specifying ‘-mcpu=403’, ‘-mcpu=821’, or ‘-mcpu=860’ also enables the
‘-msoft-float’ option.

-mtune=cpu type
Set the instruction scheduling parameters for machine type cpu type,
but do not set the architecture type, register usage, choice of mnemonics
like ‘-mcpu=cpu type’ would. The same values for cpu type are used for
‘-mtune=cpu type’ as for ‘-mcpu=cpu type’. The ‘-mtune=cpu type’ option
overrides the ‘-mcpu=cpu type’ option in terms of instruction scheduling
parameters.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place floating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.
If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant
at run-time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.
If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

96 Using and Porting the GNU Compiler Collection (GCC)

-maix64
-maix32 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long

type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit
ABI and implies ‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mxl-call
-mno-xl-call

On AIX, pass floating-point arguments to prototyped functions beyond the reg-
ister save area (RSA) on the stack in addition to argument FPRs. The AIX
calling convention was extended but not initially documented to handle an ob-
scure K&R C case of calling a function that takes the address of its arguments
with fewer arguments than declared. AIX XL compilers access floating point
arguments which do not fit in the RSA from the stack when a subroutine is com-
piled without optimization. Because always storing floating-point arguments on
the stack is inefficient and rarely needed, this option is not enabled by default
and only is necessary when calling subroutines compiled by AIX XL compilers
without optimization.

-mthreads
Support AIX Threads. Link an application written to use pthreads with special
libraries and startup code to enable the application to run.

-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-specs=’ option to specify the appropriate directory location. The Parallel En-
vironment does not support threads, so the ‘-mpe’ option and the ‘-mthreads’
option are incompatible.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode. The exceptions are
PPC740 and PPC750 which permit the instructions usage in little endian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block

Chapter 3: GCC Command Options 97

moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750 which permit
the instructions usage in little endian mode.

-mupdate
-mno-update

Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small
window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating is used.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.

For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 would be aligned to a 4 byte boundary and have a size of 4
bytes. By using ‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. If you use
‘-mrelocatable’ on any module, all objects linked together must be compiled
with ‘-mrelocatable’ or ‘-mrelocatable-lib’.

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-lib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-lib’ or with modules compiled with the
‘-mrelocatable’ options.

98 Using and Porting the GNU Compiler Collection (GCC)

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-

ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-aix
On System V.4 and embedded PowerPC systems compile code using calling
conventions that are similar to those used on AIX. This is the default if you
configured GCC using ‘powerpc-*-eabiaix’.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether floating point values
were passed in the floating point registers in case the function takes a variable
arguments. With ‘-mprototype’, only calls to prototyped variable argument
functions will set or clear the bit.

Chapter 3: GCC Command Options 99

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.o’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-memb On embedded PowerPC systems, set the PPC EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8 byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the ‘-msdata’ option can use both r2 and r13
to point to two separate small data areas. Selecting ‘-mno-eabi’ means that
the stack is aligned to a 16 byte boundary, do not call an initialization function
from main, and the ‘-msdata’ option will only use r13 to point to a single small
data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

100 Using and Porting the GNU Compiler Collection (GCC)

-msdata=default
-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-

pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section. Put small uninitialized global and static data in
the ‘.sbss’ section. Do not use register r13 to address small data however.
This is the default behavior unless other ‘-msdata’ options are used.

-msdata=none
-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The ‘-G num’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num’ value.

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

3.17.13 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the minimum amount of
scratch space recommended by IBM. This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data blocks. This results
in smaller code, but slower execution, since scratch space must be allocated
dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling convention in which
floating point arguments are passed in floating point registers. Note that
varargs.h and stdarg.h will not work with floating point operands if this
option is specified.

-mfp-arg-in-gregs
Use the normal calling convention for floating point arguments. This is the
default.

Chapter 3: GCC Command Options 101

-mhc-struct-return
Return structures of more than one word in memory, rather than in a register.
This provides compatibility with the MetaWare HighC (hc) compiler. Use the
option ‘-fpcc-struct-return’ for compatibility with the Portable C Compiler
(pcc).

-mnohc-struct-return
Return some structures of more than one word in registers, when convenient.
This is the default. For compatibility with the IBM-supplied compilers, use the
option ‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

3.17.14 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-march=cpu-type
Assume the defaults for the machine type cpu-type when generating instruc-
tions. The choices for cpu-type are ‘r2000’, ‘r3000’, ‘r3900’, ‘r4000’, ‘r4100’,
‘r4300’, ‘r4400’, ‘r4600’, ‘r4650’, ‘r5000’, ‘r6000’, ‘r8000’, and ‘orion’. Addi-
tionally, the ‘r2000’, ‘r3000’, ‘r4000’, ‘r5000’, and ‘r6000’ can be abbreviated
as ‘r2k’ (or ‘r2K’), ‘r3k’, etc.

-mtune=cpu-type
Assume the defaults for the machine type cpu-type when scheduling instruc-
tions. The choices for cpu-type are ‘r2000’, ‘r3000’, ‘r3900’, ‘r4000’, ‘r4100’,
‘r4300’, ‘r4400’, ‘r4600’, ‘r4650’, ‘r5000’, ‘r6000’, ‘r8000’, and ‘orion’. Addi-
tionally, the ‘r2000’, ‘r3000’, ‘r4000’, ‘r5000’, and ‘r6000’ can be abbreviated
as ‘r2k’ (or ‘r2K’), ‘r3k’, etc. While picking a specific cpu-type will schedule
things appropriately for that particular chip, the compiler will not generate any
code that does not meet level 1 of the MIPS ISA (instruction set architecture)
without a ‘-mipsX’ or ‘-mabi’ switch being used.

-mcpu=cpu-type
This is identical to specifying both ‘-march’ and ‘-mtune’.

-mips1 Issue instructions from level 1 of the MIPS ISA. This is the default. ‘r3000’ is
the default cpu-type at this ISA level.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root
instructions). ‘r6000’ is the default cpu-type at this ISA level.

-mips3 Issue instructions from level 3 of the MIPS ISA (64-bit instructions). ‘r4000’
is the default cpu-type at this ISA level.

-mips4 Issue instructions from level 4 of the MIPS ISA (conditional move, prefetch,
enhanced FPU instructions). ‘r8000’ is the default cpu-type at this ISA level.

-mfp32 Assume that 32 32-bit floating point registers are available. This is the default.

-mfp64 Assume that 32 64-bit floating point registers are available. This is the default
when the ‘-mips3’ option is used.

-mgp32 Assume that 32 32-bit general purpose registers are available. This is the de-
fault.

102 Using and Porting the GNU Compiler Collection (GCC)

-mgp64 Assume that 32 64-bit general purpose registers are available. This is the default
when the ‘-mips3’ option is used.

-mint64 Force int and long types to be 64 bits wide. See ‘-mlong32’ for an explanation
of the default, and the width of pointers.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default, and the width of pointers.

-mlong32 Force long, int, and pointer types to be 32 bits wide.
If none of ‘-mlong32’, ‘-mlong64’, or ‘-mint64’ are set, the size of ints, longs,
and pointers depends on the ABI and ISA chosen. For ‘-mabi=32’, and
‘-mabi=n32’, ints and longs are 32 bits wide. For ‘-mabi=64’, ints are 32 bits,
and longs are 64 bits wide. For ‘-mabi=eabi’ and either ‘-mips1’ or ‘-mips2’,
ints and longs are 32 bits wide. For ‘-mabi=eabi’ and higher ISAs, ints are
32 bits, and longs are 64 bits wide. The width of pointer types is the smaller
of the width of longs or the width of general purpose registers (which in turn
depends on the ISA).

-mabi=32
-mabi=o64
-mabi=n32
-mabi=64
-mabi=eabi

Generate code for the indicated ABI. The default instruction level is ‘-mips1’
for ‘32’, ‘-mips3’ for ‘n32’, and ‘-mips4’ otherwise. Conversely, with ‘-mips1’
or ‘-mips2’, the default ABI is ‘32’; otherwise, the default ABI is ‘64’.

-mmips-as
Generate code for the MIPS assembler, and invoke ‘mips-tfile’ to add nor-
mal debug information. This is the default for all platforms except for the
OSF/1 reference platform, using the OSF/rose object format. If the either of
the ‘-gstabs’ or ‘-gstabs+’ switches are used, the ‘mips-tfile’ program will
encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF/1 ref-
erence platform, using the OSF/rose object format. Also, this is the default if
the configure option ‘--with-gnu-as’ is used.

-msplit-addresses
-mno-split-addresses

Generate code to load the high and low parts of address constants separately.
This allows GCC to optimize away redundant loads of the high order bits of
addresses. This optimization requires GNU as and GNU ld. This optimization
is enabled by default for some embedded targets where GNU as and GNU ld
are standard.

-mrnames
-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS software names for
the registers, instead of the hardware names (ie, a0 instead of $4). The only
known assembler that supports this option is the Algorithmics assembler.

Chapter 3: GCC Command Options 103

-mgpopt
-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations before the in-
structions in the text section, this allows the MIPS assembler to generate one
word memory references instead of using two words for short global or static
data items. This is on by default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the ‘-mstats’ switch causes the compiler
to emit one line to the standard error file to print statistics about the program
(number of registers saved, stack size, etc.).

-mmemcpy
-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appropriate string func-
tion (‘memcpy’ or ‘bcopy’) instead of possibly generating inline code.

-mmips-tfile
-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not postprocess the object
file with the ‘mips-tfile’ program, after the MIPS assembler has generated it
to add debug support. If ‘mips-tfile’ is not run, then no local variables will be
available to the debugger. In addition, ‘stage2’ and ‘stage3’ objects will have
the temporary file names passed to the assembler embedded in the object file,
which means the objects will not compare the same. The ‘-mno-mips-tfile’
switch should only be used when there are bugs in the ‘mips-tfile’ program
that prevents compilation.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

-mhard-float
Generate output containing floating point instructions. This is the default if
you use the unmodified sources.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’, ‘.cpload’, and
‘.cprestore’ that some System V.4 ports use for position independent code.

-mlong-calls
-mno-long-calls

Do all calls with the ‘JALR’ instruction, which requires loading up a function’s
address into a register before the call. You need to use this switch, if you call
outside of the current 512 megabyte segment to functions that are not through
pointers.

104 Using and Porting the GNU Compiler Collection (GCC)

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and load them up, rather
than put the references in the text section.

-membedded-pic
-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All calls are made
using PC relative address, and all data is addressed using the $gp register. No
more than 65536 bytes of global data may be used. This requires GNU as and
GNU ld which do most of the work. This currently only works on targets which
use ECOFF; it does not work with ELF.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

When used together with ‘-membedded-data’, it will always store uninitialized
const variables in the read-only data section.

-msingle-float
-mdouble-float

The ‘-msingle-float’ switch tells gcc to assume that the floating point copro-
cessor only supports single precision operations, as on the ‘r4650’ chip. The
‘-mdouble-float’ switch permits gcc to use double precision operations. This
is the default.

-mmad
-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on the ‘r4650’ chip.

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now, ‘-mcpu=r4650’.

-mips16
-mno-mips16

Enable 16-bit instructions.

-mentry Use the entry and exit pseudo ops. This option can only be used with ‘-mips16’.

-EL Compile code for the processor in little endian mode. The requisite libraries
are assumed to exist.

-EB Compile code for the processor in big endian mode. The requisite libraries are
assumed to exist.

-G num Put global and static items less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss section. This allows the
assembler to emit one word memory reference instructions based on the global
pointer (gp or $28), instead of the normal two words used. By default, num is

Chapter 3: GCC Command Options 105

8 when the MIPS assembler is used, and 0 when the GNU assembler is used.
The ‘-G num’ switch is also passed to the assembler and linker. All modules
should be compiled with the same ‘-G num’ value.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.

-mfix7000
Pass an option to gas which will cause nops to be inserted if the read of the
destination register of an mfhi or mflo instruction occurs in the following two
instructions.

-no-crt0 Do not include the default crt0.

These options are defined by the macro TARGET_SWITCHES in the machine description.
The default for the options is also defined by that macro, which enables you to change the
defaults.

3.17.15 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-mcpu=cpu-type
Assume the defaults for the machine type cpu-type when scheduling instruc-
tions. The choices for cpu-type are ‘i386’, ‘i486’, ‘i586’, ‘i686’, ‘pentium’,
‘pentiumpro’, ‘pentium4’, ‘k6’, and ‘athlon’
While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the i386 without the ‘-march=cpu-type’ option being used. ‘i586’ is equivalent
to ‘pentium’ and ‘i686’ is equivalent to ‘pentiumpro’. ‘k6’ and ‘athlon’ are
the AMD chips as opposed to the Intel ones.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mcpu’. Moreover, specifying ‘-march=cpu-type’ implies
‘-mcpu=cpu-type’.

-m386
-m486
-mpentium
-mpentiumpro

Synonyms for ‘-mcpu=i386’, ‘-mcpu=i486’, ‘-mcpu=pentium’, and
‘-mcpu=pentiumpro’ respectively. These synonyms are deprecated.

-mintel-syntax
Emit assembly using Intel syntax opcodes instead of AT&T syntax.

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

106 Using and Porting the GNU Compiler Collection (GCC)

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD. As of revision 2.6.1, these instructions are not
generated unless you also use the ‘-funsafe-math-optimizations’ switch.

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two word boundary or a one word boundary. Aligning double variables on a
two word boundary will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.

-m128bit-long-double
-m128bit-long-double

Control the size of long double type. i386 application binary interface specify
the size to be 12 bytes, while modern architectures (Pentium and newer) prefer
long double aligned to 8 or 16 byte boundary. This is impossible to reach with
12 byte long doubles in the array accesses.

Warning: if you use the ‘-m128bit-long-double’ switch, the structures and
arrays containing long double will change their size as well as function calling
convention for function taking long double will be modified.

-m96bit-long-double
-m96bit-long-double

Set the size of long double to 96 bits as required by the i386 application binary
interface. This is the default.

Chapter 3: GCC Command Options 107

-msvr3-shlib
-mno-svr3-shlib

Control whether GCC places uninitialized locals into bss or data.
‘-msvr3-shlib’ places these locals into bss. These options are meaningful
only on System V Release 3.

-mno-wide-multiply
-mwide-multiply

Control whether GCC uses the mul and imul that produce 64-bit results in
eax:edx from 32-bit operands to do long long multiplies and 32-bit division
by constants.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option
by using the function attribute ‘cdecl’. See Section 5.26 [Function Attributes],
page 166.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.26 [Function Attributes], page 166.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).

The stack is required to be aligned on a 4 byte boundary. On Pentium and
PentiumPro, double and long double values should be aligned to an 8 byte
boundary (see ‘-malign-double’) or suffer significant run time performance
penalties. On Pentium III, the Streaming SIMD Extension (SSE) data type
__m128 suffers similar penalties if it is not 16 byte aligned.

108 Using and Porting the GNU Compiler Collection (GCC)

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.
This extra alignment does consume extra stack space. Code that is sensitive to
stack space usage, such as embedded systems and operating system kernels, may
want to reduce the preferred alignment to ‘-mpreferred-stack-boundary=2’.

-mpush-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will
be computed in the function prologue. This in faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on
thread-safe exception handling must compile and link all code with the
‘-mthreads’ option. When compiling, ‘-mthreads’ defines ‘-D_MT’; when
linking, it links in a special thread helper library ‘-lmingwthrd’ which cleans
up per thread exception handling data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but
gcc don’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

3.17.16 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

Chapter 3: GCC Command Options 109

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0’ for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.
PA 2.0 support currently requires gas snapshot 19990413 or later. The next
release of binutils (current is 2.9.1) will probably contain PA 2.0 support.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0

Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of floating
point registers. If you use this option and attempt to perform floating point
operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code which performs faster indirect calls.
This option will not work in the presence of shared libraries or nested functions.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

110 Using and Porting the GNU Compiler Collection (GCC)

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type.
The choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘7200’, and ‘8000’. Re-
fer to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine.

-mlinker-opt
Enable the optimization pass in the HPUX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HPUX 8 and HPUX 9 linkers
in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target ‘hppa1.1-*-pro’
does provide software floating point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

3.17.17 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu-type
Assume the defaults for the machine type cpu-type for some of the other options,
including instruction scheduling, floating point support, and addressing modes.
The choices for cpu-type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The
default is ‘kb’.

-mnumerics
-msoft-float

The ‘-mnumerics’ option indicates that the processor does support floating-
point instructions. The ‘-msoft-float’ option indicates that floating-point
support should not be assumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal
instruction as well as call. This will result in more efficient code for explicit
calls when the bal instruction can be substituted by the assembler or linker,
but less efficient code in other cases, such as calls via function pointers, or using
a linker that doesn’t support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the machine-
independent portions of the compiler) to optimize tail-recursive calls into

Chapter 3: GCC Command Options 111

branches. You may not want to do this because the detection of cases where
this is not valid is not totally complete. The default is ‘-mno-tail-call’.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win
on this implementation of the i960. Complex addressing modes may not be
worthwhile on the K-series, but they definitely are on the C-series. The default
is currently ‘-mcomplex-addr’ for all processors except the CB and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently
turned on by default for C-series implementations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc release version 1.3
(based on gcc 1.37). This option implies ‘-mstrict-align’.

-mlong-double-64
Implement type ‘long double’ as 64-bit floating point numbers. Without the
option ‘long double’ is implemented by 80-bit floating point numbers. The
only reason we have it because there is no 128-bit ‘long double’ support in
‘fp-bit.c’ yet. So it is only useful for people using soft-float targets. Otherwise,
we should recommend against use of it.

3.17.18 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

112 Using and Porting the GNU Compiler Collection (GCC)

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $f0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.
A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

-mieee The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the CPP macro _IEEE_
FP is defined during compilation. The option is a shorthand for: ‘-D_IEEE_FP
-mfp-trap-mode=su -mtrap-precision=i -mieee-conformant’. The result-
ing code is less efficient but is able to correctly support denormalized numbers
and exceptional IEEE values such as not-a-number and plus/minus infinity.
Other Alpha compilers call this option ‘-ieee_with_no_inexact’.

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE
inexact-flag. Turning on this option causes the generated code to implement
fully-compliant IEEE math. The option is a shorthand for ‘-D_IEEE_FP
-D_IEEE_FP_INEXACT’ plus the three following: ‘-mieee-conformant’,
‘-mfp-trap-mode=sui’, and ‘-mtrap-precision=i’. On some Alpha
implementations the resulting code may execute significantly slower than the
code generated by default. Since there is very little code that depends on
the inexact-flag, you should normally not specify this option. Other Alpha
compilers call this option ‘-ieee_with_inexact’.

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘-fptm trap-mode’. The trap mode can be set to one
of four values:

‘n’ This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.

‘su’ Like ‘su’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

Chapter 3: GCC Command Options 113

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode’. The rounding-mode can be one of:

‘n’ Normal IEEE rounding mode. Floating point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating point numbers are rounded to-
wards zero.

‘d’ Dynamic rounding mode. A field in the floating point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

‘p’ Program precision. This option is the default and means a trap
handler can only identify which program caused a floating point
exception.

‘f’ Function precision. The trap handler can determine the function
that caused a floating point exception.

‘i’ Instruction precision. The trap handler can determine the exact
instruction that caused a floating point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file. Under
DEC Unix, this has the effect that IEEE-conformant math library routines
will be linked in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output

114 Using and Porting the GNU Compiler Collection (GCC)

the constant as a literal and generate code to load it from the data segment at
runtime.
Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).
You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can find the
variables and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assem-

bler (‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx
-mno-bwx
-mcix
-mno-cix
-mmax
-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX,

and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=’ option or that of the CPU on which
GCC was built if none was specified.

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. You can specify either the ‘EV’ style name or the corre-
sponding chip number. GCC supports scheduling parameters for the EV4 and
EV5 family of processors and will choose the default values for the instruction
set from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.
Supported values for cpu type are

‘ev4’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘ev5’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘ev56’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pca56’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

‘ev6’
‘21264’ Schedules as an EV5 (until Digital releases the scheduling param-

eters for the EV6) and supports the BWX, CIX, and MAX exten-
sions.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory

Chapter 3: GCC Command Options 115

access patterns used by the application and the size of the external cache on
the machine.
Valid options for time are

‘number’ A decimal number representing clock cycles.

‘L1’
‘L2’
‘L3’
‘main’ The compiler contains estimates of the number of clock cycles for

“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also
called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.19 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the default.

-mc400 Produce code for a C400 Clipper processor i.e. use floating point registers f8—
f15.

3.17.20 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See section “ld and the H8/300” in Using ld, for a fuller
description.

-mh Generate code for the H8/300H.

-ms Generate code for the H8/S.

-ms2600 Generate code for the H8/S2600. This switch must be used with ‘-ms’.

-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8/S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8/S is to align longs and floats on 4 byte
boundaries. ‘-malign-300’ causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.

3.17.21 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SH1.

-m2 Generate code for the SH2.

-m3 Generate code for the SH3.

116 Using and Porting the GNU Compiler Collection (GCC)

-m3e Generate code for the SH3e.

-m4-nofpu
Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-mb Compile code for the processor in big endian mode.

-ml Compile code for the processor in little endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library will not work unless
you recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mfmovd Enable the use of the instruction fmovd.

-mhitachi
Comply with the calling conventions defined by Hitachi.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee Increase IEEE-compliance of floating-point code.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is
incompatible with the SH ABI.

-mspace Optimize for space instead of speed. Implied by ‘-Os’.

-mprefergot
When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.

-musermode
Generate a library function call to invalidate instruction cache entries, after
fixing up a trampoline. This library function call doesn’t assume it can write
to the whole memory address space. This is the default when the target is
sh-*-linux*.

Chapter 3: GCC Command Options 117

3.17.22 Options for System V

These additional options are available on System V Release 4 for compatibility with
other compilers on those systems:

-G Create a shared object. It is recommended that ‘-symbolic’ or ‘-shared’ be
used instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.23 TMS320C3x/C4x Options

These ‘-m’ options are defined for TMS320C3x/C4x implementations:

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘c30’, ‘c31’, ‘c32’,
‘c40’, and ‘c44’. The default is ‘c40’ to generate code for the TMS320C40.

-mbig-memory

-mbig
-msmall-memory
-msmall Generates code for the big or small memory model. The small memory model

assumed that all data fits into one 64K word page. At run-time the data page
(DP) register must be set to point to the 64K page containing the .bss and .data
program sections. The big memory model is the default and requires reloading
of the DP register for every direct memory access.

-mbk
-mno-bk Allow (disallow) allocation of general integer operands into the block count

register BK.

-mdb
-mno-db Enable (disable) generation of code using decrement and branch, DBcond(D),

instructions. This is enabled by default for the C4x. To be on the safe side,
this is disabled for the C3x, since the maximum iteration count on the C3x is
2ˆ23+1 (but who iterates loops more than 2ˆ23 times on the C3x?). Note that
GCC will try to reverse a loop so that it can utilise the decrement and branch
instruction, but will give up if there is more than one memory reference in the
loop. Thus a loop where the loop counter is decremented can generate slightly
more efficient code, in cases where the RPTB instruction cannot be utilised.

-mdp-isr-reload
-mparanoid

Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This

118 Using and Porting the GNU Compiler Collection (GCC)

should not be required unless someone has violated the small memory model
by modifying the DP register, say within an object library.

-mmpyi
-mno-mpyi

For the C3x use the 24-bit MPYI instruction for integer multiplies instead of
a library call to guarantee 32-bit results. Note that if one of the operands is
a constant, then the multiplication will be performed using shifts and adds. If
the ‘-mmpyi’ option is not specified for the C3x, then squaring operations are
performed inline instead of a library call.

-mfast-fix
-mno-fast-fix

The C3x/C4x FIX instruction to convert a floating point value to an integer
value chooses the nearest integer less than or equal to the floating point value
rather than to the nearest integer. Thus if the floating point number is negative,
the result will be incorrectly truncated an additional code is necessary to detect
and correct this case. This option can be used to disable generation of the
additional code required to correct the result.

-mrptb
-mno-rptb

Enable (disable) generation of repeat block sequences using the RPTB instruc-
tion for zero overhead looping. The RPTB construct is only used for innermost
loops that do not call functions or jump across the loop boundaries. There is no
advantage having nested RPTB loops due to the overhead required to save and
restore the RC, RS, and RE registers. This is enabled by default with ‘-O2’.

-mrpts=count
-mno-rpts

Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed
to be less than the value count, GCC will emit a RPTS instruction instead of
a RPTB. If no value is specified, then a RPTS will be emitted even if the loop
count cannot be determined at compile time. Note that the repeated instruction
following RPTS does not have to be reloaded from memory each iteration, thus
freeing up the CPU buses for operands. However, since interrupts are blocked
by this instruction, it is disabled by default.

-mloop-unsigned
-mno-loop-unsigned

The maximum iteration count when using RPTS and RPTB (and DB on the
C40) is 2ˆ31+1 since these instructions test if the iteration count is negative to
terminate the loop. If the iteration count is unsigned there is a possibility than
the 2ˆ31+1 maximum iteration count may be exceeded. This switch allows an
unsigned iteration count.

-mti Try to emit an assembler syntax that the TI assembler (asm30) is happy with.
This also enforces compatibility with the API employed by the TI C3x C com-
piler. For example, long doubles are passed as structures rather than in floating
point registers.

Chapter 3: GCC Command Options 119

-mregparm
-mmemparm

Generate code that uses registers (stack) for passing arguments to functions.
By default, arguments are passed in registers where possible rather than by
pushing arguments on to the stack.

-mparallel-insns
-mno-parallel-insns

Allow the generation of parallel instructions. This is enabled by default with
‘-O2’.

-mparallel-mpy
-mno-parallel-mpy

Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
provided ‘-mparallel-insns’ is also specified. These instructions have tight
register constraints which can pessimize the code generation of large functions.

3.17.24 V850 Options

These ‘-m’ options are defined for V850 implementations:

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away,
the compiler will always load the functions address up into a register, and call
indirect through the pointer.

-mno-ep
-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4

or more times to copy pointer into the ep register, and use the shorter sld and
sst instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function
-mprolog-function

Do not use (do use) external functions to save and restore registers at the
prolog and epilog of a function. The external functions are slower, but use less
code space if more than one function saves the same number of registers. The
‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
‘-mep’ and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

120 Using and Porting the GNU Compiler Collection (GCC)

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

3.17.25 ARC Options

These options are defined for ARC implementations:

-EL Compile code for little endian mode. This is the default.

-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the cpu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register
set characteristics. This flag prevents code compiled for one cpu to be linked
with code compiled for another. No facility exists for handling variants that
are “almost identical”. This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on
the configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section
-mdata=data-section
-mrodata=readonly-data-section

Put functions, data, and readonly data in text-section, data-section, and
readonly-data-section respectively by default. This can be overridden with the
section attribute. See Section 5.33 [Variable Attributes], page 177.

3.17.26 NS32K Options

These are the ‘-m’ options defined for the 32000 series. The default values for these
options depends on which style of 32000 was selected when the compiler was configured;
the defaults for the most common choices are given below.

-m32032
-m32032 Generate output for a 32032. This is the default when the compiler is configured

for 32032 and 32016 based systems.

-m32332
-m32332 Generate output for a 32332. This is the default when the compiler is configured

for 32332-based systems.

-m32532
-m32532 Generate output for a 32532. This is the default when the compiler is configured

for 32532-based systems.

-m32081 Generate output containing 32081 instructions for floating point. This is the
default for all systems.

-m32381 Generate output containing 32381 instructions for floating point. This also
implies ‘-m32081’. The 32381 is only compatible with the 32332 and 32532
cpus. This is the default for the pc532-netbsd configuration.

Chapter 3: GCC Command Options 121

-mmulti-add
Try and generate multiply-add floating point instructions polyF and dotF. This
option is only available if the ‘-m32381’ option is in effect. Using these instruc-
tions requires changes to to register allocation which generally has a negative
impact on performance. This option should only be enabled when compiling
code particularly likely to make heavy use of multiply-add instructions.

-mnomulti-add
Do not try and generate multiply-add floating point instructions polyF and
dotF. This is the default on all platforms.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries may not be available.

-mnobitfield
Do not use the bit-field instructions. On some machines it is faster to use
shifting and masking operations. This is the default for the pc532.

-mbitfield
Do use the bit-field instructions. This is the default for all platforms except the
pc532.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return pop their arguments on return with the ret in-
struction.
This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)
This option takes its name from the 680x0 rtd instruction.

-mregparam
Use a different function-calling convention where the first two arguments are
passed in registers.
This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

-mnoregparam
Do not pass any arguments in registers. This is the default for all targets.

-msb It is OK to use the sb as an index register which is always loaded with zero.
This is the default for the pc532-netbsd target.

-mnosb The sb register is not available for use or has not been initialized to zero by the
run time system. This is the default for all targets except the pc532-netbsd. It
is also implied whenever ‘-mhimem’ or ‘-fpic’ is set.

122 Using and Porting the GNU Compiler Collection (GCC)

-mhimem Many ns32000 series addressing modes use displacements of up to 512MB. If
an address is above 512MB then displacements from zero can not be used. This
option causes code to be generated which can be loaded above 512MB. This
may be useful for operating systems or ROM code.

-mnohimem
Assume code will be loaded in the first 512MB of virtual address space. This
is the default for all platforms.

3.17.27 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avr1 is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny10, attiny11,
attiny12, attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K pro-
gram memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333,
at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: atmega103, atmega603).

Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega83, atmega85).

Instruction set avr5 is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmega161, atmega163, atmega32, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value,
‘__stack’ is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines.
Code size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

Chapter 3: GCC Command Options 123

3.17.28 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit
-mhardlit
-mno-hardlit

Inline constants into the code stream if it can be done in two instructions or
less.

-mdiv
-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mrelax-immediate
-mno-relax-immediate

Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mwide-bitfields
-mno-wide-bitfields

Always treat bit-fields as int-sized.

-m4byte-functions
-m4byte-functions
-mno-4byte-functions

Force all functions to be aligned to a four byte boundary.

-mcallgraph-data
-mcallgraph-data
-mno-callgraph-data

Emit callgraph information.

-mslow-bytes
-mslow-bytes
-mno-slow-bytes

Prefer word access when reading byte quantities.

-mlittle-endian
-mlittle-endian
-mbig-endian

Generate code for a little endian target.

-m210
-m210
-m340 Generate code for the 210 processor.

3.17.29 IA-64 Options

These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HPUX.

124 Using and Porting the GNU Compiler Collection (GCC)

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and Linux.

-mgnu-as
-mno-gnu-as

Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-ld
-mno-gnu-ld

Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop
-mno-volatile-asm-stop

Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mb-step Generate code that works around Itanium B step errata.

-mregister-names
-mno-register-names

Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be

useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is
useful when compiling firmware code.

-minline-divide-min-latency
Generate code for inline divides using the minimum latency algorithm.

-minline-divide-max-throughput
Generate code for inline divides using the maximum throughput algorithm.

-mno-dwarf2-asm
-mdwarf2-asm

Don’t (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

Chapter 3: GCC Command Options 125

3.17.30 D30V Options

These ‘-m’ options are defined for D30V implementations:

-mextmem Link the ‘.text’, ‘.data’, ‘.bss’, ‘.strings’, ‘.rodata’, ‘.rodata1’, ‘.data1’
sections into external memory, which starts at location 0x80000000.

-mextmemory
Same as the ‘-mextmem’ switch.

-monchip Link the ‘.text’ section into onchip text memory, which starts at location 0x0.
Also link ‘.data’, ‘.bss’, ‘.strings’, ‘.rodata’, ‘.rodata1’, ‘.data1’ sections
into onchip data memory, which starts at location 0x20000000.

-mno-asm-optimize
-masm-optimize

Disable (enable) passing ‘-O’ to the assembler when optimizing. The assembler
uses the ‘-O’ option to automatically parallelize adjacent short instructions
where possible.

-mbranch-cost=n
Increase the internal costs of branches to n. Higher costs means that the com-
piler will issue more instructions to avoid doing a branch. The default is 2.

-mcond-exec=n
Specify the maximum number of conditionally executed instructions that re-
place a branch. The default is 4.

3.17.31 S/390 and zSeries Options

These are the ‘-m’ options defined for the S/390 and zSeries architecture.

-mhard-float
-msoft-float

Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When ‘-msoft-float’ is specified, functions
in ‘libgcc.a’ will be used to perform floating-point operations. When
‘-mhard-float’ is specified, the compiler generates IEEE floating-point
instructions. This is the default.

-mbackchain
-mno-backchain

Generate (or do not generate) code which maintains an explicit backchain within
the stack frame that points to the caller’s frame. This is currently needed to
allow debugging. The default is to generate the backchain.

-msmall-exec
-mno-small-exec

Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k.
The default is to use the basr instruction instead, which does not have this
limitation.

126 Using and Porting the GNU Compiler Collection (GCC)

-m64
-m31 When ‘-m31’ is specified, generate code compliant to the Linux for S/390 ABI.

When ‘-m64’ is specified, generate code compliant to the Linux for zSeries ABI.
This allows GCC in particular to generate 64-bit instructions. For the ‘s390’
targets, the default is ‘-m31’, while the ‘s390x’ targets default to ‘-m64’.

-mmvcle
-mno-mvcle

Generate (or do not generate) code using the mvcle instruction to perform
block moves. When ‘-mno-mvcle’ is specifed, use a mvc loop instead. This is
the default.

-mdebug
-mno-debug

Print (or do not print) additional debug information when compiling. The
default is to not print debug information.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code gen-
eration.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fexceptions
Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies GCC will generate frame unwind informa-
tion for all functions, which can produce significant data size overhead, although
it does not affect execution. If you do not specify this option, GCC will enable
it by default for languages like C++ which normally require exception handling,
and disable it for languages like C that do not normally require it. However,
you may need to enable this option when compiling C code that needs to inter-
operate properly with exception handlers written in C++. You may also wish
to disable this option if you are compiling older C++ programs that don’t use
exception handling.

-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that
this requires platform-specific runtime support that does not exist everywhere.
Moreover, it only allows trapping instructions to throw exceptions, i.e. memory
references or floating point instructions. It does not allow exceptions to be
thrown from arbitrary signal handlers such as SIGALRM.

-funwind-tables
Similar to ‘-fexceptions’, except that it will just generate any needed static
data, but will not affect the generated code in any other way. You will normally
not enable this option; instead, a language processor that needs this handling
would enable it on your behalf.

Chapter 3: GCC Command Options 127

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GCC-compiled files and files compiled with
other compilers.
The precise convention for returning structures in memory depends on the tar-
get configuration macros.
Short structures and unions are those whose size and alignment match that of
some integer type.

-freg-struct-return
Use the convention that struct and union values are returned in
registers when possible. This is more efficient for small structures than
‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor its contrary
‘-freg-struct-return’, GCC defaults to whichever convention is standard
for the target. If there is no standard convention, GCC defaults to
‘-fpcc-struct-return’, except on targets where GCC is the principal
compiler. In those cases, we can choose the standard, and we chose the more
efficient register return alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the smallest
integer type which has enough room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this compilation be shared
data rather than private data. The distinction makes sense only on certain
operating systems, where shared data is shared between processes running the
same program, while private data exists in one copy per process.

-fno-common
In C, allocate even uninitialized global variables in the data section of the object
file, rather than generating them as common blocks. This has the effect that
if the same variable is declared (without extern) in two different compilations,
you will get an error when you link them. The only reason this might be useful
is if you wish to verify that the program will work on other systems which
always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

-fno-gnu-linker
Do not output global initializations (such as C++ constructors and destructors)
in the form used by the GNU linker (on systems where the GNU linker is the
standard method of handling them). Use this option when you want to use a

128 Using and Porting the GNU Compiler Collection (GCC)

non-GNU linker, which also requires using the collect2 program to make sure
the system linker includes constructors and destructors. (collect2 is included
in the GCC distribution.) For systems which must use collect2, the compiler
driver gcc is configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).
‘-fno-verbose-asm’, the default, causes the extra information to be omitted
and is useful when comparing two assembler files.

-fvolatile
Consider all memory references through pointers to be volatile.

-fvolatile-global
Consider all memory references to extern and global data items to be volatile.
GCC does not consider static data items to be volatile because of this switch.

-fvolatile-static
Consider all memory references to static data to be volatile.

-fpic Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘-fpic’ does not work; in that case, recompile with ‘-fPIC’
instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k on
the m68k and RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, m88k, and the Sparc.
Position-independent code requires special support, and therefore works only
on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

Chapter 3: GCC Command Options 129

reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.
It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.
It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.
A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.
This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct
Pack all structure members together without holes. Usually you would not
want to use this option, since it makes the code suboptimal, and the offsets of
structure members won’t agree with system libraries.

-fcheck-memory-usage
Generate extra code to check each memory access. GCC will generate code
that is suitable for a detector of bad memory accesses such as ‘Checker’.
Normally, you should compile all, or none, of your code with this option.
If you do mix code compiled with and without this option, you must ensure
that all code that has side effects and that is called by code compiled with
this option is, itself, compiled with this option. If you do not, you might get
erroneous messages from the detector.
If you use functions from a library that have side-effects (such as read), you
might not be able to recompile the library and specify this option. In that case,
you can enable the ‘-fprefix-function-name’ option, which requests GCC
to encapsulate your code and make other functions look as if they were com-
piled with ‘-fcheck-memory-usage’. This is done by calling “stubs”, which
are provided by the detector. If you cannot find or build stubs for every
function you call, you might have to specify ‘-fcheck-memory-usage’ without
‘-fprefix-function-name’.

130 Using and Porting the GNU Compiler Collection (GCC)

If you specify this option, you can not use the asm or __asm__ keywords in
functions with memory checking enabled. GCC cannot understand what the
asm statement may do, and therefore cannot generate the appropriate code,
so it will reject it. However, if you specify the function attribute no_check_
memory_usage (see Section 5.26 [Function Attributes], page 166), GCC will
disable memory checking within a function; you may use asm statements inside
such functions. You may have an inline expansion of a non-checked function
within a checked function; in that case GCC will not generate checks for the
inlined function’s memory accesses.
If you move your asm statements to non-checked inline functions and they do
access memory, you can add calls to the support code in your inline function,
to indicate any reads, writes, or copies being done. These calls would be similar
to those done in the stubs described above.

-fprefix-function-name
Request GCC to add a prefix to the symbols generated for function names.
GCC adds a prefix to the names of functions defined as well as functions called.
Code compiled with this option and code compiled without the option can’t be
linked together, unless stubs are used.
If you compile the following code with ‘-fprefix-function-name’

extern void bar (int);
void
foo (int a)
{

return bar (a + 5);
}

GCC will compile the code as if it was written:
extern void prefix_bar (int);
void
prefix_foo (int a)
{

return prefix_bar (a + 5);
}

This option is designed to be used with ‘-fcheck-memory-usage’.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions will
be called with the address of the current function and its call site. (On some
platforms, __builtin_return_address does not work beyond the current func-
tion, so the call site information may not be available to the profiling functions
otherwise.)

void __cyg_profile_func_enter (void *this_fn,
void *call_site);

void __cyg_profile_func_exit (void *this_fn,
void *call_site);

The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

Chapter 3: GCC Command Options 131

This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls will indicate where, conceptually, the inline function
is entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use ‘extern inline’ in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)
A function may be given the attribute no_instrument_function, in which
case this instrumentation will not be done. This can be used, for example, for
the profiling functions listed above, high-priority interrupt routines, and any
functions from which the profiling functions cannot safely be called (perhaps
signal handlers, if the profiling routines generate output or allocate memory).

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.
Note that this switch does not actually cause checking to be done; the operating
system must do that. The switch causes generation of code to ensure that the
operating system sees the stack being extended.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If the stack would grow
beyond the value, a signal is raised. For most targets, the signal is raised before
the stack overruns the boundary, so it is possible to catch the signal without
taking special precautions.
For instance, if the stack starts at address ‘0x80000000’ and grows
downwards you can use the flags ‘-fstack-limit-symbol=__stack_limit
-Wl,--defsym,__stack_limit=0x7ffe0000’ which will enforce a stack limit
of 128K.

-fargument-alias
-fargument-noalias
-fargument-noalias-global

Specify the possible relationships among parameters and between parameters
and global data.
‘-fargument-alias’ specifies that arguments (parameters) may alias
each other and may alias global storage. ‘-fargument-noalias’ specifies
that arguments do not alias each other, but may alias global storage.
‘-fargument-noalias-global’ specifies that arguments do not alias each
other and do not alias global storage.

132 Using and Porting the GNU Compiler Collection (GCC)

Each language will automatically use whatever option is required by the lan-
guage standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, ‘-fno-leading-underscore’, forcibly change
the way C symbols are represented in the object file. One use is to help link
with legacy assembly code.

Be warned that you should know what you are doing when invoking this option,
and that not all targets provide complete support for it.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some
of them work by specifying directories or prefixes to use when searching for various kinds
of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and ‘-L’
(see Section 3.14 [Directory Options], page 66). These take precedence over places specified
using environment variables, which in turn take precedence over those specified by the
configuration of GCC. See Section 21.2 [Driver], page 417.

LANG
LC_CTYPE
LC_MESSAGES
LC_ALL These environment variables control the way that GCC uses localization in-

formation that allow GCC to work with different national conventions. GCC
inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been config-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is ‘en_UK’ for English in the United Kingdom.

The LC_CTYPE environment variable specifies character classification. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that would oth-
erwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is

Chapter 3: GCC Command Options 133

combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.
If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate
prefix to use based on the pathname it was invoked with.
If GCC cannot find the subprogram using the specified prefix, it tries looking
in the usual places for the subprogram.
The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc-lib/’ where prefix
is the value of prefix when you ran the ‘configure’ script.
Other prefixes specified with ‘-B’ take precedence over this prefix.
This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.
In addition, the prefix is used in an unusual way in finding the directories to
search for header files. For each of the standard directories whose name nor-
mally begins with ‘/usr/local/lib/gcc-lib’ (more precisely, with the value
of GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified
prefix to produce an alternate directory name. Thus, with ‘-Bfoo/’, GCC will
search ‘foo/bar’ where it would normally search ‘/usr/local/lib/bar’. These
alternate directories are searched first; the standard directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus specified when searching for subprograms,
if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GCC tries the directories thus
specified when searching for special linker files, if it can’t find them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for
ordinary libraries for the ‘-l’ option (but directories specified with ‘-L’ come
first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable’s
value is a colon-separated list of directories, much like PATH. When GCC
searches for header files, it tries the directories listed in the variable for the
language you are using, after the directories specified with ‘-I’ but before the
standard header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the header files processed by the compiler. This output looks much
like the output from the ‘-M’ option (see Section 3.11 [Preprocessor Options],
page 59), but it goes to a separate file, and is in addition to the usual results
of compilation.
The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source

134 Using and Porting the GNU Compiler Collection (GCC)

file name. Or the value can have the form ‘file target’, in which case the rules
are written to file file using target as the target name.

LANG This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When
the compiler is configured to allow multibyte characters, the following values
for LANG are recognized:

‘C-JIS’ Recognize JIS characters.

‘C-SJIS’ Recognize SJIS characters.

‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use
mblen and mbtowc as defined by the default locale to recognize and translate
multibyte characters.

3.20 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to
a program, thus converting the program to ISO C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are
found.

When you run these programs, you must specify a set of source files as command line
arguments. The conversion programs start out by compiling these files to see what functions
they define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert
only source and header files in the current directory. You can specify additional directories
whose files should be converted with the ‘-d directory ’ option. You can also specify partic-
ular files to exclude with the ‘-x file’ option. A file is converted if it is eligible, its directory
name matches one of the specified directory names, and its name within the directory has
not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and func-
tion declarations to specify the types of the arguments. The only ones not rewritten are
those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file,
to make them available for any calls that precede the function’s definition. Or it can insert
prototype declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to
remove any argument types, and rewriting function definitions to the old-style pre-ISO
form.

Both conversion programs print a warning for any function declaration or definition that
they can’t convert. You can suppress these warnings with ‘-q’.

Chapter 3: GCC Command Options 135

The output from protoize or unprotoize replaces the original source file. The original
file is renamed to a name ending with ‘.save’ (for DOS, the saved filename ends in ‘.sav’
without the original ‘.c’ suffix). If the ‘.save’ (‘.sav’ for DOS) file already exists, then the
source file is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GCC
is installed.

Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory
(normally ‘/usr/local/lib’). This file contains prototype information about
standard system functions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc to produce the ‘.X’
files. The special option ‘-aux-info’ is always passed in addition, to tell gcc
to write a ‘.X’ file.
Note that the compilation options must be given as a single argument to
protoize or unprotoize. If you want to specify several gcc options, you must
quote the entire set of compilation options to make them a single word in the
shell.
There are certain gcc arguments that you cannot use, because they would
produce the wrong kind of output. These include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’
If you include these in the compilation-options, they are ignored.

-C Rename files to end in ‘.C’ (‘.cc’ for DOS-based file systems) instead of ‘.c’.
This is convenient if you are converting a C program to C++. This option
applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at
the beginning of each source file for each function that is called in the file and
was not declared. These declarations precede the first function definition that
contains a call to an undeclared function. This option applies only to protoize.

-i string Indent old-style parameter declarations with the string string. This option
applies only to protoize.
unprotoize converts prototyped function definitions to old-style function def-
initions, where the arguments are declared between the argument list and the
initial ‘{’. By default, unprotoize uses five spaces as the indentation. If you
want to indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a prototype dec-
laration for each function in each block which calls the function without any
declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions
that would have been done without ‘-n’.

136 Using and Porting the GNU Compiler Collection (GCC)

-N Make no ‘.save’ files. The original files are simply deleted. Use this option
with caution.

-p program
Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then
you should generate that file’s ‘.X’ file specially, by running gcc on that source file with the
appropriate options and the option ‘-aux-info’. Then run protoize on the entire set of
files. protoize will use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar file1.c -aux-info file1.X
protoize *.c

You need to include the special files along with the rest in the protoize command, even
though their ‘.X’ files already exist, because otherwise they won’t get converted.

See Section 9.10 [Protoize Caveats], page 236, for more information on how to use
protoize successfully.

Chapter 4: Installing GNU CC 137

4 Installing GNU CC

Note most of this information is out of date and superseded by the new GCC install
manual ‘gcc/doc/install.texi’. It is provided for historical reference only.

Here is the procedure for installing GNU CC on a GNU or Unix system. See Section 4.4
[VMS Install], page 142, for VMS systems.

1. If you have chosen a configuration for GNU CC which requires other GNU tools (such
as GAS or the GNU linker) instead of the standard system tools, install the required
tools in the build directory under the names ‘as’, ‘ld’ or whatever is appropriate.
This will enable the compiler to find the proper tools for compilation of the program
‘enquire’.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

2. Specify the host, build and target machine configurations. You do this when you run
the ‘configure’ script.

The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.

If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to ‘configure’; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or guesses wrong.

In those cases, specify the build machine’s configuration name with the ‘--host’ option;
the host and target will default to be the same as the host machine. (If you are building
a cross-compiler, see Section 4.3 [Cross-Compiler], page 139.)

Here is an example:

./configure --host=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system’. (The three parts may themselves contain dashes; ‘configure’
can figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.

You can also replace parts of the configuration by nicknames or aliases. For example,
‘sun3’ stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3.

You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.

See Section 4.2 [Configurations], page 138, for a list of supported configuration names
and notes on many of the configurations. You should check the notes in that section
before proceeding any further with the installation of GNU CC.

138 Using and Porting the GNU Compiler Collection (GCC)

4.1 Files Created by configure

Here we spell out what files will be set up by configure. Normally you need not be
concerned with these files.

• A file named ‘config.h’ is created that contains a ‘#include’ of the top-level config
file for the machine you will run the compiler on (see Chapter 22 [Config], page 541).
This file is responsible for defining information about the host machine. It includes
‘tm.h’.

The top-level config file is located in the subdirectory ‘config’. Its name is always
‘xm-something.h’; usually ‘xm-machine.h’, but there are some exceptions.

If your system does not support symbolic links, you might want to set up ‘config.h’
to contain a ‘#include’ command which refers to the appropriate file.

• A file named ‘tconfig.h’ is created which includes the top-level config file for your
target machine. This is used for compiling certain programs to run on that machine.

• A file named ‘tm.h’ is created which includes the machine-description macro file for
your target machine. It should be in the subdirectory ‘config’ and its name is often
‘machine.h’.

• The command file ‘configure’ also constructs the file ‘Makefile’ by adding some text
to the template file ‘Makefile.in’. The additional text comes from files in the ‘config’
directory, named ‘t-target’ and ‘x-host’. If these files do not exist, it means nothing
needs to be added for a given target or host.

4.2 Configurations Supported by GNU CC

Here are the possible CPU types:
1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0,
hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, m32r, m68000, m68k,
m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200,
mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc,
sparclite, sparc64, v850, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are
used rather than the longer official names.

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds,
dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips,
motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux,
dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux,
hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos,
nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

Chapter 4: Installing GNU CC 139

You can omit the system type; then ‘configure’ guesses the operating system from the
CPU and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD.
In practice, the version number is most needed for ‘sysv3’ and ‘sysv4’, which are often
treated differently.

‘linux-gnu’ is the canonical name for the GNU/Linux target; however GNU CC will
also accept ‘linux’. The version of the kernel in use is not relevant on these systems. A
suffix such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the
suffixed versions are obsolete.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an
error message from ‘configure’, or it may ignore part of the information and do the best
it can with the rest. ‘configure’ always prints the canonical name for the alternative that
it used. GNU CC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above,
is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax,
powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name. If you
want to install your own homemade configuration files, you can use ‘local’ as the company
name to access them. If you use configuration ‘cpu-local’, the configuration name without
the cpu prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘m68k.md’, ‘local.h’, ‘m68k.c’,
‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the directory ‘config/m68k’.

Here is a list of configurations that have special treatment or special things you must
know:

‘vax-dec-vms’
See Section 4.4 [VMS Install], page 142, for details on how to install GNU CC
on VMS.

4.3 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not all.

• Cross-compilers for the Mips as target using the Mips assembler currently do not work,
because the auxiliary programs ‘mips-tdump.c’ and ‘mips-tfile.c’ can’t be compiled
on anything but a Mips. It does work to cross compile for a Mips if you use the GNU
assembler and linker.

140 Using and Porting the GNU Compiler Collection (GCC)

• Cross-compilers between machines with different floating point formats have not all
been made to work. GNU CC now has a floating point emulator with which these can
work, but each target machine description needs to be updated to take advantage of it.

• Cross-compilation between machines of different word sizes is somewhat problematic
and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU
CC can run, in order to produce object files. If you want to link on other than the target
machine, you need a cross-linker as well. You also need header files and libraries suitable
for the target machine that you can install on the host machine.

4.3.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several steps:
• Run the cross-compiler on the host machine to produce assembler files for the target

machine. This requires header files for the target machine.
• Assemble the files produced by the cross-compiler. You can do this either with an

assembler on the target machine, or with a cross-assembler on the host machine.
• Link those files to make an executable. You can do this either with a linker on the

target machine, or with a cross-linker on the host machine. Whichever machine you
use, you need libraries and certain startup files (typically ‘crt....o’) for the target
machine.

It is most convenient to do all of these steps on the same host machine, since then you
can do it all with a single invocation of GNU CC. This requires a suitable cross-assembler
and cross-linker. For some targets, the GNU assembler and linker are available.

4.3.2 Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running ‘configure’. Use the
‘--target=target’ to specify the target type. If ‘configure’ was unable to correctly identify
the system you are running on, also specify the ‘--build=build’ option. For example, here
is how to configure for a cross-compiler that produces code for an HP 68030 system running
BSD on a system that ‘configure’ can correctly identify:

./configure --target=m68k-hp-bsd4.3

4.3.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should install them now.
Put them in the directory ‘/usr/local/target/bin’. Here is a table of the tools you should
put in this directory:

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can manipulate archive files
(linker libraries) in the target machine’s format.

‘ranlib’ This should be a program to construct a symbol table in an archive file.

Chapter 4: Installing GNU CC 141

The installation of GNU CC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package and GAS. Configure
them with the same ‘--host’ and ‘--target’ options that you use for configuring GNU CC,
then build and install them. They install their executables automatically into the proper
directory. Alas, they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a standard C
library, put them in the directory ‘/usr/local/target/lib’; installation of GNU CC copies
all the files in that subdirectory into the proper place for GNU CC to find them and link
with them. Here’s an example of copying some libraries from a target machine:

ftp target-machine
lcd /usr/local/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

The precise set of libraries you’ll need, and their locations on the target machine, vary
depending on its operating system.

Many targets require “start files” such as ‘crt0.o’ and ‘crtn.o’ which are linked into
each executable; these too should be placed in ‘/usr/local/target/lib’. There may be
several alternatives for ‘crt0.o’, for use with profiling or other compilation options. Check
your target’s definition of STARTFILE_SPEC to find out what start files it uses. Here’s an
example of copying these files from a target machine:

ftp target-machine
lcd /usr/local/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

4.3.4 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an embedded system,
then you may not need any header files except the few that are part of GNU CC (and those
of your program). However, if you intend to link your program with a standard C library
such as ‘libc.a’, then you probably need to compile with the header files that go with the
library you use.

The GNU C compiler does not come with these files, because (1) they are system-specific,
and (2) they belong in a C library, not in a compiler.

If the GNU C library supports your target machine, then you can get the header files
from there (assuming you actually use the GNU library when you link your program).

142 Using and Porting the GNU Compiler Collection (GCC)

If your target machine comes with a C compiler, it probably comes with suitable header
files also. If you make these files accessible from the host machine, the cross-compiler can
use them also.

Otherwise, you’re on your own in finding header files to use when cross-compiling.
When you have found suitable header files, put them in the directory

‘/usr/local/target/include’, before building the cross compiler. Then installa-
tion will run fixincludes properly and install the corrected versions of the header files
where the compiler will use them.

Provide the header files before you build the cross-compiler, because the build stage
actually runs the cross-compiler to produce parts of ‘libgcc.a’. (These are the parts that
can be compiled with GNU CC.) Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target machine. On the
target machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:
ftp target-machine
lcd /usr/local/target/include
get tarfile
quit
tar xf tarfile

4.3.5 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler through the step
of building stage 1.

If your target is exotic, you may need to provide the header file ‘float.h’.One way to
do this is to compile ‘enquire’ and run it on your target machine. The job of ‘enquire’ is
to run on the target machine and figure out by experiment the nature of its floating point
representation. ‘enquire’ records its findings in the header file ‘float.h’. If you can’t
produce this file by running ‘enquire’ on the target machine, then you will need to come
up with a suitable ‘float.h’ in some other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to rebuild GNU CC as
a cross-compiler using the cross-compiler, because that would produce a program that runs
on the target machine, not on the host. For example, if you compile a 386-to-68030 cross-
compiler with itself, the result will not be right either for the 386 (because it was compiled
into 68030 code) or for the 68030 (because it was configured for a 386 as the host). If you
want to compile GNU CC into 68030 code, whether you compile it on a 68030 or with a
cross-compiler on a 386, you must specify a 68030 as the host when you configure it.

To install the cross-compiler, use ‘make install’, as usual.

4.4 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source
code and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the same manner as
you use the VMS C compiler, you must install the VMS CLD file for GNU CC as follows:

Chapter 4: Installing GNU CC 143

1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’ to point to the directo-
ries where the GNU CC executables (‘gcc-cpp.exe’, ‘gcc-cc1.exe’, etc.) and the C
include files are kept respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can be placed in your
system startup file so they will be executed whenever the machine is rebooted. You
may, if you choose, do this via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc

$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like ‘gcc /verbose file.c’, which
is equivalent to the command ‘gcc -v -c file.c’ in Unix.

If you wish to use GNU C++ you must first install GNU CC, and then perform the
following steps:
1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the directory where the

preprocessor will search for the C++ header files. This can be done with the command:
$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be using a C++
runtime library, this is where its install procedure will install its header files.

2. Obtain the file ‘gcc-cc1plus.exe’, and place this in the same directory that
‘gcc-cc1.exe’ is kept.
The GNU C++ compiler can be invoked with a command like ‘gcc /plus /verbose
file.cc’, which is equivalent to the command ‘g++ -v -c file.cc’ in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But
sometimes the binaries will be from an older version than the sources, because we don’t
always have time to update them. (Use the ‘/version’ option to determine the version
number of the binaries and compare it with the source file ‘version.c’ to tell whether this
is so.) In this case, you should use the binaries you get to recompile the sources. If you
must recompile, here is how:
1. Execute the command procedure ‘vmsconfig.com’ to set up the files ‘tm.h’, ‘config.h’,

‘aux-output.c’, and ‘md.’, and to create files ‘tconfig.h’ and ‘hconfig.h’. This
procedure also creates several linker option files used by ‘make-cc1.com’ and a data
file used by ‘make-l2.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In addition, define
the VMS logical name ‘GNU_BISON’ to point at the to the directories where the Bison
executable is kept. This should be done with the command:

144 Using and Porting the GNU Compiler Collection (GCC)

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the ‘[BISON]’ directory.

3. Install the ‘BISON’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, submit the file
‘make-gcc.com’ to a batch queue). If you wish to build the GNU C++ compiler as
well as the GNU CC compiler, you must first edit ‘make-gcc.com’ and follow the
instructions that appear in the comments.

5. In order to use GCC, you need a library of functions which GCC compiled code will
call to perform certain tasks, and these functions are defined in the file ‘libgcc2.c’.
To compile this you should use the command procedure ‘make-l2.com’, which will
generate the library ‘libgcc2.olb’. ‘libgcc2.olb’ should be built using the compiler
built from the same distribution that ‘libgcc2.c’ came from, and ‘make-gcc.com’ will
automatically do all of this for you.

To install the library, use the following commands:
$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be replaced with modules
from ‘libgcc2’ under different module names. The modules new and eprintf may not
actually be present in your ‘gcclib.olb’—if the VMS librarian complains about those
modules not being present, simply ignore the message and continue on with the next
command. The second command removes the modules that came from the previous
version of the library ‘libgcc2.c’.

Whenever you update the compiler on your system, you should also update the library
with the above procedure.

6. You may wish to build GCC in such a way that no files are written to the directory
where the source files reside. An example would be the when the source files are on
a read-only disk. In these cases, execute the following DCL commands (substituting
your actual path names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

where the directory ‘dua1:[gcc.source_dir]’ contains the source code, and the di-
rectory ‘dua0:[gcc.build_dir]’ is meant to contain all of the generated object files
and executables. Once you have done this, you can proceed building GCC as described
above. (Keep in mind that ‘gcc_build’ is a rooted logical name, and thus the device
names in each element of the search list must be an actual physical device name rather
than another rooted logical name).

Chapter 4: Installing GNU CC 145

7. If you are building GNU CC with a previous version of GNU CC, you also should
check to see that you have the newest version of the assembler. In particular, GNU
CC version 2 treats global constant variables slightly differently from GNU CC version
1, and GAS version 1.38.1 does not have the patches required to work with GCC version
2. If you use GAS 1.38.1, then extern const variables will not have the read-only bit
set, and the linker will generate warning messages about mismatched psect attributes
for these variables. These warning messages are merely a nuisance, and can safely be
ignored.

If you are compiling with a version of GNU CC older than 1.33, specify
‘/DEFINE=("inline=")’ as an option in all the compilations. This requires editing all
the gcc commands in ‘make-cc1.com’. (The older versions had problems supporting
inline.) Once you have a working 1.33 or newer GNU CC, you can change this file
back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make minor
changes in ‘make-cccp.com’ and ‘make-cc1.com’ to choose alternate definitions of
CC, CFLAGS, and LIBS. See comments in those files. However, you must also have
a working version of the GNU assembler (GNU as, aka GAS) as it is used as the
back end for GNU CC to produce binary object modules and is not included in
the GNU CC sources. GAS is also needed to compile ‘libgcc2’ in order to build
‘gcclib’ (see above); ‘make-l2.com’ expects to be able to find it operational in
‘gnu_cc:[000000]gnu-as.exe’.

To use GNU CC on VMS, you need the VMS driver programs ‘gcc.exe’, ‘gcc.com’,
and ‘gcc.cld’. They are distributed with the VMS binaries (‘gcc-vms’) rather than
the GNU CC sources. GAS is also included in ‘gcc-vms’, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting
compiler to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS
definitions in ‘make-cccp.com’ and ‘make-cc1.com’. The second generation compiler
will be able to take advantage of many optimizations that must be suppressed when
building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange
results when linked with the sharable ‘VAXCRTL’ library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable
‘VAXCRTL’. The version of qsort in ‘VAXCRTL’ has a bug (known to be present in VMS
versions V4.6 through V5.5) which causes the compiler to fail.

The executables are generated by ‘make-cc1.com’ and ‘make-cccp.com’ use the object
library version of ‘VAXCRTL’ in order to make use of the qsort routine in ‘gcclib.olb’. If
you wish to link the compiler executables with the shareable image version of ‘VAXCRTL’,
you should edit the file ‘tm.h’ (created by ‘vmsconfig.com’) to define the macro QSORT_
WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with VAX C, to avoid
a problem in case ‘gcclib.olb’ is not yet available.

146 Using and Porting the GNU Compiler Collection (GCC)

4.5 collect2

GNU CC uses a utility called collect2 on nearly all systems to arrange to call various
initialization functions at start time.

The program collect2 works by linking the program once and looking through the linker
output file for symbols with particular names indicating they are constructor functions. If
it finds any, it creates a new temporary ‘.c’ file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use ‘-nostdlib’, you get an unresolved reference
to __main, since it’s defined in the standard GCC library. Include ‘-lgcc’ at the end of
your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler
are installed. When collect2 needs to find the real ld, it tries the following file names:
• ‘real-ld’ in the directories listed in the compiler’s search directories.
• ‘real-ld’ in the directories listed in the environment variable PATH.
• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
• ‘ld’ in the compiler’s search directories, except that collect2 will not execute itself

recursively.
• ‘ld’ in PATH.

“The compiler’s search directories” means all the directories where gcc searches for
passes of the compiler. This includes directories that you specify with ‘-B’.

Cross-compilers search a little differently:
• ‘real-ld’ in the compiler’s search directories.
• ‘target-real-ld’ in PATH.
• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
• ‘ld’ in the compiler’s search directories.
• ‘target-ld’ in PATH.

collect2 explicitly avoids running ld using the file name under which collect2 itself
was invoked. In fact, it remembers up a list of such names—in case one copy of collect2
finds another copy (or version) of collect2 installed as ld in a second place in the search
path.

collect2 searches for the utilities nm and strip using the same algorithm as above for
ld.

4.6 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GNU CC
stores its private include files, and also where GNU CC stores the fixed include files. A
cross compiled GNU CC runs fixincludes on the header files in ‘$(tooldir)/include’.
(If the cross compilation header files need to be fixed, they must be installed before GNU

Chapter 4: Installing GNU CC 147

CC is built. If the cross compilation header files are already suitable for ISO C and GNU
CC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++
looks first for header files. The C++ library installs only target independent header files in
that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally
‘/usr/local/include’. GNU CC searches this directory so that users can install header
files in ‘/usr/local/include’.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t install anything
there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header files that GNU CC will use. For a cross-compiler, this is the
equivalent of ‘/usr/include’. When you build a cross-compiler, fixincludes processes
any header files in this directory.

148 Using and Porting the GNU Compiler Collection (GCC)

Chapter 5: Extensions to the C Language Family 149

5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The
‘-pedantic’ option directs GCC to print a warning message if any of these features is
used.) To test for the availability of these features in conditional compilation, check for a
predefined macro __GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See Chapter 6 [Extensions to the C++ Language], page 199, for extensions that apply
only to C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted
by GCC in C89 mode and in C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here let’s assume int), you can
define the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use
typeof (see Section 5.7 [Typeof], page 155) or type naming (see Section 5.6 [Naming Types],
page 154).

Statement expressions are not supported fully in G++, and their fate there is unclear.
(It is possible that they will become fully supported at some point, or that they will be

150 Using and Porting the GNU Compiler Collection (GCC)

deprecated, or that the bugs that are present will continue to exist indefinitely.) Presently,
statement expressions do not work well as default arguments.

In addition, there are semantic issues with statement-expressions in C++. If you try to
use statement-expressions instead of inline functions in C++, you may be surprised at the
way object destruction is handled. For example:

#define foo(a) ({int b = (a); b + 3; })

does not work the same way as:
inline int foo(int a) { int b = a; return b + 3; }

In particular, if the expression passed into foo involves the creation of temporaries, the
destructors for those temporaries will be run earlier in the case of the macro than in the
case of the function.

These considerations mean that it is probably a bad idea to use statement-expressions
of this form in header files that are designed to work with C++. (Note that some versions of
the GNU C Library contained header files using statement-expression that lead to precisely
this bug.)

5.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label
is simply an identifier; you can jump to it with an ordinary goto statement, but only from
within the statement expression it belongs to.

A local label declaration looks like this:
__label__ label;

or
__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement expression, right
after the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You
must do this in the usual way, with label:, within the statements of the statement expres-
sion.

The local label feature is useful because statement expressions are often used in macros.
If the macro contains nested loops, a goto can be useful for breaking out of them. However,
an ordinary label whose scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply defined in that function.
A local label avoids this problem. For example:

#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \

Chapter 5: Extensions to the C Language Family 151

if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \

value = -1; \
found: \
value; \

})

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing
function) with the unary operator ‘&&’. The value has type void *. This value is a constant
and can be used wherever a constant of that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed
goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

An alternate way to write the above example is
static const int array[] = { &&foo - &&foo, &&bar - &&foo,

&&hack - &&foo };
goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C,
where one can do more than simply store label addresses in label variables.

152 Using and Porting the GNU Compiler Collection (GCC)

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are
not supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{

int access (int *array, int index)
{ return array[index + offset]; }

int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...

}

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing
its address or passing the address to another function:

hack (int *array, int size)
{

void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this example) does
not exit.

If you try to call the nested function through its address after the containing function
has exited, all hell will break loose. If you try to call it after a containing scope level has
exited, and if it refers to some of the variables that are no longer in scope, you may be
lucky, but it’s not wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called trampo-
lines. A paper describing them is available as http://people.debian.org/~karlheg/Usenix88-lexic.pdf.

A nested function can jump to a label inherited from a containing function, provided
the label was explicitly declared in the containing function (see Section 5.2 [Local Labels],

http://people.debian.org/~karlheg/Usenix88-lexic.pdf

Chapter 5: Extensions to the C Language Family 153

page 150). Such a jump returns instantly to the containing function, exiting the nested
function which did the goto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)
{

__label__ failure;
int access (int *array, int index)
{

if (index > size)
goto failure;

return array[index + offset];
}

int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...

...
return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with extern is erroneous.
If you need to declare the nested function before its definition, use auto (which is otherwise
meaningless for function declarations).

bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)
{

if (index > size)
goto failure;

return array[index + offset];
}

...
}

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects
that data type).

154 Using and Porting the GNU Compiler Collection (GCC)

Built-in Functionvoid * __builtin_apply_args ()
This built-in function returns a pointer to data describing how to perform a call with
the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all registers
that might be used to pass arguments to a function into a block of memory allocated
on the stack. Then it returns the address of that block.

Built-in Functionvoid * __builtin_apply (void (*function)(), void
*arguments, size_t size)

This built-in function invokes function with a copy of the parameters described by
arguments and size.

The value of arguments should be the value returned by __builtin_apply_args.
The argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer to data describing how to return whatever value was
returned by function. The data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

Built-in Functionvoid __builtin_return (void *result)
This built-in function returns the value described by result from the containing func-
tion. You should specify, for result, a value returned by __builtin_apply.

5.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration with an
initializer. Here is how to define name as a type name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here is
how the two together can be used to define a safe “maximum” macro that operates on any
arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a
and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conflicts.

Chapter 5: Extensions to the C Language Family 155

5.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using
of this keyword looks like sizeof, but the construct acts semantically like a type name
defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ISO C programs, write

__typeof__ instead of typeof. See Section 5.39 [Alternate Keywords], page 193.
A typeof-construct can be used anywhere a typedef name could be used. For example,

you can use it in a declaration, in a cast, or inside of sizeof or typeof.
• This declares y with the type of what x points to.

typeof (*x) y;

• This declares y as an array of such values.
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

5.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided
their operands are lvalues. This means that you can take their addresses or store values
into them.

Standard C++ allows compound expressions and conditional expressions as lvalues, and
permits casts to reference type, so use of this extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last expression in
the sequence is an lvalue. These two expressions are equivalent:

156 Using and Porting the GNU Compiler Collection (GCC)

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions
are equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false
branches are both valid lvalues. For example, these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand
side is a cast works by converting the right-hand side first to the specified type, then to the
type of the inner left-hand side expression. After this is stored, the value is converted back
to the specified type to become the value of the assignment. Thus, if a has type char *,
the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a cast performs the
arithmetic using the type resulting from the cast, and then continues as in the previous
case. Therefore, these two expressions are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not
work out coherently. Suppose that &(int)f were permitted, where f has type float. Then
the following statement would try to store an integer bit-pattern where a floating point
number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to floating
point and store it. Rather than cause this inconsistency, we think it is better to prohibit
use of ‘&’ on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int
*)&f.

5.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is nonzero, its value is the value of the conditional expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a

Chapter 5: Extensions to the C Language Family 157

side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.

5.10 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an
extension GCC supports them in C89 mode and in C++. Simply write long long int for
a signed integer, or unsigned long long int for an unsigned integer. To make an integer
constant of type long long int, add the suffix ‘LL’ to the integer. To make an integer
constant of type unsigned long long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GCC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass
a value of type long long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if the function expects
long long int and you pass int. The best way to avoid such problems is to use prototypes.

5.11 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them
in C89 mode and in C++, and supports complex integer data types which are not part of
ISO C99. You can declare complex types using the keyword _Complex. As an extension,
the older GNU keyword __complex__ is also supported.

For example, ‘_Complex double x;’ declares x as a variable whose real part and imag-
inary part are both of type double. ‘_Complex short int y;’ declares y to have real and
imaginary parts of type short int; this is not likely to be useful, but it shows that the set
of complex types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they
are equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex
int. Such a constant always has a pure imaginary value, but you can form any complex
value you like by adding one to a real constant. This is a GNU extension; if you have an ISO
C99 conforming C library (such as GNU libc), and want to construct complex constants of
floating type, you should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp. Like-
wise, use __imag__ to extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag
and cimagl, declared in <complex.h> and also provided as built-in functions by GCC.

The operator ‘~’ performs complex conjugation when used on a value with a complex
type. This is a GNU extension; for values of floating type, you should use the ISO C99

158 Using and Porting the GNU Compiler Collection (GCC)

functions conjf, conj and conjl, declared in <complex.h> and also provided as built-in
functions by GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even
possible for the real part to be in a register while the imaginary part is on the stack
(or vice-versa). None of the supported debugging info formats has a way to represent
noncontiguous allocation like this, so GCC describes a noncontiguous complex variable as
if it were two separate variables of noncomplex type. If the variable’s actual name is foo,
the two fictitious variables are named foo$real and foo$imag. You can examine and set
these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat them as a
single variable with a complex type.

5.12 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation,
such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As
a GNU extension, GCC supports this in C89 mode (except in some cases when strictly
conforming) and in C++. In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent
field are mandatory. The exponent is a decimal number that indicates the power of 2 by
which the significant part will be multiplied. Thus ‘0x1.f’ is 1 15

16
, ‘p3’ multiplies it by 8,

and the value of 0x1.fp3 is the same as 1.55e1.
Unlike for floating-point numbers in the decimal notation the exponent is always required

in the hexadecimal notation. Otherwise the compiler would not be able to resolve the
ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension
for floating-point constants of type float.

5.13 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

struct line {
int length;
char contents[0];

};

struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

In ISO C89, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax
and semantics:
• Flexible array members are written as contents[] without the 0.
• Flexible array members have incomplete type, and so the sizeof operator may not

be applied. As a quirk of the original implementation of zero-length arrays, sizeof
evaluates to zero.

Chapter 5: Extensions to the C Language Family 159

• Flexible array members may only appear as the last member of a struct that is
otherwise non-empty. GCC currently allows zero-length arrays anywhere. You may
encounter problems, however, defining structures containing only a zero-length array.
Such usage is deprecated, and we recommend using zero-length arrays only in places
in which flexible array members would be allowed.

GCC versions before 3.0 allowed zero-length arrays to be statically initialized. In addition
to those cases that were useful, it also allowed initializations in situations that would corrupt
later data. Non-empty initialization of zero-length arrays is now deprecated.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient
size to contain the data. I.e. in the following, f1 is constructed as if it were declared like
f2.

struct f1 {
int x; int y[];

} f1 = { 1, { 2, 3, 4 } };

struct f2 {
struct f1 f1; int data[3];

} f2 = { { 1 }, { 2, 3, 4 } };

The convenience of this extension is that f1 has the desired type, eliminating the need to
consistently refer to f2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also
written with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-
level object, as otherwise we would be overwriting data at subsequent offsets. To avoid
undue complication and confusion with initialization of deeply nested arrays, we simply
disallow any non-empty initialization except when the structure is the top-level object. For
example:

struct foo { int x; int y[]; };
struct bar { struct foo z; };

struct foo a = { 1, { 2, 3, 4 } }; // Legal.
struct bar b = { { 1, { 2, 3, 4 } } }; // Illegal.
struct bar c = { { 1, { } } }; // Legal.
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Illegal.

5.14 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC
accepts them in C89 mode and in C++. (However, GCC’s implementation of variable-
length arrays does not yet conform in detail to the ISO C99 standard.) These arrays are
declared like any other automatic arrays, but with a length that is not a constant expression.
The storage is allocated at the point of declaration and deallocated when the brace-level is
exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)

160 Using and Porting the GNU Compiler Collection (GCC)

{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca
exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name’s scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array will also deallocate
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{
...

}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry
tester (int len; char data[len][len], int len)
{
...

}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter
list. They can be separated by commas or semicolons, but the last one must end with a
semicolon, which is followed by the “real” parameter declarations. Each forward declaration
must match a “real” declaration in parameter name and data type. ISO C99 does not
support parameter forward declarations.

5.15 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of
arguments much as a function can. The syntax for defining the macro is similar to that of
a function. Here is an example:

Chapter 5: Extensions to the C Language Family 161

#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)

Here ‘...’ is a variable argument. In the invocation of such a macro, it represents the
zero or more tokens until the closing parenthesis that ends the invocation, including any
commas. This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever
it appears. See the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that allowed you
to give a name to the variable arguments just like any other argument. Here is an example:

#define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable
and descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with
either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you
are allowed to pass an empty argument. For example, this invocation is invalid in ISO C,
because there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the
above examples, the compiler would complain, though since the expansion of the macro still
has the extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the
token paste operator, ‘##’. If instead you write

#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘##’ operator causes the pre-
processor to remove the comma before it. If you do provide some variable arguments in
your macro invocation, GNU CPP does not complain about the paste operation and instead
places the variable arguments after the comma. Just like any other pasted macro argument,
these arguments are not macro expanded.

5.16 Slightly Looser Rules for Escaped Newlines

Recently, the non-traditional preprocessor has relaxed its treatment of escaped newlines.
Previously, the newline had to immediately follow a backslash. The current implementation
allows whitespace in the form of spaces, horizontal and vertical tabs, and form feeds between
the backslash and the subsequent newline. The preprocessor issues a warning, but treats
it as a valid escaped newline and combines the two lines to form a single logical line. This
works within comments and tokens, including multi-line strings, as well as between tokens.
Comments are not treated as whitespace for the purposes of this relaxation, since they have
not yet been replaced with spaces.

5.17 String Literals with Embedded Newlines

As an extension, GNU CPP permits string literals to cross multiple lines without escaping
the embedded newlines. Each embedded newline is replaced with a single ‘\n’ character in
the resulting string literal, regardless of what form the newline took originally.

162 Using and Porting the GNU Compiler Collection (GCC)

CPP currently allows such strings in directives as well (other than the ‘#include’ family).
This is deprecated and will eventually be removed.

5.18 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary ‘&’ operator
is not. (In ISO C99, both are allowed (though the array may not be used after the next
sequence point), but this ISO C99 feature is not yet fully supported in GCC.) For example,
this is valid in GNU C though not valid in C89:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

5.19 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and
on pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

5.20 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
...

}

5.21 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer. (GCC does not yet implement the full ISO C99 semantics for
compound literals.) As an extension, GCC supports compound literals in C89 mode and in
C++.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

Chapter 5: Extensions to the C Language Family 163

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the compound literal are (made
up of) simple constant expressions, suitable for use in initializers, then the compound literal
is an lvalue and can be coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array compound literals whose elements are not simple constants are not very useful,
because the compound literal is not an lvalue; ISO C99 specifies that it is, being a temporary
object with automatic storage duration associated with the enclosing block, but GCC does
not yet implement this. There are currently only two valid ways to use it with GCC: to
subscript it, or initialize an array variable with it. The former is probably slower than a
switch statement, while the latter does the same thing an ordinary C initializer would do.
Here is an example of subscripting an array compound literal:

output = ((int[]) { 2, x, 28 }) [input];

Compound literals for scalar types and union types are is also allowed, but then the
compound literal is equivalent to a cast.

5.22 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same
as the order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or
structure field names they apply to, and GNU C allows this as an extension in C89 mode
as well. This extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =’ before the element value. For example,
int a[6] = { [4] = 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is auto-
matic.

An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still
accepts is to write ‘[index]’ before the element value, with no ‘=’.

To initialize a range of elements to the same value, write ‘[first ... last] = value’. This
is a GNU extension. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initial-
ized field by the range initializer.

164 Using and Porting the GNU Compiler Collection (GCC)

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘.fieldname =’
before the element value. For example, given the following structure,

struct point { int x, y; };

the following initialization

struct point p = { .y = yvalue, .x = xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning, obsolete since GCC 2.5, is ‘fieldname:’,
as shown here:

struct point p = { y: yvalue, x: xvalue };

The ‘[index]’ or ‘.fieldname’ is known as a designator. You can also use a designator
(or the obsolete colon syntax) when initializing a union, to specify which element of the
union should be used. For example,

union foo { int i; double d; };

union foo f = { .d = 4 };

will convert 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo would store it into the union as the integer i, since it is an
integer. (See Section 5.24 [Cast to Union], page 165.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a designator applies to the
next consecutive element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

You can also write a series of ‘.fieldname’ and ‘[index]’ designators before an ‘=’ to spec-
ify a nested subobject to initialize; the list is taken relative to the subobject corresponding
to the closest surrounding brace pair. For example, with the ‘struct point’ declaration
above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };

If the same field is initialized multiple times, it will have value from the last initialization.
If any such overridden initialization has side-effect, it is unspecified whether the side-effect
happens or not. Currently, gcc will discard them and issue a warning.

Chapter 5: Extensions to the C Language Family 165

5.23 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when
you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

5.24 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union
type. You can specify the type either with union tag or with a typedef name. A cast to
union is actually a constructor though, not a cast, and hence does not yield an lvalue like
normal casts. (See Section 5.21 [Compound Literals], page 162.)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is
equivalent to storing in a member of the union:

union foo u;
...
u = (union foo) x ≡ u.i = x
u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
...
hack ((union foo) x);

5.25 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound
statements. As an extension, GCC also allows this in C89 mode. For example, you could
do:

166 Using and Porting the GNU Compiler Collection (GCC)

int i;
...
i++;
int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

5.26 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double parenthe-
ses. Fourteen attributes, noreturn, pure, const, format, format_arg, no_instrument_
function, section, constructor, destructor, unused, weak, malloc, alias and no_
check_memory_usage are currently defined for functions. Several other attributes are de-
fined for functions on particular target systems. Other attributes, including section are
supported for variables declarations (see Section 5.33 [Variable Attributes], page 177) and
for types (see Section 5.34 [Type Attributes], page 181).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

See Section 5.27 [Attribute Syntax], page 173, for details of the exact syntax for using
attributes.

noreturn A few standard library functions, such as abort and exit, cannot return. GCC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (...)
{
... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

Chapter 5: Extensions to the C Language Family 167

The attribute noreturn is not implemented in GCC versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

pure Many functions have no effects except the return value and their return value
depends only on the parameters and/or global variables. Such a function can
be subject to common subexpression elimination and loop optimization just as
an arithmetic operator would be. These functions should be declared with the
attribute pure. For example,

int square (int) __attribute__ ((pure));

says that the hypothetical function square is safe to call fewer times than the
program says.
Some of common examples of pure functions are strlen or memcmp. Inter-
esting non-pure functions are functions with infinite loops or those depending
on volatile memory or other system resource, that may change between two
consecutive calls (such as feof in a multithreading environment).
The attribute pure is not implemented in GCC versions earlier than 2.96.

const Many functions do not examine any values except their arguments, and have
no effects except the return value. Basically this is just slightly more strict
class than the pure attribute above, since function is not allowed to read global
memory.
Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const
function usually must not be const. It does not make sense for a const function
to return void.
The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in
the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘const’ must be attached to the return value.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime
or strfmon style arguments which should be type-checked against a format
string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

168 Using and Porting the GNU Compiler Collection (GCC)

The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime or strfmon. (You can also use __printf_
_, __scanf__, __strftime__ or __strfmon__.) The parameter string-index
specifies which argument is the format string argument (starting from 1), while
first-to-check is the number of the first argument to check against the format
string. For functions where the arguments are not available to be checked (such
as vprintf), specify the third parameter as zero. In this case the compiler
only checks the format string for consistency. For strftime formats, the third
parameter is required to be zero.

In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take for-
mat strings as arguments, so that GCC can check the calls to these functions for
errors. The compiler always (unless ‘-ffreestanding’ is used) checks formats
for the standard library functions printf, fprintf, sprintf, scanf, fscanf,
sscanf, strftime, vprintf, vfprintf and vsprintf whenever such warnings
are requested (using ‘-Wformat’), so there is no need to modify the header file
‘stdio.h’. In C99 mode, the functions snprintf, vsnprintf, vscanf, vfscanf
and vsscanf are also checked. Except in strictly conforming C standard modes,
the X/Open function strfmon is also checked. See Section 3.4 [Options Con-
trolling C Dialect], page 18.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for
a printf, scanf, strftime or strfmon style function and modifies it (for ex-
ample, to translate it into another language), so the result can be passed to
a printf, scanf, strftime or strfmon style function (with the remaining ar-
guments to the format function the same as they would have been for the
unmodified string). For example, the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)

__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf,
strftime or strfmon type function, whose format string argument is a
call to the my_dgettext function, for consistency with the format string
argument my_format. If the format_arg attribute had not been specified, all
the compiler could tell in such calls to format functions would be that the
format string argument is not constant; this would generate a warning when
‘-Wformat-nonliteral’ is used, but the calls could not be checked without
the attribute.

The parameter string-index specifies which argument is the format string ar-
gument (starting from 1).

The format-arg attribute allows you to identify your own functions which
modify format strings, so that GCC can check the calls to printf, scanf,
strftime or strfmon type function whose operands are a call to one of your

Chapter 5: Extensions to the C Language Family 169

own function. The compiler always treats gettext, dgettext, and dcgettext
in this manner except when strict ISO C support is requested by ‘-ansi’ or
an appropriate ‘-std’ option, or ‘-ffreestanding’ is used. See Section 3.4
[Options Controlling C Dialect], page 18.

no_instrument_function
If ‘-finstrument-functions’ is given, profiling function calls will be generated
at entry and exit of most user-compiled functions. Functions with this attribute
will not be so instrumented.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute specifies that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

constructor
destructor

The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the
function to be called automatically after main () has completed or exit () has
been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC will not produce a warning for this function. GNU C++
does not currently support this attribute as definitions without parameters are
valid in C++.

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions which
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

malloc The malloc attribute is used to tell the compiler that a function may be treated
as if it were the malloc function. The compiler assumes that calls to malloc
result in a pointers that cannot alias anything. This will often improve opti-
mization.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

170 Using and Porting the GNU Compiler Collection (GCC)

void __f () { /* do something */; }
void f () __attribute__ ((weak, alias ("__f")));

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the
target must be used.

Not all target machines support this attribute.

no_check_memory_usage
The no_check_memory_usage attribute causes GCC to omit checks of memory
references when it generates code for that function. Normally if you specify
‘-fcheck-memory-usage’ (see see Section 3.18 [Code Gen Options], page 126),
GCC generates calls to support routines before most memory accesses to permit
support code to record usage and detect uses of uninitialized or unallocated
storage. Since GCC cannot handle asm statements properly they are not allowed
in such functions. If you declare a function with this attribute, GCC will
not generate memory checking code for that function, permitting the use of
asm statements without having to compile that function with different options.
This also allows you to write support routines of your own if you wish, without
getting infinite recursion if they get compiled with ‘-fcheck-memory-usage’.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to
number integer arguments in registers EAX, EDX, and ECX instead of on the
stack. Functions that take a variable number of arguments will continue to be
passed all of their arguments on the stack.

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments.

The PowerPC compiler for Windows NT currently ignores the stdcall at-
tribute.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the
calling function will pop off the stack space used to pass arguments. This is
useful to override the effects of the ‘-mrtd’ switch.

The PowerPC compiler for Windows NT currently ignores the cdecl attribute.

longcall On the RS/6000 and PowerPC, the longcall attribute causes the compiler to
always call the function via a pointer, so that functions which reside further
than 64 megabytes (67,108,864 bytes) from the current location can be called.

long_call/short_call
This attribute allows to specify how to call a particular function on ARM.
Both attributes override the ‘-mlong-calls’ (see Section 3.17.7 [ARM Options],
page 84) command line switch and #pragma long_calls settings. The long_
call attribute causes the compiler to always call the function by first loading
its address into a register and then using the contents of that register. The
short_call attribute always places the offset to the function from the call site
into the ‘BL’ instruction directly.

Chapter 5: Extensions to the C Language Family 171

dllimport
On the PowerPC running Windows NT, the dllimport attribute causes the
compiler to call the function via a global pointer to the function pointer that is
set up by the Windows NT dll library. The pointer name is formed by combining
__imp_ and the function name.

dllexport
On the PowerPC running Windows NT, the dllexport attribute causes the
compiler to provide a global pointer to the function pointer, so that it can be
called with the dllimport attribute. The pointer name is formed by combining
__imp_ and the function name.

exception (except-func [, except-arg])
On the PowerPC running Windows NT, the exception attribute causes the
compiler to modify the structured exception table entry it emits for the declared
function. The string or identifier except-func is placed in the third entry of the
structured exception table. It represents a function, which is called by the
exception handling mechanism if an exception occurs. If it was specified, the
string or identifier except-arg is placed in the fourth entry of the structured
exception table.

function_vector
Use this option on the H8/300 and H8/300H to indicate that the specified func-
tion should be called through the function vector. Calling a function through
the function vector will reduce code size, however; the function vector has a lim-
ited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H)
and shares space with the interrupt vector.
You must use GAS and GLD from GNU binutils version 2.7 or later for this
option to work correctly.

interrupt
Use this option on the ARM, AVR and M32R/D ports to indicate that the
specified function is an interrupt handler. The compiler will generate function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.
Note, interrupt handlers for the H8/300, H8/300H and SH processors can be
specified via the interrupt_handler attribute.
Note, on the AVR interrupts will be enabled inside the function.
Note, for the ARM you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:

void f () __attribute__ ((interrupt ("IRQ")));

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UN-
DEF.

interrupt_handler
Use this option on the H8/300, H8/300H and SH to indicate that the specified
function is an interrupt handler. The compiler will generate function entry and
exit sequences suitable for use in an interrupt handler when this attribute is
present.

172 Using and Porting the GNU Compiler Collection (GCC)

sp_switch
Use this option on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;
void f () __attribute__ ((interrupt_handler,

sp_switch ("alt_stack")));

trap_exit
Use this option on the SH for an interrupt_handle to return using trapa
instead of rte. This attribute expects an integer argument specifying the trap
number to be used.

eightbit_data
Use this option on the H8/300 and H8/300H to indicate that the specified
variable should be placed into the eight bit data section. The compiler will
generate more efficient code for certain operations on data in the eight bit data
area. Note the eight bit data area is limited to 256 bytes of data.
You must use GAS and GLD from GNU binutils version 2.7 or later for this
option to work correctly.

tiny_data
Use this option on the H8/300H to indicate that the specified variable should
be placed into the tiny data section. The compiler will generate more efficient
code for loads and stores on data in the tiny data section. Note the tiny data
area is limited to slightly under 32kbytes of data.

signal Use this option on the AVR to indicate that the specified function is an signal
handler. The compiler will generate function entry and exit sequences suitable
for use in an signal handler when this attribute is present. Interrupts will be
disabled inside function.

naked Use this option on the ARM or AVR ports to indicate that the specified function
do not need prologue/epilogue sequences generated by the compiler. It is up to
the programmer to provide these sequences.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object, and
the code generated for a function. The identifier model-name is one of small,
medium, or large, representing each of the code models.
Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and are callable with the bl instruc-
tion.
Medium model objects may live anywhere in the 32-bit address space (the
compiler will generate seth/add3 instructions to load their addresses), and are
callable with the bl instruction.
Large model objects may live anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and may not be
reachable with the bl instruction (the compiler will generate the much slower
seth/add3/jl instruction sequence).

Chapter 5: Extensions to the C Language Family 173

You can specify multiple attributes in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma
should be used instead. At the time __attribute__ was designed, there were two reasons
for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated
from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific prag-
mas. However, it has been found convenient to use __attribute__ to achieve a natural
attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use
for constructs that do not naturally form part of the grammar. See section “Miscellaneous
Preprocessing Directives” in The C Preprocessor.

5.27 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the
constructs to which attribute specifiers bind, for the C language. Some details may vary
for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms
described here may not be successfully parsed in all cases.

See Section 5.26 [Function Attributes], page 166, for details of the semantics of attributes
applying to functions. See Section 5.33 [Variable Attributes], page 177, for details of the
semantics of attributes applying to variables. See Section 5.34 [Type Attributes], page 181,
for details of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute list
is a possibly empty comma-separated sequence of attributes, where each attribute is one of
the following:

• Empty. Empty attributes are ignored.

• A word (which may be an identifier such as unused, or a reserved word such as const).

• A word, followed by, in parentheses, parameters for the attribute. These parameters
take one of the following forms:

• An identifier. For example, mode attributes use this form.

• An identifier followed by a comma and a non-empty comma-separated list of ex-
pressions. For example, format attributes use this form.

• A possibly empty comma-separated list of expressions. For example, format_arg
attributes use this form with the list being a single integer constant expression,
and alias attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated
by any other tokens.

174 Using and Porting the GNU Compiler Collection (GCC)

An attribute specifier list may appear after the colon following a label, other than a
case or default label. The only attribute it makes sense to use after a label is unused.
This feature is intended for code generated by programs which contains labels that may be
unused but which is compiled with ‘-Wall’. It would not normally be appropriate to use in
it human-written code, though it could be useful in cases where the code that jumps to the
label is contained within an #ifdef conditional.

An attribute specifier list may appear as part of a struct, union or enum specifier. It
may go either immediately after the struct, union or enum keyword, or after the closing
brace. It is ignored if the content of the structure, union or enumerated type is not defined
in the specifier in which the attribute specifier list is used—that is, in usages such as struct
__attribute__((foo)) bar with no following opening brace. Where attribute specifiers
follow the closing brace, they are considered to relate to the structure, union or enumerated
type defined, not to any enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations
of unnamed parameters and type names, and relates to that declaration (which may be
nested in another declaration, for example in the case of a parameter declaration). In
future, attribute specifiers in some places may however apply to a particular declarator
within a declaration instead; these cases are noted below. Where an attribute specifier is
applied to a parameter declared as a function or an array, it should apply to the function
or array rather than the pointer to which the parameter is implicitly converted, but this is
not yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute
specifiers, whether or not such a list may in that context contain storage class specifiers.
(Some attributes, however, are essentially in the nature of storage class specifiers, and only
make sense where storage class specifiers may be used; for example, section.) There is one
necessary limitation to this syntax: the first old-style parameter declaration in a function
definition cannot begin with an attribute specifier, because such an attribute applies to the
function instead by syntax described below (which, however, is not yet implemented in this
case). In some other cases, attribute specifiers are permitted by this grammar but not yet
supported by the compiler. All attribute specifiers in this place relate to the declaration as
a whole. In the obsolescent usage where a type of int is implied by the absence of type
specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

An attribute specifier list may appear immediately before a declarator (other
than the first) in a comma-separated list of declarators in a declaration of more than
one identifier using a single list of specifiers and qualifiers. Such attribute specifiers
apply only to the identifier before whose declarator they appear. For example, in
__attribute__((noreturn)) void d0 (void), __attribute__((format(printf, 1,
2))) d1 (const char *, ...), d2 (void), the noreturn attribute applies to all the
functions declared; the format attribute only applies to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon
terminating the declaration of an identifier other than a function definition. At present,
such attribute specifiers apply to the declared object or function, but in future they may
attach to the outermost adjacent declarator. In simple cases there is no difference, but, for
example, in void (****f)(void) __attribute__((noreturn));, at present the noreturn

Chapter 5: Extensions to the C Language Family 175

attribute applies to f, which causes a warning since f is not a function, but in future it
may apply to the function ****f. The precise semantics of what attributes in such cases
will apply to are not yet specified. Where an assembler name for an object or function is
specified (see Section 5.37 [Asm Labels], page 190), at present the attribute must follow
the asm specification; in future, attributes before the asm specification may apply to the
adjacent declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in
a function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a
parameter array declarator, in the C99 construct by which such qualifiers are applied to the
pointer to which the array is implicitly converted. Such attribute specifiers apply to the
pointer, not to the array, but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present,
there are some limitations in this usage: the attributes apply to the identifier declared,
rather than to a specific declarator. When attribute specifiers follow the * of a pointer
declarator, they may be mixed with any type qualifiers present. The following describes
intended future semantics which make this syntax more useful only. It will make the most
sense if you are familiar with the formal specification of declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains
declaration specifiers that specify a type Type (such as int) and D1 is a declarator that
contains an identifier ident. The type specified for ident for derived declarators whose type
does not include an attribute specifier is as in the ISO C standard.

If D1 has the form (attribute-specifier-list D), and the declaration T D specifies the
type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the declaration T D
specifies the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type
“derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type” for ident.

For example, void (__attribute__((noreturn)) ****f)(); specifies the type
“pointer to pointer to pointer to pointer to non-returning function returning void”. As
another example, char *__attribute__((aligned(8))) *f; specifies the type “pointer to
8-byte-aligned pointer to char”. Note again that this describes intended future semantics,
not current implementation.

5.28 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-
prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

176 Using and Porting the GNU Compiler Collection (GCC)

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{
return x == 0;

}

Suppose the type uid_t happens to be short. ISO C does not allow this example,
because subword arguments in old-style non-prototype definitions are promoted. Therefore
in this example the function definition’s argument is really an int, which does not match
the prototype argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int
isroot (uid_t x)
{
return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

5.29 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until the
end of the line. Many other C implementations allow such comments, and they are likely to
be in a future C standard. However, C++ style comments are not recognized if you specify
‘-ansi’, a ‘-std’ option specifying a version of ISO C before C99, or ‘-traditional’, since
they are incompatible with traditional constructs like dividend//*comment*/divisor.

5.30 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many
traditional C implementations allow such identifiers. However, dollar signs in identifiers are
not supported on a few target machines, typically because the target assembler does not
allow them.

Chapter 5: Extensions to the C Language Family 177

5.31 The Character 〈ESC〉 in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII
character 〈ESC〉.

5.32 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type
even at an odd addresses. For these machines, __alignof__ reports the recommended
alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the
largest alignment that the lvalue is known to have. It may have this alignment as a result of
its data type, or because it is part of a structure and inherits alignment from that structure.
For example, after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __alignof__ (int),
even though the data type of foo1.y does not itself demand any alignment.

It is an error to ask for the alignment of an incomplete type.
A related feature which lets you specify the alignment of an object is __attribute__

((aligned (alignment))); see the following section.

5.33 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or
structure fields. This keyword is followed by an attribute specification inside double paren-
theses. Eight attributes are currently defined for variables: aligned, mode, nocommon,
packed, section, transparent_union, unused, and weak. Some other attributes are de-
fined for variables on particular target systems. Other attributes are available for functions
(see Section 5.26 [Function Attributes], page 166) and for types (see Section 5.34 [Type
Attributes], page 181). Other front ends might define more attributes (see Chapter 6 [Ex-
tensions to the C++ Language], page 199).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

See Section 5.27 [Attribute Syntax], page 173, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

178 Using and Porting the GNU Compiler Collection (GCC)

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces
the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of func-
tions is determined by the machine’s requirements and cannot be changed. You
cannot specify alignment for a typedef name because such a name is just an
alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure field. Alter-
natively, you can leave out the alignment factor and just ask the compiler to
align a variable or field to the maximum useful alignment for the target machine
you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or fields
that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

mode (mode)
This attribute specifies the data type for the declaration—whichever type cor-
responds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.

You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode
corresponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-
word integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent
pointers.

Chapter 5: Extensions to the C Language Family 179

nocommon This attribute specifies requests GCC not to place a variable “common” but
instead to allocate space for it directly. If you specify the ‘-fno-common’ flag,
GCC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initialization of
zeros. A variable may only be initialized in one source file.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows
a:

struct foo
{
char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives
in a particular section. For example, this small program uses several specific
section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data __attribute__ ((section ("INITDATA"))) = 0;

main()
{
/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable,
as shown in the example. GCC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,
with the exception that uninitialized variables tentatively go in the common (or

180 Using and Porting the GNU Compiler Collection (GCC)

bss) section and can be multiply “defined”. You can force a variable to be
initialized with the ‘-fno-common’ flag or the nocommon attribute.
Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

shared On Windows NT, in addition to putting variable definitions in a named section,
the section can also be shared among all running copies of an executable or DLL.
For example, this small program defines shared data by putting it in a named
section shared and marking the section shareable:

int foo __attribute__((section ("shared"), shared)) = 0;

int
main()
{

/* Read and write foo. All running
copies see the same value. */

return 0;
}

You may only use the shared attribute along with section attribute with a
fully initialized global definition because of the way linkers work. See section
attribute for more information.
The shared attribute is only available on Windows NT.

transparent_union
This attribute, attached to a function parameter which is a union, means that
the corresponding argument may have the type of any union member, but the
argument is passed as if its type were that of the first union member. For more
details see See Section 5.34 [Type Attributes], page 181. You can also use this
attribute on a typedef for a union data type; then it applies to all function
parameters with that type.

unused This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GCC will not produce a warning for this variable.

weak The weak attribute is described in See Section 5.26 [Function Attributes],
page 166.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of
the code models.
Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction).
Medium and large model objects may live anywhere in the 32-bit address space
(the compiler will generate seth/add3 instructions to load their addresses).

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

Chapter 5: Extensions to the C Language Family 181

5.34 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and
union types when you define such types. This keyword is followed by an attribute specifi-
cation inside double parentheses. Four attributes are currently defined for types: aligned,
packed, transparent_union, and unused. Other attributes are defined for functions (see
Section 5.26 [Function Attributes], page 166) and for variables (see Section 5.33 [Variable
Attributes], page 177).

You may also specify any one of these attributes with ‘__’ preceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify the aligned and transparent_union attributes either in a typedef
declaration or just past the closing curly brace of a complete enum, struct or union type
definition and the packed attribute only past the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag and the name of
the type rather than after the closing brace.

See Section 5.27 [Attribute Syntax], page 173, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to insure (as far as it can) that each variable whose type
is struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary. On a Sparc, having all variables of type struct S aligned to
8-byte boundaries allows the compiler to use the ldd and std (doubleword load
and store) instructions when copying one variable of type struct S to another,
thus improving run-time efficiency.
Note that the alignment of any given struct or union type is required by the
ISO C standard to be at least a perfect multiple of the lowest common multiple
of the alignments of all of the members of the struct or union in question. This
means that you can effectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.
As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

182 Using and Porting the GNU Compiler Collection (GCC)

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the type to the largest
alignment which is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more efficient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables which have types that
you have aligned this way.
In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater
than or equal to that is 8, so the compiler sets the alignment for the entire
struct S type to 8 bytes.
Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (efficiently
aligned) type. If you declare or use arrays of variables of an efficiently-aligned
type, then it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the relevant type,
and the code that the compiler generates for these pointer arithmetic operations
will often be more efficient for efficiently-aligned types than for other types.
The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

packed This attribute, attached to an enum, struct, or union type definition, specified
that the minimum required memory be used to represent the type.
Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the ‘-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.
You may only specify this attribute after a closing curly brace on an enum
definition, not in a typedef declaration, unless that declaration also contains
the definition of the enum.

transparent_union
This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in
a special way.
First, the argument corresponding to a transparent union type can be of any
type in the union; no cast is required. Also, if the union contains a pointer type,
the corresponding argument can be a null pointer constant or a void pointer

Chapter 5: Extensions to the C Language Family 183

expression; and if the union contains a void pointer type, the corresponding
argument can be any pointer expression. If the union member type is a pointer,
qualifiers like const on the referenced type must be respected, just as with
normal pointer conversions.
Second, the argument is passed to the function using the calling conventions of
first member of the transparent union, not the calling conventions of the union
itself. All members of the union must have the same machine representation;
this is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that have multiple inter-
faces for compatibility reasons. For example, suppose the wait function must
accept either a value of type int * to comply with Posix, or a value of type
union wait * to comply with the 4.1BSD interface. If wait’s parameter were
void *, wait would accept both kinds of arguments, but it would also accept
any other pointer type and this would make argument type checking less useful.
Instead, <sys/wait.h> might define the interface as follows:

typedef union
{

int *__ip;
union wait *__up;

} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed,
using the int * calling convention. The program can call wait with arguments
of either type:

int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }

With this interface, wait’s implementation might look like this:
pid_t wait (wait_status_ptr_t p)
{
return waitpid (-1, p.__ip, 0);

}

unused When attached to a type (including a union or a struct), this attribute means
that variables of that type are meant to appear possibly unused. GCC will not
produce a warning for any variables of that type, even if the variable appears to
do nothing. This is often the case with lock or thread classes, which are usually
defined and then not referenced, but contain constructors and destructors that
have nontrivial bookkeeping functions.

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

5.35 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to integrate that function’s code
into the code for its callers. This makes execution faster by eliminating the function-call

184 Using and Porting the GNU Compiler Collection (GCC)

overhead; in addition, if any of the actual argument values are constant, their known values
may permit simplifications at compile time so that not all of the inline function’s code needs
to be included. The effect on code size is less predictable; object code may be larger or
smaller with function inlining, depending on the particular case. Inlining of functions is an
optimization and it really “works” only in optimizing compilation. If you don’t use ‘-O’, no
function is really inline.

Inline functions are included in the ISO C99 standard, but there are currently substantial
differences between what GCC implements and what the ISO C99 standard requires.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
(*a)++;

}

(If you are writing a header file to be included in ISO C programs, write __inline__
instead of inline. See Section 5.39 [Alternate Keywords], page 193.) You can also make
all “simple enough” functions inline with the option ‘-finline-functions’.

Note that certain usages in a function definition can make it unsuitable for inline sub-
stitution. Among these usages are: use of varargs, use of alloca, use of variable sized data
types (see Section 5.14 [Variable Length], page 159), use of computed goto (see Section 5.3
[Labels as Values], page 151), use of nonlocal goto, and nested functions (see Section 5.4
[Nested Functions], page 152). Using ‘-Winline’ will warn when a function marked inline
could not be substituted, and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyword does not affect the
linkage of the function.

GCC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
‘-fno-default-inline’; see Section 3.5 [Options Controlling C++ Dialect], page 23.)

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function’s address is never used, then the function’s own assembler
code is never referenced. In this case, GCC does not actually output assembler code for
the function, unless you specify the option ‘-fkeep-inline-functions’. Some calls cannot
be integrated for various reasons (in particular, calls that precede the function’s definition
cannot be integrated, and neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can’t be
inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program,
the function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you refer

Chapter 5: Extensions to the C Language Family 185

to its address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to
use it is to put a function definition in a header file with these keywords, and put another
copy of the definition (lacking inline and extern) in a library file. The definition in the
header file will cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

For future compatibility with when GCC implements ISO C99 semantics for inline func-
tions, it is best to use static inline only. (The existing semantics will remain available
when ‘-std=gnu89’ is specified, but eventually the default will be ‘-std=gnu99’ and that
will implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing. It is not clear whether it is
better to inline or not, in this case, but we found that a correct implementation when not
optimizing was difficult. So we did the easy thing, and turned it off.

5.36 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction
using C expressions. This means you need not guess which registers or memory locations
will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output
operand. Each has ‘"f"’ as its operand constraint, saying that a floating point register
is required. The ‘=’ in ‘=f’ indicates that the operand is an output; all output operands’
constraints must use ‘=’. The constraints use the same language used in the machine
description (see Section 20.7 [Constraints], page 360).

Each operand is described by an operand-constraint string followed by the C expression
in parentheses. A colon separates the assembler template from the first output operand and
another separates the last output operand from the first input, if any. Commas separate
the operands within each group. The total number of operands is limited to ten or to
the maximum number of operands in any instruction pattern in the machine description,
whichever is greater.

If there are no output operands but there are input operands, you must place two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means or even whether it is valid assembler
input. The extended asm feature is most often used for machine instructions the compiler
itself does not know exist. If the output expression cannot be directly addressed (for exam-
ple, it is a bit-field), your constraint must allow a register. In that case, GCC will use the
register as the output of the asm, and then store that register into the output.

186 Using and Porting the GNU Compiler Collection (GCC)

The ordinary output operands must be write-only; GCC will assume that the values in
these operands before the instruction are dead and need not be generated. Extended asm
supports input-output or read-write operands. Use the constraint character ‘+’ to indicate
such an operand and list it with the output operands.

When the constraints for the read-write operand (or the operand in which only some of
the bits are to be changed) allows a register, you may, as an alternative, logically split its
function into two separate operands, one input operand and one write-only output operand.
The connection between them is expressed by constraints which say they need to be in the
same location when the instruction executes. You can use the same C expression for both
operands, or different expressions. For example, here we write the (fictitious) ‘combine’
instruction with bar as its read-only source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand and it must refer to an output
operand.

Only a digit in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to guarantee
that they will be in the same place in the generated assembler code. The following would
not work reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different reg-
isters; GCC knows no reason not to do so. For example, the compiler might find a copy of
the value of foo in one register and use it for operand 1, but generate the output operand
0 in a different register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the result will not work,
but GCC can’t tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given as
strings). Here is a realistic example for the VAX:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

You may not write a clobber description in a way that overlaps with an input or output
operand. For example, you may not have an operand describing a register class with one
member if you mention that register in the clobber list. There is no way for you to specify
that an input operand is modified without also specifying it as an output operand. Note
that if all the output operands you specify are for this purpose (and hence unused), you will
then also need to specify volatile for the asm construct, as described below, to prevent
GCC from deleting the asm statement as unused.

If you refer to a particular hardware register from the assembler code, you will probably
have to list the register after the third colon to tell the compiler the register’s value is
modified. In some assemblers, the register names begin with ‘%’; to produce one ‘%’ in the
assembler code, you must write ‘%%’ in the input.

Chapter 5: Extensions to the C Language Family 187

If your assembler instruction can alter the condition code register, add ‘cc’ to the list
of clobbered registers. GCC on some machines represents the condition codes as a specific
hardware register; ‘cc’ serves to name this register. On other machines, the condition code
is handled differently, and specifying ‘cc’ has no effect. But it is valid no matter what the
machine.

If your assembler instruction modifies memory in an unpredictable fashion, add ‘memory’
to the list of clobbered registers. This will cause GCC to not keep memory values cached in
registers across the assembler instruction. You will also want to add the volatile keyword
if the memory affected is not listed in the inputs or outputs of the asm, as the ‘memory’
clobber does not count as a side-effect of the asm.

You can put multiple assembler instructions together in a single asm template, separated
by the characters normally used in assembly code for the system. A combination that works
in most places is a newline to break the line, plus a tab character to move to the instruc-
tion field (written as ‘\n\t’). Sometimes semicolons can be used, if the assembler allows
semicolons as a line-breaking character. Note that some assembler dialects use semicolons
to start a comment. The input operands are guaranteed not to use any of the clobbered
registers, and neither will the output operands’ addresses, so you can read and write the
clobbered registers as many times as you like. Here is an example of multiple instructions
in a template; it assumes the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GCC may allocate it in the
same register as an unrelated input operand, on the assumption the inputs are consumed
before the outputs are produced. This assumption may be false if the assembler code
actually consists of more than one instruction. In such a case, use ‘&’ for each output
operand that may not overlap an input. See Section 20.7.4 [Modifiers], page 365.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

188 Using and Porting the GNU Compiler Collection (GCC)

Here the variable __arg is used to make sure that the instruction operates on a proper
double value, and to accept only those arguments x which can convert automatically to a
double.

Another way to make sure the instruction operates on the correct data type is to use
a cast in the asm. This is different from using a variable __arg in that it converts more
different types. For example, if the desired type were int, casting the argument to int
would accept a pointer with no complaint, while assigning the argument to an int variable
named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction
has no side effects except to change the output operands. This does not mean instructions
with a side effect cannot be used, but you must be careful, because the compiler may
eliminate them if the output operands aren’t used, or move them out of loops, or replace
two with one if they constitute a common subexpression. Also, if your instruction does
have a side effect on a variable that otherwise appears not to change, the old value of the
variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined,
by writing the keyword volatile after the asm. For example:

#define get_and_set_priority(new) \
({ int __old; \

asm volatile ("get_and_set_priority %0, %1" \
: "=g" (__old) : "g" (new)); \

__old; })

If you write an asm instruction with no outputs, GCC will know the instruction has side-
effects and will not delete the instruction or move it outside of loops.

The volatile keyword indicates that the instruction has important side-effects. GCC
will not delete a volatile asm if it is reachable. (The instruction can still be deleted if GCC
can prove that control-flow will never reach the location of the instruction.) In addition,
GCC will not reschedule instructions across a volatile asm instruction. For example:

*(volatile int *)addr = foo;
asm volatile ("eieio" : :);

Assume addr contains the address of a memory mapped device register. The PowerPC
eieio instruction (Enforce In-order Execution of I/O) tells the CPU to make sure that the
store to that device register happens before it issues any other I/O.

Note that even a volatile asm instruction can be moved in ways that appear insignificant
to the compiler, such as across jump instructions. You can’t expect a sequence of volatile
asm instructions to remain perfectly consecutive. If you want consecutive output, use a
single asm. Also, GCC will perform some optimizations across a volatile asm instruction;
GCC does not “forget everything” when it encounters a volatile asm instruction the way
some other compilers do.

An asm instruction without any operands or clobbers (an “old style” asm) will be treated
identically to a volatile asm instruction.

It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no way
to make it work reliably. The problem is that output operands might need reloading,
which would result in additional following “store” instructions. On most machines, these

Chapter 5: Extensions to the C Language Family 189

instructions would alter the condition code before there was time to test it. This problem
doesn’t arise for ordinary “test” and “compare” instructions because they don’t have any
output operands.

For reasons similar to those described above, it is not possible to give an assembler
instruction access to the condition code left by previous instructions.

If you are writing a header file that should be includable in ISO C programs, write
__asm__ instead of asm. See Section 5.39 [Alternate Keywords], page 193.

5.36.1 i386 floating point asm operands

There are several rules on the usage of stack-like regs in asm operands insns. These rules
apply only to the operands that are stack-like regs:
1. Given a set of input regs that die in an asm operands, it is necessary to know which

are implicitly popped by the asm, and which must be explicitly popped by gcc.
An input reg that is implicitly popped by the asm must be explicitly clobbered, unless
it is constrained to match an output operand.

2. For any input reg that is implicitly popped by an asm, it is necessary to know how to
adjust the stack to compensate for the pop. If any non-popped input is closer to the
top of the reg-stack than the implicitly popped reg, it would not be possible to know
what the stack looked like—it’s not clear how the rest of the stack “slides up”.
All implicitly popped input regs must be closer to the top of the reg-stack than any
input that is not implicitly popped.
It is possible that if an input dies in an insn, reload might use the input reg for an
output reload. Consider this example:

asm ("foo" : "=t" (a) : "f" (b));

This asm says that input B is not popped by the asm, and that the asm pushes a result
onto the reg-stack, i.e., the stack is one deeper after the asm than it was before. But,
it is possible that reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.
If any input operand uses the f constraint, all output reg constraints must use the &
earlyclobber.
The asm above would be written as

asm ("foo" : "=&t" (a) : "f" (b));

3. Some operands need to be in particular places on the stack. All output operands fall in
this category—there is no other way to know which regs the outputs appear in unless
the user indicates this in the constraints.
Output operands must specifically indicate which reg an output appears in after an
asm. =f is not allowed: the operand constraints must select a class with a single reg.

4. Output operands may not be “inserted” between existing stack regs. Since no 387 op-
code uses a read/write operand, all output operands are dead before the asm operands,
and are pushed by the asm operands. It makes no sense to push anywhere but the top
of the reg-stack.
Output operands must start at the top of the reg-stack: output operands may not
“skip” a reg.

190 Using and Porting the GNU Compiler Collection (GCC)

5. Some asm statements may need extra stack space for internal calculations. This can
be guaranteed by clobbering stack registers unrelated to the inputs and outputs.

Here are a couple of reasonable asms to want to write. This asm takes one input, which
is internally popped, and produces two outputs.

asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces
them with one output. The user must code the st(1) clobber for reg-stack.c to know that
fyl2xp1 pops both inputs.

asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");

5.37 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable
by writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should
be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to define names for the linker that do not start with an
underscore.

It does not make sense to use this feature with a non-static local variable since such
variables do not have assembler names. If you are trying to put the variable in a particular
register, see Section 5.38 [Explicit Reg Vars], page 190. GCC presently accepts such code
with a warning, but will probably be changed to issue an error, rather than a warning, in
the future.

You cannot use asm in this way in a function definition; but you can get the same effect
by writing a declaration for the function before its definition and putting asm there, like
this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

It is up to you to make sure that the assembler names you choose do not conflict with
any other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GCC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.

5.38 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You
can also specify the register in which an ordinary register variable should be allocated.
• Global register variables reserve registers throughout the program. This may be useful

in programs such as programming language interpreters which have a couple of global
variables that are accessed very often.

Chapter 5: Extensions to the C Language Family 191

• Local register variables in specific registers do not reserve the registers. The compiler’s
data flow analysis is capable of determining where the specified registers contain live
values, and where they are available for other uses. Stores into local register variables
may be deleted when they appear to be dead according to dataflow analysis. References
to local register variables may be deleted or moved or simplified.

These local variables are sometimes convenient for use with the extended asm feature
(see Section 5.36 [Extended Asm], page 185), if you want to write one output of the
assembler instruction directly into a particular register. (This will work provided the
register you specify fits the constraints specified for that operand in the asm.)

5.38.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is
normally saved and restored by function calls on your machine, so that library routines will
not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The register a5 would be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically,
but first we need to figure out how it should choose and how to enable you to guide the
choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of this
variable (i.e. in a different source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t expect
a global register variable to be available in the comparison-function that you pass to qsort,
since qsort might have put something else in that register. (If you are prepared to recompile
qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your
global register variable, so that they will not use that register for any other purpose, then

192 Using and Porting the GNU Compiler Collection (GCC)

it suffices to specify the compiler option ‘-ffixed-reg ’. You need not actually add a global
register declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to find there on return. Therefore, the function which is the entry point into the
part of the program that uses the global register variable must explicitly save and restore
the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had
at the time of the setjmp. On some machines, however, longjmp will not change the value
of global register variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables, and to restore them
in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such
a declaration could appear after function definitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3
and g4. g1 and g2 are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not
do to use more than a few of those.

5.38.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax
used for defining global register variables, but for a local variable it would appear within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific
registers are most often useful with explicit assembler instructions (see Section 5.36 [Ex-
tended Asm], page 185). Both of these things generally require that you conditionalize your
program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live. However,
these registers are made unavailable for use in the reload pass; excessive use of this feature
leaves the compiler too few available registers to compile certain functions.

This option does not guarantee that GCC will generate code that has this variable in
the register you specify at all times. You may not code an explicit reference to this register
in an asm statement and assume it will always refer to this variable.

Chapter 5: Extensions to the C Language Family 193

Stores into local register variables may be deleted when they appear to be dead according
to dataflow analysis. References to local register variables may be deleted or moved or
simplified.

5.39 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ and the various ‘-std’
options disable certain others. This causes trouble when you want to use GNU C extensions,
or ISO C features, in a general-purpose header file that should be usable by all programs,
including ISO C programs and traditional ones. The keywords asm, typeof and inline
cannot be used since they won’t work in a program compiled with ‘-ansi’ (although inline
can be used in a program compiled with ‘-std=c99’), while the keywords const, volatile,
signed, typeof and inline won’t work in a program compiled with ‘-traditional’. The
ISO C99 keyword restrict is only available when ‘-std=gnu99’ (which will eventually be
the default) or ‘-std=c99’ (or the equivalent ‘-std=iso9899:1999’) is used.

The way to solve these problems is to put ‘__’ at the beginning and end of each prob-
lematical keyword. For example, use __asm__ instead of asm, __const__ instead of const,
and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with
the customary keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

‘-pedantic’ and other options cause warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing __extension__ before the expression.
__extension__ has no effect aside from this.

5.40 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an
incomplete type, much like what you get if you write struct foo without describing the
elements. A later declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However,
you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

5.41 Function Names as Strings

GCC predefines two magic identifiers to hold the name of the current function. The
identifier __FUNCTION__ holds the name of the function as it appears in the source. The
identifier __PRETTY_FUNCTION__ holds the name of the function pretty printed in a language
specific fashion.

194 Using and Porting the GNU Compiler Collection (GCC)

These names are always the same in a C function, but in a C++ function they may be
different. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

class a {
public:
sub (int i)

{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int
main (void)
{
a ax;
ax.sub (0);
return 0;

}

gives this output:
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

The compiler automagically replaces the identifiers with a string literal containing the
appropriate name. Thus, they are neither preprocessor macros, like __FILE__ and __LINE_
_, nor variables. This means that they catenate with other string literals, and that they
can be used to initialize char arrays. For example

char here[] = "Function " __FUNCTION__ " in " __FILE__;

On the other hand, ‘#ifdef __FUNCTION__’ does not have any special meaning in-
side a function, since the preprocessor does not do anything special with the identifier
__FUNCTION__.

GCC also supports the magic word __func__, defined by the ISO standard C99:
The identifier __func__ is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function.

By this definition, __func__ is a variable, not a string literal. In particular, __func__
does not catenate with other string literals.

In C++, __FUNCTION__ and __PRETTY_FUNCTION__ are variables, declared in the same
way as __func__.

Chapter 5: Extensions to the C Language Family 195

5.42 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

Built-in Functionvoid * __builtin_return_address (unsigned int level)
This function returns the return address of the current function, or of one of its callers.
The level argument is number of frames to scan up the call stack. A value of 0 yields
the return address of the current function, a value of 1 yields the return address of
the caller of the current function, and so forth.
The level argument must be a constant integer.
On some machines it may be impossible to determine the return address of any
function other than the current one; in such cases, or when the top of the stack has
been reached, this function will return 0 or a random value. In addition, __builtin_
frame_address may be used to determine if the top of the stack has been reached.
This function should only be used with a non-zero argument for debugging purposes.

Built-in Functionvoid * __builtin_frame_address (unsigned int level)
This function is similar to __builtin_return_address, but it returns the address of
the function frame rather than the return address of the function. Calling __builtin_
frame_address with a value of 0 yields the frame address of the current function, a
value of 1 yields the frame address of the caller of the current function, and so forth.
The frame is the area on the stack which holds local variables and saved registers.
The frame address is normally the address of the first word pushed on to the stack
by the function. However, the exact definition depends upon the processor and the
calling convention. If the processor has a dedicated frame pointer register, and the
function has a frame, then __builtin_frame_address will return the value of the
frame pointer register.
On some machines it may be impossible to determine the frame address of any function
other than the current one; in such cases, or when the top of the stack has been
reached, this function will return 0 if the first frame pointer is properly initialized by
the startup code.
This function should only be used with a non-zero argument for debugging purposes.

5.43 Other built-in functions provided by GCC

GCC provides a large number of built-in functions other than the ones mentioned above.
Some of these are for internal use in the processing of exceptions or variable-length argument
lists and will not be documented here because they may change from time to time; we do
not recommend general use of these functions.

The remaining functions are provided for optimization purposes.
GCC includes built-in versions of many of the functions in the standard C library. The

versions prefixed with __builtin_ will always be treated as having the same meaning as
the C library function even if you specify the ‘-fno-builtin’ (see Section 3.4 [C Dialect
Options], page 18) option. Many of these functions are only optimized in certain cases; if
not optimized in a particular case, a call to the library function will be emitted.

196 Using and Porting the GNU Compiler Collection (GCC)

The functions abort, exit, _Exit and _exit are recognized and presumed not to
return, but otherwise are not built in. _exit is not recognized in strict ISO C mode
(‘-ansi’, ‘-std=c89’ or ‘-std=c99’). _Exit is not recognized in strict C89 mode (‘-ansi’
or ‘-std=c89’).

Outside strict ISO C mode, the functions alloca, bcmp, bzero, index, rindex and
ffs may be handled as built-in functions. Corresponding versions __builtin_alloca, __
builtin_bcmp, __builtin_bzero, __builtin_index, __builtin_rindex and __builtin_
ffs are also recognized in strict ISO C mode.

The ISO C99 functions conj, conjf, conjl, creal, crealf, creall, cimag, cimagf,
cimagl, llabs and imaxabs are handled as built-in functions except in strict ISO C89
mode. There are also built-in versions of the ISO C99 functions cosf, cosl, fabsf, fabsl,
sinf, sinl, sqrtf, and sqrtl, that are recognized in any mode since ISO C89 reserves these
names for the purpose to which ISO C99 puts them. All these functions have corresponding
versions prefixed with __builtin_.

The following ISO C89 functions are recognized as built-in functions unless
‘-fno-builtin’ is specified: abs, cos, fabs, fprintf, fputs, labs, memcmp, memcpy,
memset, printf, sin, sqrt, strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, and strstr. All of these functions have
corresponding versions prefixed with __builtin_, except that the version for sqrt is
called __builtin_fsqrt.

GCC provides built-in versions of the ISO C99 floating point comparison macros
(that avoid raising exceptions for unordered operands): __builtin_isgreater,
__builtin_isgreaterequal, __builtin_isless, __builtin_islessequal, __builtin_
islessgreater, and __builtin_isunordered.

Built-in Functionint __builtin_constant_p (exp)
You can use the built-in function __builtin_constant_p to determine if a value is
known to be constant at compile-time and hence that GCC can perform constant-
folding on expressions involving that value. The argument of the function is the value
to test. The function returns the integer 1 if the argument is known to be a compile-
time constant and 0 if it is not known to be a compile-time constant. A return of 0
does not indicate that the value is not a constant, but merely that GCC cannot prove
it is a constant with the specified value of the ‘-O’ option.

You would typically use this function in an embedded application where memory was
a critical resource. If you have some complex calculation, you may want it to be
folded if it involves constants, but need to call a function if it does not. For example:

#define Scale_Value(X) \
(__builtin_constant_p (X) \
? ((X) * SCALE + OFFSET) : Scale (X))

You may use this built-in function in either a macro or an inline function. However, if
you use it in an inlined function and pass an argument of the function as the argument
to the built-in, GCC will never return 1 when you call the inline function with a string
constant or compound literal (see Section 5.21 [Compound Literals], page 162) and
will not return 1 when you pass a constant numeric value to the inline function unless
you specify the ‘-O’ option.

Chapter 5: Extensions to the C Language Family 197

You may also use __builtin_constant_p in initializers for static data. For instance,
you can write

static const int table[] = {
__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
/* ... */

};

This is an acceptable initializer even if EXPRESSION is not a constant expression.
GCC must be more conservative about evaluating the built-in in this case, because it
has no opportunity to perform optimization.
Previous versions of GCC did not accept this built-in in data initializers. The earliest
version where it is completely safe is 3.0.1.

Built-in Functionlong __builtin_expect (long exp, long c)
You may use __builtin_expect to provide the compiler with branch prediction
information. In general, you should prefer to use actual profile feedback for this
(‘-fprofile-arcs’), as programmers are notoriously bad at predicting how their
programs actually perform. However, there are applications in which this data is
hard to collect.
The return value is the value of exp, which should be an integral expression. The
value of c must be a compile-time constant. The semantics of the built-in are that it
is expected that exp == c. For example:

if (__builtin_expect (x, 0))
foo ();

would indicate that we do not expect to call foo, since we expect x to be zero. Since
you are limited to integral expressions for exp, you should use constructions such as

if (__builtin_expect (ptr != NULL, 1))
error ();

when testing pointer or floating-point values.

5.44 Pragmas Accepted by GCC

GCC supports several types of pragmas, primarily in order to compile code originally
written for other compilers. Note that in general we do not recommend the use of pragmas;
See Section 5.26 [Function Attributes], page 166, for further explanation.

5.44.1 ARM Pragmas

The ARM target defines pragmas for controlling the default addition of long_call and
short_call attributes to functions. See Section 5.26 [Function Attributes], page 166, for
information about the effects of these attributes.

long_calls
Set all subsequent functions to have the long_call attribute.

no_long_calls
Set all subsequent functions to have the short_call attribute.

long_calls_off
Do not affect the long_call or short_call attributes of subsequent functions.

198 Using and Porting the GNU Compiler Collection (GCC)

5.44.2 Darwin Pragmas

The following pragmas are available for all architectures running the Darwin operating
system. These are useful for compatibility with other MacOS compilers.

mark tokens...
This pragma is accepted, but has no effect.

options align=alignment
This pragma sets the alignment of fields in structures. The values of alignment
may be mac68k, to emulate m68k alignment, or power, to emulate PowerPC
alignment. Uses of this pragma nest properly; to restore the previous setting,
use reset for the alignment.

segment tokens...
This pragma is accepted, but has no effect.

unused (var [, var]...)
This pragma declares variables to be possibly unused. GCC will not produce
warnings for the listed variables. The effect is similar to that of the unused
attribute, except that this pragma may appear anywhere within the variables’
scopes.

Chapter 6: Extensions to the C++ Language 199

6 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also
use most of the C language extensions in your C++ programs). If you want to write code
that checks whether these features are available, you can test for the GNU compiler the
same way as for C programs: check for a predefined macro __GNUC__. You can also use
__GNUG__ to test specifically for GNU C++ (see section “Standard Predefined Macros” in
The C Preprocessor).

6.1 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum”
of two arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the numeric values a and b;

a >? b is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return
the minimum of two things in C++, as in the following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum value of variables
i and j.

However, side effects in X or Y may cause unintended behavior. For example, MIN (i++,
j++) will fail, incrementing the smaller counter twice. A GNU C extension allows you to
write safe macros that avoid this kind of problem (see Section 5.6 [Naming an Expression’s
Type], page 154). However, writing MIN and MAX as macros also forces you to use function-
call notation for a fundamental arithmetic operation. Using GNU C++ extensions, you can
write ‘int min = i <? j;’ instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-
effects; ‘int min = i++ <? j++;’ works correctly.

6.2 When is a Volatile Object Accessed?

Both the C and C++ standard have the concept of volatile objects. These are normally
accessed by pointers and used for accessing hardware. The standards encourage compilers to
refrain from optimizations concerning accesses to volatile objects that it might perform on
non-volatile objects. The C standard leaves it implementation defined as to what constitutes
a volatile access. The C++ standard omits to specify this, except to say that C++ should
behave in a similar manner to C with respect to volatiles, where possible. The minimum
either standard specifies is that at a sequence point all previous accesses to volatile objects
have stabilized and no subsequent accesses have occurred. Thus an implementation is free
to reorder and combine volatile accesses which occur between sequence points, but cannot
do so for accesses across a sequence point. The use of volatiles does not allow you to violate
the restriction on updating objects multiple times within a sequence point.

In most expressions, it is intuitively obvious what is a read and what is a write. For
instance

200 Using and Porting the GNU Compiler Collection (GCC)

volatile int *dst = somevalue;
volatile int *src = someothervalue;
*dst = *src;

will cause a read of the volatile object pointed to by src and stores the value into the volatile
object pointed to by dst. There is no guarantee that these reads and writes are atomic,
especially for objects larger than int.

Less obvious expressions are where something which looks like an access is used in a void
context. An example would be,

volatile int *src = somevalue;
*src;

With C, such expressions are rvalues, and as rvalues cause a read of the object, GCC
interprets this as a read of the volatile being pointed to. The C++ standard specifies that
such expressions do not undergo lvalue to rvalue conversion, and that the type of the
dereferenced object may be incomplete. The C++ standard does not specify explicitly that
it is this lvalue to rvalue conversion which is responsible for causing an access. However,
there is reason to believe that it is, because otherwise certain simple expressions become
undefined. However, because it would surprise most programmers, G++ treats dereferencing
a pointer to volatile object of complete type in a void context as a read of the object. When
the object has incomplete type, G++ issues a warning.

struct S;
struct T {int m;};
volatile S *ptr1 = somevalue;
volatile T *ptr2 = somevalue;
*ptr1;
*ptr2;

In this example, a warning is issued for *ptr1, and *ptr2 causes a read of the object
pointed to. If you wish to force an error on the first case, you must force a conversion to
rvalue with, for instance a static cast, static_cast<S>(*ptr1).

When using a reference to volatile, G++ does not treat equivalent expressions as accesses
to volatiles, but instead issues a warning that no volatile is accessed. The rationale for
this is that otherwise it becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile references. Again, if
you wish to force a read, cast the reference to an rvalue.

6.3 Restricting Pointer Aliasing

As with gcc, g++ understands the C99 feature of restricted pointers, specified with the _
_restrict__, or __restrict type qualifier. Because you cannot compile C++ by specifying
the ‘-std=c99’ language flag, restrict is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted references, which
indicate that the reference is not aliased in the local context.

void fn (int *__restrict__ rptr, int &__restrict__ rref)
{
...

}

Chapter 6: Extensions to the C++ Language 201

In the body of fn, rptr points to an unaliased integer and rref refers to a (different) unaliased
integer.

You may also specify whether a member function’s this pointer is unaliased by using
__restrict__ as a member function qualifier.

void T::fn () __restrict__
{
...

}

Within the body of T::fn, this will have the effective definition T *__restrict__ const
this. Notice that the interpretation of a __restrict__ member function qualifier is differ-
ent to that of const or volatile qualifier, in that it is applied to the pointer rather than
the object. This is consistent with other compilers which implement restricted pointers.

As with all outermost parameter qualifiers, __restrict__ is ignored in function defini-
tion matching. This means you only need to specify __restrict__ in a function definition,
rather than in a function prototype as well.

6.4 Vague Linkage

There are several constructs in C++ which require space in the object file but are not
clearly tied to a single translation unit. We say that these constructs have “vague linkage”.
Typically such constructs are emitted wherever they are needed, though sometimes we can
be more clever.

Inline Functions
Inline functions are typically defined in a header file which can be included
in many different compilations. Hopefully they can usually be inlined, but
sometimes an out-of-line copy is necessary, if the address of the function is taken
or if inlining fails. In general, we emit an out-of-line copy in all translation units
where one is needed. As an exception, we only emit inline virtual functions with
the vtable, since it will always require a copy.
Local static variables and string constants used in an inline function are also
considered to have vague linkage, since they must be shared between all inlined
and out-of-line instances of the function.

VTables C++ virtual functions are implemented in most compilers using a lookup table,
known as a vtable. The vtable contains pointers to the virtual functions pro-
vided by a class, and each object of the class contains a pointer to its vtable (or
vtables, in some multiple-inheritance situations). If the class declares any non-
inline, non-pure virtual functions, the first one is chosen as the “key method”
for the class, and the vtable is only emitted in the translation unit where the
key method is defined.
Note: If the chosen key method is later defined as inline, the vtable will still
be emitted in every translation unit which defines it. Make sure that any inline
virtuals are declared inline in the class body, even if they are not defined there.

type info objects
C++ requires information about types to be written out in order to implement
‘dynamic_cast’, ‘typeid’ and exception handling. For polymorphic classes

202 Using and Porting the GNU Compiler Collection (GCC)

(classes with virtual functions), the type info object is written out along with
the vtable so that ‘dynamic_cast’ can determine the dynamic type of a class
object at runtime. For all other types, we write out the type info object when
it is used: when applying ‘typeid’ to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.

Template Instantiations
Most everything in this section also applies to template instantiations, but there
are other options as well. See Section 6.6 [Where’s the Template?], page 204.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or
Solaris 2, or on Microsoft Windows, duplicate copies of these constructs will be discarded
at link time. This is known as COMDAT support.

On targets that don’t support COMDAT, but do support weak symbols, GCC will use
them. This way one copy will override all the others, but the unused copies will still take
up space in the executable.

For targets which do not support either COMDAT or weak symbols, most entities with
vague linkage will be emitted as local symbols to avoid duplicate definition errors from the
linker. This will not happen for local statics in inlines, however, as having multiple copies
will almost certainly break things.

See Section 6.5 [Declarations and Definitions in One Header], page 202, for another way
to control placement of these constructs.

6.5 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need
two kinds of things for each object that you use across more than one source file. First, you
need an interface specification, describing its structure with type declarations and function
prototypes. Second, you need the implementation itself. It can be tedious to maintain a
separate interface description in a header file, in parallel to the actual implementation. It
is also dangerous, since separate interface and implementation definitions may not remain
parallel.

With GNU C++, you can use a single header file for both purposes.
Warning: The mechanism to specify this is in transition. For the nonce, you
must use one of two #pragma commands; in a future release of GNU C++, an
alternative mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with ‘#pragma interface’
in the source code. This allows the compiler to use the header file only as an interface
specification when ordinary source files incorporate it with #include. In the single source
file where the full implementation belongs, you can use either a naming convention or
‘#pragma implementation’ to indicate this alternate use of the header file.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to save space in
most of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,

Chapter 6: Extensions to the C++ Language 203

and the internal tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this pragma to avoid such
duplication. When a header file containing ‘#pragma interface’ is included in
a compilation, this auxiliary information will not be generated (unless the main
input source file itself uses ‘#pragma implementation’). Instead, the object
files will contain references to be resolved at link time.
The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should use ‘#pragma interface’. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.
If you use ‘#pragma implementation’ with no argument, it applies to an
include file with the same basename1 as your source file. For example, in
‘allclass.cc’, giving just ‘#pragma implementation’ by itself is equivalent
to ‘#pragma implementation "allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was treated as an im-
plementation file whenever you would include it from ‘allclass.cc’ even if
you never specified ‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.
If you use an explicit ‘#pragma implementation’, it must appear in your source
file before you include the affected header files.
Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use ‘#include’ to include the header
file; ‘#pragma implementation’ only specifies how to use the file—it doesn’t
actually include it.)
There is no way to split up the contents of a single header file into multiple
implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function
inlining.

If you define a class in a header file marked with ‘#pragma interface’, the effect on
a function defined in that class is similar to an explicit extern declaration—the compiler
emits no code at all to define an independent version of the function. Its definition is used
only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it
as ‘#pragma implementation’, the compiler emits code for the function itself; this defines
a version of the function that can be found via pointers (or by callers compiled without

1 A file’s basename was the name stripped of all leading path information and of trailing suffixes, such as
‘.h’ or ‘.C’ or ‘.cc’.

204 Using and Porting the GNU Compiler Collection (GCC)

inlining). If all calls to the function can be inlined, you can avoid emitting the function
by compiling with ‘-fno-implement-inlines’. If any calls were not inlined, you will get
linker errors.

6.6 Where’s the Template?

C++ templates are the first language feature to require more intelligence from the en-
vironment than one usually finds on a UNIX system. Somehow the compiler and linker
have to make sure that each template instance occurs exactly once in the executable if it is
needed, and not at all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template in-
stances in each translation unit that uses them, and the linker collapses them
together. The advantage of this model is that the linker only has to consider the
object files themselves; there is no external complexity to worry about. This
disadvantage is that compilation time is increased because the template code
is being compiled repeatedly. Code written for this model tends to include
definitions of all templates in the header file, since they must be seen to be
instantiated.

Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem
by creating the notion of a template repository, an automatically maintained
place where template instances are stored. A more modern version of the repos-
itory works as follows: As individual object files are built, the compiler places
any template definitions and instantiations encountered in the repository. At
link time, the link wrapper adds in the objects in the repository and compiles
any needed instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the system
linker; to implement the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complexity, and thus poten-
tial for error; for some code this can be just as transparent, but in practice
it can been very difficult to build multiple programs in one directory and one
program in multiple directories. Code written for this model tends to separate
definitions of non-inline member templates into a separate file, which should be
compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or
Solaris 2, or on Microsoft Windows, g++ supports the Borland model. On other systems,
g++ implements neither automatic model.

A future version of g++ will support a hybrid model whereby the compiler will emit
any instantiations for which the template definition is included in the compile, and store
template definitions and instantiation context information into the object file for the rest.
The link wrapper will extract that information as necessary and invoke the compiler to
produce the remaining instantiations. The linker will then combine duplicate instantiations.

Chapter 6: Extensions to the C++ Language 205

In the mean time, you have the following options for dealing with template instantiations:
1. Compile your template-using code with ‘-frepo’. The compiler will generate files with

the extension ‘.rpo’ listing all of the template instantiations used in the corresponding
object files which could be instantiated there; the link wrapper, ‘collect2’, will then
update the ‘.rpo’ files to tell the compiler where to place those instantiations and
rebuild any affected object files. The link-time overhead is negligible after the first
pass, as the compiler will continue to place the instantiations in the same files.
This is your best option for application code written for the Borland model, as it will
just work. Code written for the Cfront model will need to be modified so that the
template definitions are available at one or more points of instantiation; usually this is
as simple as adding #include <tmethods.cc> to the end of each template header.
For library code, if you want the library to provide all of the template instantiations
it needs, just try to link all of its object files together; the link will fail, but cause
the instantiations to be generated as a side effect. Be warned, however, that this may
cause conflicts if multiple libraries try to provide the same instantiations. For greater
control, use explicit instantiation as described in the next option.

2. Compile your code with ‘-fno-implicit-templates’ to disable the implicit generation
of template instances, and explicitly instantiate all the ones you use. This approach
requires more knowledge of exactly which instances you need than do the others, but it’s
less mysterious and allows greater control. You can scatter the explicit instantiations
throughout your program, perhaps putting them in the translation units where the
instances are used or the translation units that define the templates themselves; you
can put all of the explicit instantiations you need into one big file; or you can create
small files like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
template ostream& operator <<

(ostream&, const Foo<int>&);

for each of the instances you need, and create a template instantiation library from
those.
If you are using Cfront-model code, you can probably get away with not using
‘-fno-implicit-templates’ when compiling files that don’t ‘#include’ the member
template definitions.
If you use one big file to do the instantiations, you may want to compile it without
‘-fno-implicit-templates’ so you get all of the instances required by your explicit
instantiations (but not by any other files) without having to specify them as well.
g++ has extended the template instantiation syntax outlined in the Working Paper to
allow forward declaration of explicit instantiations (with extern), instantiation of the
compiler support data for a template class (i.e. the vtable) without instantiating any
of its members (with inline), and instantiation of only the static data members of a
template class, without the support data or member functions (with (static):

extern template int max (int, int);
inline template class Foo<int>;

206 Using and Porting the GNU Compiler Collection (GCC)

static template class Foo<int>;

3. Do nothing. Pretend g++ does implement automatic instantiation management. Code
written for the Borland model will work fine, but each translation unit will contain
instances of each of the templates it uses. In a large program, this can lead to an
unacceptable amount of code duplication.

4. Add ‘#pragma interface’ to all files containing template definitions. For each of these
files, add ‘#pragma implementation "filename"’ to the top of some ‘.C’ file which
‘#include’s it. Then compile everything with ‘-fexternal-templates’. The tem-
plates will then only be expanded in the translation unit which implements them (i.e.
has a ‘#pragma implementation’ line for the file where they live); all other files will
use external references. If you’re lucky, everything should work properly. If you get
undefined symbol errors, you need to make sure that each template instance which is
used in the program is used in the file which implements that template. If you don’t
have any use for a particular instance in that file, you can just instantiate it explicitly,
using the syntax from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you are using code
written for the Cfront model, the file containing a class template and the file containing
its member templates should be implemented in the same translation unit.
A slight variation on this approach is to instead use the flag ‘-falt-external-templates’;
this flag causes template instances to be emitted in the translation unit that im-
plements the header where they are first instantiated, rather than the one which
implements the file where the templates are defined. This header must be the same in
all translation units, or things are likely to break.
See Section 6.5 [Declarations and Definitions in One Header], page 202, for more dis-
cussion of these pragmas.

6.7 Extracting the function pointer from a bound pointer to
member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of
sorts to handle all the possible call mechanisms; the PMF needs to store information about
how to adjust the ‘this’ pointer, and if the function pointed to is virtual, where to find the
vtable, and where in the vtable to look for the member function. If you are using PMFs in
an inner loop, you should really reconsider that decision. If that is not an option, you can
extract the pointer to the function that would be called for a given object/PMF pair and
call it directly inside the inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a function pointer; on
most modern architectures, such a call defeats the branch prediction features of the CPU.
This is also true of normal virtual function calls.

The syntax for this extension is
extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

Chapter 6: Extensions to the C++ Language 207

fptr p = (fptr)(a.*fp);

For PMF constants (i.e. expressions of the form ‘&Klasse::Member’), no object is needed
to obtain the address of the function. They can be converted to function pointers directly:

fptr p1 = (fptr)(&A::foo);

You must specify ‘-Wno-pmf-conversions’ to use this extension.

6.8 C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

init_priority (priority)
In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions in a given
translation unit. No guarantee is made for initializations across translation
units. However, GNU C++ allows users to control the order of initialization
of objects defined at namespace scope with the init_priority attribute by
specifying a relative priority, a constant integral expression currently bounded
between 101 and 65535 inclusive. Lower numbers indicate a higher priority.
In the following example, A would normally be created before B, but the init_
priority attribute has reversed that order:

Some_Class A __attribute__ ((init_priority (2000)));
Some_Class B __attribute__ ((init_priority (543)));

Note that the particular values of priority do not matter; only their relative
ordering.

java_interface
This type attribute informs C++ that the class is a Java interface. It may
only be applied to classes declared within an extern "Java" block. Calls to
methods declared in this interface will be dispatched using GCJ’s interface table
mechanism, instead of regular virtual table dispatch.

6.9 Java Exceptions

The Java language uses a slightly different exception handling model from C++. Nor-
mally, GNU C++ will automatically detect when you are writing C++ code that uses Java
exceptions, and handle them appropriately. However, if C++ code only needs to execute de-
structors when Java exceptions are thrown through it, GCC will guess incorrectly. Sample
problematic code:

struct S { ~S(); };
extern void bar(); // is implemented in Java and may throw exceptions
void foo()
{
S s;
bar();

}

208 Using and Porting the GNU Compiler Collection (GCC)

The usual effect of an incorrect guess is a link failure, complaining of a missing routine
called ‘__gxx_personality_v0’.

You can inform the compiler that Java exceptions are to be used in a translation unit,
irrespective of what it might think, by writing ‘#pragma GCC java_exceptions’ at the head
of the file. This ‘#pragma’ must appear before any functions that throw or catch exceptions,
or run destructors when exceptions are thrown through them.

You cannot mix Java and C++ exceptions in the same translation unit. It is believed to
be safe to throw a C++ exception from one file through another file compiled for the for the
Java exception model, or vice versa, but there may be bugs in this area.

6.10 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at
a time when the C++ language was still evolving. Now that the C++ standard is complete,
some of those features are superseded by superior alternatives. Using the old features might
cause a warning in some cases that the feature will be dropped in the future. In other cases,
the feature might be gone already.

While the list below is not exhaustive, it documents some of the options that are now
deprecated:

-fexternal-templates
-falt-external-templates

These are two of the many ways for g++ to implement template instantiation.
See Section 6.6 [Template Instantiation], page 204. The C++ standard clearly
defines how template definitions have to be organized across implementation
units. g++ has an implicit instantiation mechanism that should work just fine
for standard-conforming code.

-fstrict-prototype
-fno-strict-prototype

Previously it was possible to use an empty prototype parameter list to indicate
an unspecified number of parameters (like C), rather than no parameters, as
C++ demands. This feature has been removed, except where it is required for
backwards compatibility See Section 6.11 [Backwards Compatibility], page 208.

The named return value extension has been deprecated, and will be removed from g++
at some point.

The use of initializer lists with new expressions has been deprecated, and will be removed
from g++ at some point.

6.11 Backwards Compatibility

Now that there is a definitive ISO standard C++, G++ has a specification to adhere to.
The C++ language evolved over time, and features that used to be acceptable in previous
drafts of the standard, such as the ARM [Annotated C++ Reference Manual], are no longer
accepted. In order to allow compilation of C++ written to such drafts, G++ contains some

Chapter 6: Extensions to the C++ Language 209

backwards compatibilities. All such backwards compatibility features are liable to disap-
pear in future versions of G++. They should be considered deprecated See Section 6.10
[Deprecated Features], page 208.

For scope If a variable is declared at for scope, it used to remain in scope until the end
of the scope which contained the for statement (rather than just within the for
scope). G++ retains this, but issues a warning, if such a variable is accessed
outside the for scope.

implicit C language
Old C system header files did not contain an extern "C" {...} scope to set
the language. On such systems, all header files are implicitly scoped inside a C
language scope. Also, an empty prototype () will be treated as an unspecified
number of arguments, rather than no arguments, as C++ demands.

210 Using and Porting the GNU Compiler Collection (GCC)

Chapter 7: GNU Objective-C runtime features 211

7 GNU Objective-C runtime features

This document is meant to describe some of the GNU Objective-C runtime features. It
is not intended to teach you Objective-C, there are several resources on the Internet that
present the language. Questions and comments about this document to Ovidiu Predescu
ovidiu@cup.hp.com.

7.1 +load: Executing code before main

The GNU Objective-C runtime provides a way that allows you to execute code before
the execution of the program enters the main function. The code is executed on a per-class
and a per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed
by the program directly, without sending a message to the class first. The usual way
to initialize global variables, in the +initialize method, might not be useful because
+initialize is only called when the first message is sent to a class object, which in some
cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and
Stderr as global variables, like below:

FileStream *Stdin = nil;
FileStream *Stdout = nil;
FileStream *Stderr = nil;

@implementation FileStream

+ (void)initialize
{

Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */
@end

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs
too late. The programmer can send a message to one of these objects before the variables
are actually initialized, thus sending messages to the nil object. The +initialize method
which actually initializes the global variables is not invoked until the first message is sent
to the class object. The solution would require these variables to be initialized just before
entering main.

The correct solution of the above problem is to use the +load method instead of
+initialize:

@implementation FileStream

mailto:ovidiu@cup.hp.com

212 Using and Porting the GNU Compiler Collection (GCC)

+ (void)load
{

Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */
@end

The +load is a method that is not overridden by categories. If a class and a cate-
gory of it both implement +load, both methods are invoked. This allows some additional
initializations to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be
aware of its limitations when you decide to use it instead of +initialize.

7.1.1 What you can and what you cannot do in +load

The +load implementation in the GNU runtime guarantees you the following things:
• you can write whatever C code you like;
• you can send messages to Objective-C constant strings (@"this is a constant

string");
• you can allocate and send messages to objects whose class is implemented in the same

file;
• the +load implementation of all super classes of a class are executed before the +load

of that class is executed;
• the +load implementation of a class is executed before the +load implementation of

any category.

In particular, the following things, even if they can work in a particular case, are not
guaranteed:
• allocation of or sending messages to arbitrary objects;
• allocation of or sending messages to objects whose classes have a category implemented

in the same file;

You should make no assumptions about receiving +load in sibling classes when you write
+load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this
matters. If you don’t allocate objects inside +load, it is guaranteed that +load is called
before +initialize. If you create an object inside +load the +initialize method of
object’s class is invoked even if +load was not invoked. Note if you explicitly call +load on
a class, +initialize will be called first. To avoid possible problems try to implement only
one of these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running
program. This happens automatically without any intervening operation from you. When

Chapter 7: GNU Objective-C runtime features 213

you write bundles and you need to write +load you can safely create and send messages to
objects whose classes already exist in the running program. The same restrictions as above
apply to classes defined in bundle.

7.2 Type encoding

The Objective-C compiler generates type encodings for all the types. These type encod-
ings are used at runtime to find out information about selectors and methods and about
objects and classes.

The types are encoded in the following way:
char c
unsigned char C
short s
unsigned short S
int i
unsigned int I
long l
unsigned long L
long long q
unsigned long long Q
float f
double d
void v
id @
Class #
SEL :
char* *
unknown type ?
bit-fields b followed by the starting position of the bit-field, the type of the

bit-field and the size of the bit-field (the bit-fields encoding was
changed from the NeXT’s compiler encoding, see below)

The encoding of bit-fields has changed to allow bit-fields to be properly handled by the
runtime functions that compute sizes and alignments of types that contain bit-fields. The
previous encoding contained only the size of the bit-field. Using only this information it is
not possible to reliably compute the size occupied by the bit-field. This is very important
in the presence of the Boehm’s garbage collector because the objects are allocated using
the typed memory facility available in this collector. The typed memory allocation requires
information about where the pointers are located inside the object.

The position in the bit-field is the position, counting in bits, of the bit closest to the
beginning of the structure.

The non-atomic types are encoded as follows:
pointers ‘^’ followed by the pointed type.
arrays ‘[’ followed by the number of elements in the array followed by the

type of the elements followed by ‘]’
structures ‘{’ followed by the name of the structure (or ‘?’ if the structure is

unnamed), the ‘=’ sign, the type of the members and by ‘}’

214 Using and Porting the GNU Compiler Collection (GCC)

unions ‘(’ followed by the name of the structure (or ‘?’ if the union is un-
named), the ‘=’ sign, the type of the members followed by ‘)’

Here are some types and their encodings, as they are generated by the compiler on a
i386 machine:

Objective-C type Compiler encoding
int a[10]; [10i]

struct {
int i;
float f[3];
int a:3;
int b:2;
char c;

}

{?=i[3f]b128i3b131i2c}

In addition to the types the compiler also encodes the type specifiers. The table below
describes the encoding of the current Objective-C type specifiers:

Specifier Encoding
const r
in n
inout N
out o
bycopy O
oneway V

The type specifiers are encoded just before the type. Unlike types however, the type
specifiers are only encoded when they appear in method argument types.

7.3 Garbage Collection

Support for a new memory management policy has been added by using a powerful
conservative garbage collector, known as the Boehm-Demers-Weiser conservative garbage
collector. It is available from http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

To enable the support for it you have to configure the compiler using an additional ar-
gument, ‘--enable-objc-gc’. You need to have garbage collector installed before building
the compiler. This will build an additional runtime library which has several enhancements
to support the garbage collector. The new library has a new name, ‘libobjc_gc.a’ to not
conflict with the non-garbage-collected library.

When the garbage collector is used, the objects are allocated using the so-called typed
memory allocation mechanism available in the Boehm-Demers-Weiser collector. This mode
requires precise information on where pointers are located inside objects. This information
is computed once per class, immediately after the class has been initialized.

There is a new runtime function class_ivar_set_gcinvisible() which can be used
to declare a so-called weak pointer reference. Such a pointer is basically hidden for the

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Chapter 7: GNU Objective-C runtime features 215

garbage collector; this can be useful in certain situations, especially when you want to keep
track of the allocated objects, yet allow them to be collected. This kind of pointers can
only be members of objects, you cannot declare a global pointer as a weak reference. Every
type which is a pointer type can be declared a weak pointer, including id, Class and SEL.

Here is an example of how to use this feature. Suppose you want to implement a class
whose instances hold a weak pointer reference; the following class does this:

@interface WeakPointer : Object
{

const void* weakPointer;
}

- initWithPointer:(const void*)p;
- (const void*)weakPointer;
@end

@implementation WeakPointer

+ (void)initialize
{
class_ivar_set_gcinvisible (self, "weakPointer", YES);

}

- initWithPointer:(const void*)p
{

weakPointer = p;
return self;

}

- (const void*)weakPointer
{

return weakPointer;
}

@end

Weak pointers are supported through a new type character specifier represented by the
‘!’ character. The class_ivar_set_gcinvisible() function adds or removes this specifier
to the string type description of the instance variable named as argument.

7.4 Constant string objects

GNU Objective-C provides constant string objects that are generated directly by the
compiler. You declare a constant string object by prefixing a C constant string with the
character ‘@’:

id myString = @"this is a constant string object";

216 Using and Porting the GNU Compiler Collection (GCC)

The constant string objects are usually instances of the NXConstantString class which
is provided by the GNU Objective-C runtime. To get the definition of this class you must
include the ‘objc/NXConstStr.h’ header file.

User defined libraries may want to implement their own constant string class. To be
able to support them, the GNU Objective-C compiler provides a new command line op-
tions ‘-fconstant-string-class=class-name’. The provided class should adhere to a strict
structure, the same as NXConstantString’s structure:

@interface NXConstantString : Object
{
char *c_string;
unsigned int len;

}
@end

User class libraries may choose to inherit the customized constant string class from a
different class than Object. There is no requirement in the methods the constant string
class has to implement.

When a file is compiled with the ‘-fconstant-string-class’ option, all the constant
string objects will be instances of the class specified as argument to this option. It is possible
to have multiple compilation units referring to different constant string classes, neither the
compiler nor the linker impose any restrictions in doing this.

7.5 compatibility alias

This is a feature of the Objective-C compiler rather than of the runtime, anyway since
it is documented nowhere and its existence was forgotten, we are documenting it here.

The keyword @compatibility_alias allows you to define a class name as equivalent to
another class name. For example:

@compatibility_alias WOApplication GSWApplication;

tells the compiler that each time it encounters WOApplication as a class name, it
should replace it with GSWApplication (that is, WOApplication is just an alias for
GSWApplication).

There are some constraints on how this can be used—
• WOApplication (the alias) must not be an existing class;
• GSWApplication (the real class) must be an existing class.

Chapter 8: gcov: a Test Coverage Program 217

8 gcov: a Test Coverage Program

gcov is a tool you can use in conjunction with GCC to test code coverage in your
programs.

This chapter describes version 1.5 of gcov.

8.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GCC to analyze your programs
to help create more efficient, faster running code. You can use gcov as a profiling tool to
help discover where your optimization efforts will best affect your code. You can also use
gcov along with the other profiling tool, gprof, to assess which parts of your code use the
greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a profiler such as gcov
or gprof, you can find out some basic performance statistics, such as:

• how often each line of code executes

• what lines of code are actually executed

• how much computing time each section of code uses

Once you know these things about how your code works when compiled, you can look at
each module to see which modules should be optimized. gcov helps you determine where
to work on optimization.

Software developers also use coverage testing in concert with testsuites, to make sure
software is actually good enough for a release. Testsuites can verify that a program works
as expected; a coverage program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need to be added to the
testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use gcov because
the optimization, by combining some lines of code into one function, may not give you
as much information as you need to look for ‘hot spots’ where the code is using a great
deal of computer time. Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one statement on each
line. If you use complicated macros that expand to loops or to other control structures,
the statistics are less helpful—they only report on the line where the macro call appears.
If your complex macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a logfile called ‘sourcefile.gcov’ which indicates how many times each line
of a source file ‘sourcefile.c’ has executed. You can use these logfiles along with gprof to
aid in fine-tuning the performance of your programs. gprof gives timing information you
can use along with the information you get from gcov.

gcov works only on code compiled with GCC. It is not compatible with any other
profiling or test coverage mechanism.

218 Using and Porting the GNU Compiler Collection (GCC)

8.2 Invoking gcov

gcov [-b] [-c] [-v] [-n] [-l] [-f] [-o directory] sourcefile

-b Write branch frequencies to the output file, and write branch summary info to
the standard output. This option allows you to see how often each branch in
your program was taken.

-c Write branch frequencies as the number of branches taken, rather than the
percentage of branches taken.

-v Display the gcov version number (on the standard error stream).

-n Do not create the gcov output file.

-l Create long file names for included source files. For example, if the header
file ‘x.h’ contains code, and was included in the file ‘a.c’, then running gcov
on the file ‘a.c’ will produce an output file called ‘a.c.x.h.gcov’ instead of
‘x.h.gcov’. This can be useful if ‘x.h’ is included in multiple source files.

-f Output summaries for each function in addition to the file level summary.

-o The directory where the object files live. Gcov will search for ‘.bb’, ‘.bbg’, and
‘.da’ files in this directory.

When using gcov, you must first compile your program with two special GCC options:
‘-fprofile-arcs -ftest-coverage’. This tells the compiler to generate additional infor-
mation needed by gcov (basically a flow graph of the program) and also includes additional
code in the object files for generating the extra profiling information needed by gcov. These
additional files are placed in the directory where the source code is located.

Running the program will cause profile output to be generated. For each source file
compiled with ‘-fprofile-arcs’, an accompanying ‘.da’ file will be placed in the source
directory.

Running gcov with your program’s source file names as arguments will now produce a
listing of the code along with frequency of execution for each line. For example, if your
program is called ‘tmp.c’, this is what you see when you use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
87.50% of 8 source lines executed in file tmp.c
Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
10 total += i;

Chapter 8: gcov: a Test Coverage Program 219

1 if (total != 45)
printf ("Failure\n");

else
1 printf ("Success\n");
1 }

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c
87.50% of 8 source lines executed in file tmp.c
80.00% of 5 branches executed in file tmp.c
80.00% of 5 branches taken at least once in file tmp.c
50.00% of 2 calls executed in file tmp.c
Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
branch 0 taken = 91%
branch 1 taken = 100%
branch 2 taken = 100%

10 total += i;

1 if (total != 45)
branch 0 taken = 100%

printf ("Failure\n");
call 0 never executed
branch 1 never executed

else
1 printf ("Success\n");

call 0 returns = 100%
1 }

For each basic block, a line is printed after the last line of the basic block describing the
branch or call that ends the basic block. There can be multiple branches and calls listed for
a single source line if there are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map these branches
and calls back to source constructs. In general, though, the lowest numbered branch or call
will correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number
of times the branch was taken divided by the number of times the branch was executed will
be printed. Otherwise, the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating the number of
times the call returned divided by the number of times the call was executed will be printed.
This will usually be 100%, but may be less for functions call exit or longjmp, and thus
may not return every time they are called.

220 Using and Porting the GNU Compiler Collection (GCC)

The execution counts are cumulative. If the example program were executed again
without removing the ‘.da’ file, the count for the number of times each line in the source
was executed would be added to the results of the previous run(s). This is potentially useful
in several ways. For example, it could be used to accumulate data over a number of program
runs as part of a test verification suite, or to provide more accurate long-term information
over a large number of program runs.

The data in the ‘.da’ files is saved immediately before the program exits. For each
source file compiled with ‘-fprofile-arcs’, the profiling code first attempts to read in an
existing ‘.da’ file; if the file doesn’t match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the new execution counts and
finally writes the data to the file.

8.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first compile your program
with two special GCC options: ‘-fprofile-arcs -ftest-coverage’. Aside from that, you
can use any other GCC options; but if you want to prove that every single line in your
program was executed, you should not compile with optimization at the same time. On
some machines the optimizer can eliminate some simple code lines by combining them with
other lines. For example, code like this:

if (a != b)
c = 1;

else
c = 0;

can be compiled into one instruction on some machines. In this case, there is no way for
gcov to calculate separate execution counts for each line because there isn’t separate code
for each line. Hence the gcov output looks like this if you compiled the program with
optimization:

100 if (a != b)
100 c = 1;
100 else
100 c = 0;

The output shows that this block of code, combined by optimization, executed 100 times.
In one sense this result is correct, because there was only one instruction representing all
four of these lines. However, the output does not indicate how many times the result was
0 and how many times the result was 1.

8.4 Brief description of gcov data files

gcov uses three files for doing profiling. The names of these files are derived from the
original source file by substituting the file suffix with either ‘.bb’, ‘.bbg’, or ‘.da’. All of
these files are placed in the same directory as the source file, and contain data stored in a
platform-independent method.

The ‘.bb’ and ‘.bbg’ files are generated when the source file is compiled with the GCC
‘-ftest-coverage’ option. The ‘.bb’ file contains a list of source files (including headers),

Chapter 8: gcov: a Test Coverage Program 221

functions within those files, and line numbers corresponding to each basic block in the source
file.

The ‘.bb’ file format consists of several lists of 4-byte integers which correspond to the
line numbers of each basic block in the file. Each list is terminated by a line number of
0. A line number of −1 is used to designate that the source file name (padded to a 4-byte
boundary and followed by another −1) follows. In addition, a line number of −2 is used to
designate that the name of a function (also padded to a 4-byte boundary and followed by
a −2) follows.

The ‘.bbg’ file is used to reconstruct the program flow graph for the source file. It
contains a list of the program flow arcs (possible branches taken from one basic block
to another) for each function which, in combination with the ‘.bb’ file, enables gcov to
reconstruct the program flow.

In the ‘.bbg’ file, the format is:
number of basic blocks for function #0 (4-byte number)
total number of arcs for function #0 (4-byte number)
count of arcs in basic block #0 (4-byte number)
destination basic block of arc #0 (4-byte number)
flag bits (4-byte number)
destination basic block of arc #1 (4-byte number)
flag bits (4-byte number)
...
destination basic block of arc #N (4-byte number)
flag bits (4-byte number)
count of arcs in basic block #1 (4-byte number)
destination basic block of arc #0 (4-byte number)
flag bits (4-byte number)
...

A −1 (stored as a 4-byte number) is used to separate each function’s list of basic blocks,
and to verify that the file has been read correctly.

The ‘.da’ file is generated when a program containing object files built with the GCC
‘-fprofile-arcs’ option is executed. A separate ‘.da’ file is created for each source file
compiled with this option, and the name of the ‘.da’ file is stored as an absolute pathname in
the resulting object file. This path name is derived from the source file name by substituting
a ‘.da’ suffix.

The format of the ‘.da’ file is fairly simple. The first 8-byte number is the number of
counts in the file, followed by the counts (stored as 8-byte numbers). Each count corresponds
to the number of times each arc in the program is executed. The counts are cumulative;
each time the program is executed, it attempts to combine the existing ‘.da’ files with the
new counts for this invocation of the program. It ignores the contents of any ‘.da’ files
whose number of arcs doesn’t correspond to the current program, and merely overwrites
them instead.

All three of these files use the functions in ‘gcov-io.h’ to store integers; the functions in
this header provide a machine-independent mechanism for storing and retrieving data from
a stream.

222 Using and Porting the GNU Compiler Collection (GCC)

Chapter 9: Known Causes of Trouble with GCC 223

9 Known Causes of Trouble with GCC

This section describes known problems that affect users of GCC. Most of these are not
GCC bugs per se—if they were, we would fix them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

9.1 Actual Bugs We Haven’t Fixed Yet

• The fixincludes script interacts badly with automounters; if the directory of system
header files is automounted, it tends to be unmounted while fixincludes is running.
This would seem to be a bug in the automounter. We don’t know any good way to
work around it.

• The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp
functions that reference the jmp_buf type before that type is defined. To work around
this, edit the offending file and place the typedef in front of the prototypes.

• When ‘-pedantic-errors’ is specified, GCC will incorrectly give an error message
when a function name is specified in an expression involving the comma operator.

9.2 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several
reasons.

• Cross compilation can run into trouble for certain machines because some target ma-
chines’ assemblers require floating point numbers to be written as integer constants in
certain contexts.

The compiler writes these integer constants by examining the floating point value as
an integer and printing that integer, because this is simple to write and independent of
the details of the floating point representation. But this does not work if the compiler
is running on a different machine with an incompatible floating point format, or even
a different byte-ordering.

In addition, correct constant folding of floating point values requires representing them
in the target machine’s format. (The C standard does not quite require this, but in
practice it is the only way to win.)

It is now possible to overcome these problems by defining macros such as REAL_VALUE_
TYPE. But doing so is a substantial amount of work for each target machine. See
Section 21.21 [Cross-compilation], page 526.

• At present, the program ‘mips-tfile’ which adds debug support to object files on
MIPS systems does not work in a cross compile environment.

224 Using and Porting the GNU Compiler Collection (GCC)

9.3 Interoperation

This section lists various difficulties encountered in using GCC together with other com-
pilers or with the assemblers, linkers, libraries and debuggers on certain systems.
• Objective-C does not work on the RS/6000.
• G++ does not do name mangling in the same way as other C++ compilers. This means

that object files compiled with one compiler cannot be used with another.
This effect is intentional, to protect you from more subtle problems. Compilers differ
as to many internal details of C++ implementation, including: how class instances are
laid out, how multiple inheritance is implemented, and how virtual function calls are
handled. If the name encoding were made the same, your programs would link against
libraries provided from other compilers—but the programs would then crash when run.
Incompatible libraries are then detected at link time, rather than at run time.

• Older GDB versions sometimes fail to read the output of GCC version 2. If you have
trouble, get GDB version 4.4 or later.

• DBX rejects some files produced by GCC, though it accepts similar constructs in output
from PCC. Until someone can supply a coherent description of what is valid DBX input
and what is not, there is nothing I can do about these problems. You are on your own.

• The GNU assembler (GAS) does not support PIC. To generate PIC code, you must
use some other assembler, such as ‘/bin/as’.

• On some BSD systems, including some versions of Ultrix, use of profiling causes static
variable destructors (currently used only in C++) not to be run.

• On some SGI systems, when you use ‘-lgl_s’ as an option, it gets translated magically
to ‘-lgl_s -lX11_s -lc_s’. Naturally, this does not happen when you use GCC. You
must specify all three options explicitly.

• On a Sparc, GCC aligns all values of type double on an 8-byte boundary, and it expects
every double to be so aligned. The Sun compiler usually gives double values 8-byte
alignment, with one exception: function arguments of type double may not be aligned.
As a result, if a function compiled with Sun CC takes the address of an argument
of type double and passes this pointer of type double * to a function compiled with
GCC, dereferencing the pointer may cause a fatal signal.
One way to solve this problem is to compile your entire program with GCC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_double instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];

Chapter 9: Known Causes of Trouble with GCC 225

u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.
• On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory

that is only 4 byte aligned. Since GCC on the Sparc assumes that doubles are 8 byte
aligned, this may result in a fatal signal if doubles are stored in memory allocated by
the ‘libmalloc.a’ library.
The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related
functions from ‘libc.a’; they do not have this problem.

• Sun forgot to include a static version of ‘libdl.a’ with some versions of SunOS (mainly
4.1). This results in undefined symbols when linking static binaries (that is, if you use
‘-static’). If you see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file ‘mit/util/misc/dlsym.c’ from the MIT version of X
windows.

• The 128-bit long double format that the Sparc port supports currently works by using
the architecturally defined quad-word floating point instructions. Since there is no
hardware that supports these instructions they must be emulated by the operating
system. Long doubles do not work in Sun OS versions 4.0.3 and earlier, because the
kernel emulator uses an obsolete and incompatible format. Long doubles do not work
in Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles do work on
Sun OS versions 4.1.2 and higher, but GCC does not enable them by default. Long
doubles appear to work in Sun OS 5.x (Solaris 2.x).

• On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GCC
correctly. We do not yet know why. However, GCC compiled on earlier HP-UX versions
works properly on HP-UX 9.01 and can compile itself properly on 9.01.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with
GCC. Specifically, it fails to work on functions that use alloca or variable-size arrays.
This is because GCC doesn’t generate HP-UX unwind descriptors for such functions.
It may even be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the prelimi-
nary GNU tools (see Chapter 4 [Installation], page 137).

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

• In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch offset. This
used to occur more often in previous versions of GCC, but is now exceptionally rare.
If you should run into it, you can work around by making your function smaller.

• GCC compiled code sometimes emits warnings from the HP-UX assembler of the form:

226 Using and Porting the GNU Compiler Collection (GCC)

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

• The current version of the assembler (‘/bin/as’) for the RS/6000 has certain problems
that prevent the ‘-g’ option in GCC from working. Note that ‘Makefile.in’ uses ‘-g’
by default when compiling ‘libgcc2.c’.

IBM has produced a fixed version of the assembler. The upgraded assembler unfortu-
nately was not included in any of the AIX 3.2 update PTF releases (3.2.2, 3.2.3, or
3.2.3e). Users of AIX 3.1 should request PTF U403044 from IBM and users of AIX 3.2
should request PTF U416277. See the file ‘README.RS6000’ for more details on these
updates.

You can test for the presence of a fixed assembler by using the command
as -u < /dev/null

If the command exits normally, the assembler fix already is installed. If the assembler
complains that ‘-u’ is an unknown flag, you need to order the fix.

• On the IBM RS/6000, compiling code of the form
extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although this behavior differs
from most other systems, it is not a bug because redefining an extern variable as
static is undefined in ISO C.

• AIX on the RS/6000 provides support (NLS) for environments outside of the United
States. Compilers and assemblers use NLS to support locale-specific representations
of various objects including floating-point numbers (‘.’ vs ‘,’ for separating decimal
fractions). There have been problems reported where the library linked with GCC does
not produce the same floating-point formats that the assembler accepts. If you have
this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

• Even if you specify ‘-fdollars-in-identifiers’, you cannot successfully use ‘$’ in
identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports
these identifiers.

• On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC version 1.3.0.1 or
later fixes this problem. You can obtain XLC-1.3.0.2 by requesting PTF 421749 from
IBM.

• There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that occurs when
the ‘fldcr’ instruction is used. GCC uses ‘fldcr’ on the 88100 to serialize volatile
memory references. Use the option ‘-mno-serialize-volatile’ if your version of the
assembler has this bug.

• On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from
the linker. These warning messages complain of mismatched psect attributes. You can
ignore them. See Section 4.4 [VMS Install], page 142.

Chapter 9: Known Causes of Trouble with GCC 227

• On NewsOS version 3, if you include both of the files ‘stddef.h’ and ‘sys/types.h’,
you get an error because there are two typedefs of size_t. You should change
‘sys/types.h’ by adding these lines around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual-typedef-here
#endif

• On the Alliant, the system’s own convention for returning structures and unions is
unusual, and is not compatible with GCC no matter what options are used.

• On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different convention
for structure and union returning. Use the option ‘-mhc-struct-return’ to tell GCC
to use a convention compatible with it.

• On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function
calls. However, the C compiler uses conventions compatible with BSD Unix: registers
2 through 5 may be clobbered by function calls.
GCC uses the same convention as the Ultrix C compiler. You can use these options to
produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

• On the WE32k, you may find that programs compiled with GCC do not work with the
standard shared C library. You may need to link with the ordinary C compiler. If you
do so, you must specify the following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.8.1 -lgcc -lc_s

The first specifies where to find the library ‘libgcc.a’ specified with the ‘-lgcc’ option.
GCC does linking by invoking ld, just as cc does, and there is no reason why it should
matter which compilation program you use to invoke ld. If someone tracks this problem
down, it can probably be fixed easily.

• On the Alpha, you may get assembler errors about invalid syntax as a result of floating
point constants. This is due to a bug in the C library functions ecvt, fcvt and gcvt.
Given valid floating point numbers, they sometimes print ‘NaN’.

• On Irix 4.0.5F (and perhaps in some other versions), an assembler bug sometimes
reorders instructions incorrectly when optimization is turned on. If you think this may
be happening to you, try using the GNU assembler; GAS version 2.1 supports ECOFF
on Irix.
Or use the ‘-noasmopt’ option when you compile GCC with itself, and then again
when you compile your program. (This is a temporary kludge to turn off assembler
optimization on Irix.) If this proves to be what you need, edit the assembler spec in the
file ‘specs’ so that it unconditionally passes ‘-O0’ to the assembler, and never passes
‘-O2’ or ‘-O3’.

9.4 Problems Compiling Certain Programs

Certain programs have problems compiling.
• Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of

problems in DEC’s versions of the X11 header files ‘X11/Xlib.h’ and ‘X11/Xutil.h’.

228 Using and Porting the GNU Compiler Collection (GCC)

People recommend adding ‘-I/usr/include/mit’ to use the MIT versions of the header
files, using the ‘-traditional’ switch to turn off ISO C, or fixing the header files by
adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

• On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX,
you may get error messages about running out of virtual memory while compiling
certain programs.
You can prevent this problem by linking GCC with the GNU malloc (which thus
replaces the malloc that comes with the system). GNU malloc is available as a separate
package, and also in the file ‘src/gmalloc.c’ in the GNU Emacs 19 distribution.
If you have installed GNU malloc as a separate library package, use this option when
you relink GCC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy the object file to
‘gmalloc.o’ and use this option when you relink GCC:

MALLOC=gmalloc.o

9.5 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and K&R (non-ISO)
versions of C. The ‘-traditional’ option eliminates many of these incompatibilities, but
not all, by telling GCC to behave like a K&R C compiler.

• GCC normally makes string constants read-only. If several identical-looking string
constants are used, GCC stores only one copy of the string.
One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.
Another consequence is that sscanf does not work on some systems when passed a
string constant as its format control string or input. This is because sscanf incorrectly
tries to write into the string constant. Likewise fscanf and scanf.
The best solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants. But if this is
not possible, you can use the ‘-fwritable-strings’ flag, which directs GCC to handle
string constants the same way most C compilers do. ‘-traditional’ also has this
effect, among others.

• -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following the ISO C rules)
its data type is unsigned long int. Negating this value yields 2147483648 again.

• GCC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GCC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.

Chapter 9: Known Causes of Trouble with GCC 229

The ‘-traditional’ option directs GCC to handle such cases (among others) in the
old-fashioned (non-ISO) fashion.

• When you use setjmp and longjmp, the only automatic variables guaranteed to re-
main valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

jmp_buf j;

foo ()
{
int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is
allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GCC thinks
such a problem might be possible.
The ‘-traditional’ option directs GCC to put variables in the stack by default, rather
than in registers, in functions that call setjmp. This results in the behavior found in
traditional C compilers.

• Programs that use preprocessing directives in the middle of macro arguments do not
work with GCC. For example, a program like this will not work:

foobar (
#define luser

hack)

ISO C does not permit such a construct. It would make sense to support it when
‘-traditional’ is used, but it is too much work to implement.

• K&R compilers allow comments to cross over an inclusion boundary (i.e. started in an
include file and ended in the including file). I think this would be quite ugly and can’t
imagine it could be needed.

• Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.
In some other C compilers, a extern declaration affects all the rest of the file even if
it happens within a block.
The ‘-traditional’ option directs GCC to treat all extern declarations as global, like
traditional compilers.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:

230 Using and Porting the GNU Compiler Collection (GCC)

typedef int foo;
typedef long foo bar;

In ISO C, this is not allowed: long and other type modifiers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
‘-traditional’ flag cannot alter it.

• PCC allows typedef names to be used as function parameters. The difficulty described
immediately above applies here too.

• When in ‘-traditional’ mode, GCC allows the following erroneous pair of declarations
to appear together in a given scope:

typedef int foo;
typedef foo foo;

• GCC treats all characters of identifiers as significant, even when in ‘-traditional’
mode. According to K&R-1 (2.2), “No more than the first eight characters are signifi-
cant, although more may be used.”. Also according to K&R-1 (2.2), “An identifier is
a sequence of letters and digits; the first character must be a letter. The underscore
counts as a letter.”, but GCC also allows dollar signs in identifiers.

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’.
GCC, following the ISO standard, does not allow this. The difficulty described imme-
diately above applies here too.

• GCC complains about unterminated character constants inside of preprocessing con-
ditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GCC will probably
report an error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment
delimited by ‘/*...*/’. However, ‘-traditional’ suppresses these error messages.

• Many user programs contain the declaration ‘long time ();’. In the past, the system
header files on many systems did not actually declare time, so it did not matter what
type your program declared it to return. But in systems with ISO C headers, time is
declared to return time_t, and if that is not the same as long, then ‘long time ();’
is erroneous.
The solution is to change your program to use appropriate system headers (<time.h>
on systems with ISO C headers) and not to declare time if the system header files
declare it, or failing that to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GCC
actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GCC output code normally
uses a method different from that used on most versions of Unix. As a result, code
compiled with GCC cannot call a structure-returning function compiled with PCC,
and vice versa.
The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored

Chapter 9: Known Causes of Trouble with GCC 231

into an address supplied by the caller (usually in a special, fixed register, but on some
machines it is passed on the stack). The machine-description macros STRUCT_VALUE
and STRUCT_INCOMING_VALUE tell GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of
that storage as if it were a pointer value. The caller must copy the data from that
memory area to the place where the value is wanted. GCC does not use this method
because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GCC on most of these machines uses a compatible convention when return-
ing structures and unions in memory, but still returns small structures and unions in
registers.

You can tell GCC to use a compatible convention for all structure and union returning
with the option ‘-fpcc-struct-return’.

• GCC complains about program fragments such as ‘0x74ae-0x4000’ which appear to be
two hexadecimal constants separated by the minus operator. Actually, this string is a
single preprocessing token. Each such token must correspond to one token in C. Since
this does not, GCC prints an error message. Although it may appear obvious that
what is meant is an operator and two values, the ISO C standard specifically requires
that this be treated as erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed
by letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, ‘E-’, ‘p+’, ‘p-’, ‘P+’, or ‘P-’
character sequences. (In strict C89 mode, the sequences ‘p+’, ‘p-’, ‘P+’ and ‘P-’ cannot
appear in preprocessing numbers.)

To make the above program fragment valid, place whitespace in front of the minus
sign. This whitespace will end the preprocessing number.

9.6 Fixed Header Files

GCC needs to install corrected versions of some system header files. This is because most
target systems have some header files that won’t work with GCC unless they are changed.
Some have bugs, some are incompatible with ISO C, and some depend on special features
of other compilers.

Installing GCC automatically creates and installs the fixed header files, by running a
program called fixincludes (or for certain targets an alternative such as fixinc.svr4).
Normally, you don’t need to pay attention to this. But there are cases where it doesn’t do
the right thing automatically.

• If you update the system’s header files, such as by installing a new system version, the
fixed header files of GCC are not automatically updated. The easiest way to update
them is to reinstall GCC. (If you want to be clever, look in the makefile and you can
find a shortcut.)

• On some systems, in particular SunOS 4, header file directories contain machine-specific
symbolic links in certain places. This makes it possible to share most of the header
files among hosts running the same version of SunOS 4 on different machine models.

232 Using and Porting the GNU Compiler Collection (GCC)

The programs that fix the header files do not understand this special way of using
symbolic links; therefore, the directory of fixed header files is good only for the machine
model used to build it.
In SunOS 4, only programs that look inside the kernel will notice the difference between
machine models. Therefore, for most purposes, you need not be concerned about this.
It is possible to make separate sets of fixed header files for the different machine models,
and arrange a structure of symbolic links so as to use the proper set, but you’ll have
to do this by hand.

• On Lynxos, GCC by default does not fix the header files. This is because bugs in the
shell cause the fixincludes script to fail.
This means you will encounter problems due to bugs in the system header files. It may
be no comfort that they aren’t GCC’s fault, but it does mean that there’s nothing for
us to do about them.

9.7 Standard Libraries

GCC by itself attempts to be a conforming freestanding implementation. See Chapter 2
[Language Standards Supported by GCC], page 5, for details of what this means. Beyond
the library facilities required of such an implementation, the rest of the C library is supplied
by the vendor of the operating system. If that C library doesn’t conform to the C standards,
then your programs might get warnings (especially when using ‘-Wall’) that you don’t
expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard
says that sprintf returns an int. The fixincludes program could make the prototype
for this function match the Standard, but that would be wrong, since the function will still
return char *.

If you need a Standard compliant library, then you need to find one, as GCC does not
provide one. The GNU C library (called glibc) provides ISO C, POSIX, BSD, SystemV and
X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version
of it supports other systems, though some very old versions did. Version 2.2 of the GNU
C library includes nearly complete C99 support. You could also ask your operating system
vendor if newer libraries are available.

9.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around
them.
• Certain local variables aren’t recognized by debuggers when you compile with opti-

mization.
This occurs because sometimes GCC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable “would have
had”, and it is not clear that would be desirable anyway. So GCC simply does not
mention the eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

Chapter 9: Known Causes of Trouble with GCC 233

• Users often think it is a bug when GCC reports an error for code like this:
int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in the prototype
is limited to the argument list containing it. It does not refer to the struct mumble
defined with file scope immediately below—they are two unrelated types with similar
names in different scopes.
But in the definition of foo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.
This behavior may seem silly, but it’s what the ISO standard specifies. It is easy enough
for you to make your code work by moving the definition of struct mumble above the
prototype. It’s not worth being incompatible with ISO C just to avoid an error for the
example shown above.

• Accesses to bit-fields even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bit-field; it may even vary for a given bit-field according to the precise usage.
If you care about controlling the amount of memory that is accessed, use volatile but
do not use bit-fields.

• GCC comes with shell scripts to fix certain known problems in system header files.
They install corrected copies of various header files in a special directory where only
GCC will normally look for them. The scripts adapt to various systems by searching
all the system header files for the problem cases that we know about.
If new system header files are installed, nothing automatically arranges to update the
corrected header files. You will have to reinstall GCC to fix the new header files.
More specifically, go to the build directory and delete the files ‘stmp-fixinc’ and
‘stmp-headers’, and the subdirectory include; then do ‘make install’ again.

• On 68000 and x86 systems, for instance, you can get paradoxical results if you test
the precise values of floating point numbers. For example, you can find that a floating
point value which is not a NaN is not equal to itself. This results from the fact that
the floating point registers hold a few more bits of precision than fit in a double in
memory. Compiled code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.
You can partially avoid this problem by using the ‘-ffloat-store’ option (see Sec-
tion 3.10 [Optimize Options], page 49).

• On the MIPS, variable argument functions using ‘varargs.h’ cannot have a floating
point value for the first argument. The reason for this is that in the absence of a
prototype in scope, if the first argument is a floating point, it is passed in a floating
point register, rather than an integer register.
If the code is rewritten to use the ISO standard ‘stdarg.h’ method of variable ar-
guments, and the prototype is in scope at the time of the call, everything will work
fine.

234 Using and Porting the GNU Compiler Collection (GCC)

• On the H8/300 and H8/300H, variable argument functions must be implemented using
the ISO standard ‘stdarg.h’ method of variable arguments. Furthermore, calls to
functions using ‘stdarg.h’ variable arguments must have a prototype for the called
function in scope at the time of the call.

9.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ISO C++
standard) was only recently completed. As a result, your C++ compiler may occasionally
surprise you, even when its behavior is correct. This section discusses some areas that
frequently give rise to questions of this sort.

9.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member;
you must also define it. For example:

class Foo
{

...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a
member function named Foo::method. But you still need to define both method and bar
elsewhere. According to the ISO standard, you must supply an initializer in one (and only
one) source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result,
when you switch to g++ from one of these compilers, you may discover that a program
that appeared to work correctly in fact does not conform to the standard: g++ reports as
undefined symbols any static data members that lack definitions.

9.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The
compiler may very well delete the object before you expect it to, leaving a pointer to
garbage. The most common place where this problem crops up is in classes like string
classes, especially ones that define a conversion function to type char * or const char *—
which is one reason why the standard string class requires you to call the c_str member
function. However, any class that returns a pointer to some internal structure is potentially
subject to this problem.

For example, a program may use a function strfunc that returns string objects, and
another function charfunc that operates on pointers to char:

string strfunc ();
void charfunc (const char *);

Chapter 9: Known Causes of Trouble with GCC 235

void
f ()
{
const char *p = strfunc().c_str();
...
charfunc (p);
...
charfunc (p);

}

In this situation, it may seem reasonable to save a pointer to the C string returned by
the c_str member function and use that rather than call c_str repeatedly. However, the
temporary string created by the call to strfunc is destroyed after p is initialized, at which
point p is left pointing to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete
cfront-based compilers that delete temporaries along with normal local variables. How-
ever, the GNU C++ behavior is standard-conforming, so if your program depends on late
destruction of temporaries it is not portable.

The safe way to write such code is to give the temporary a name, which forces it to
remain until the end of the scope of the name. For example:

string& tmp = strfunc ();
charfunc (tmp.c_str ());

9.9.3 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full
object. Also, the constructors and destructors are invoked only once, and called from the
most-derived class. However, such objects behave unspecified when being assigned. For
example:

struct Base{
char *name;
Base(char *n) : name(strdup(n)){}
Base& operator= (const Base& other){
free (name);
name = strdup (other.name);
}

};

struct A:virtual Base{
int val;
A():Base("A"){}

};

struct B:virtual Base{
int bval;
B():Base("B"){}

};

236 Using and Porting the GNU Compiler Collection (GCC)

struct Derived:public A, public B{
Derived():Base("Derived"){}

};

void func(Derived &d1, Derived &d2)
{
d1 = d2;

}

The C++ standard specifies that ‘Base::Base’ is only called once when constructing or
copy-constructing a Derived object. It is unspecified whether ‘Base::operator=’ is called
more than once when the implicit copy-assignment for Derived objects is invoked (as it is
inside ‘func’ in the example).

g++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases,
then assign all members. In that algorithm, the virtual base subobject can be encountered
many times. In the example, copying proceeds in the following order: ‘val’, ‘name’ (via
strdup), ‘bval’, and ‘name’ again.

If application code relies on copy-assignment, a user-defined copy-assignment operator
removes any uncertainties. With such an operator, the application can define whether and
how the virtual base subobject is assigned.

9.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file
in a way that won’t work unless you rearrange it.
• protoize can insert references to a type name or type tag before the definition, or in

a file where they are not defined.
If this happens, compiler error messages should show you where the new references are,
so fixing the file by hand is straightforward.

• There are some C constructs which protoize cannot figure out. For example, it can’t
determine argument types for declaring a pointer-to-function variable; this you must
do by hand. protoize inserts a comment containing ‘???’ each time it finds such a
variable; so you can find all such variables by searching for this string. ISO C does not
require declaring the argument types of pointer-to-function types.

• Using unprotoize can easily introduce bugs. If the program relied on prototypes
to bring about conversion of arguments, these conversions will not take place in the
program without prototypes. One case in which you can be sure unprotoize is safe
is when you are removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without them.
You can find all the places where this problem might occur by compiling the pro-
gram with the ‘-Wconversion’ option. It prints a warning whenever an argument is
converted.

• Both conversion programs can be confused if there are macro calls in and around the
text to be converted. In other words, the standard syntax for a declaration or definition
must not result from expanding a macro. This problem is inherent in the design of C
and cannot be fixed. If only a few functions have confusing macro calls, you can easily
convert them manually.

Chapter 9: Known Causes of Trouble with GCC 237

• protoize cannot get the argument types for a function whose definition was not actu-
ally compiled due to preprocessing conditionals. When this happens, protoize changes
nothing in regard to such a function. protoize tries to detect such instances and warn
about them.
You can generally work around this problem by using protoize step by step, each
time specifying a different set of ‘-D’ options for compilation, until all of the functions
have been converted. There is no automatic way to verify that you have got them all,
however.

• Confusion may result if there is an occasion to convert a function declaration or def-
inition in a region of source code where there is more than one formal parameter list
present. Thus, attempts to convert code containing multiple (conditionally compiled)
versions of a single function header (in the same vicinity) may not produce the desired
(or expected) results.
If you plan on converting source files which contain such code, it is recommended
that you first make sure that each conditionally compiled region of source code which
contains an alternative function header also contains at least one additional follower
token (past the final right parenthesis of the function header). This should circumvent
the problem.

• unprotoize can become confused when trying to convert a function definition or dec-
laration which contains a declaration for a pointer-to-function formal argument which
has the same name as the function being defined or declared. We recommend you avoid
such choices of formal parameter names.

• You might also want to correct some of the indentation by hand and break long lines.
(The conversion programs don’t write lines longer than eighty characters in any case.)

9.11 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make
because we think GCC is better without them.
• Checking the number and type of arguments to a function which has an old-fashioned

definition and no prototype.
Such a feature would work only occasionally—only for calls that appear in the same
file as the called function, following the definition. The only way to check all calls
reliably is to add a prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

• Warning about using an expression whose type is signed as a shift count.
Shift count operands are probably signed more often than unsigned. Warning about
this would cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.
Such assignments must be very common; warning about them would cause more an-
noyance than good.

• Warning when a non-void function value is ignored.
Coming as I do from a Lisp background, I balk at the idea that there is something
dangerous about discarding a value. There are functions that return values which

238 Using and Porting the GNU Compiler Collection (GCC)

some callers may find useful; it makes no sense to clutter the program with a cast to
void whenever the value isn’t useful.

• Making ‘-fshort-enums’ the default.

This would cause storage layout to be incompatible with most other C compilers. And
it doesn’t seem very important, given that you can get the same result in other ways.
The case where it matters most is when the enumeration-valued object is inside a
structure, and in that case you can specify a field width explicitly.

• Making bit-fields unsigned by default on particular machines where “the ABI standard”
says to do so.

The ISO C standard leaves it up to the implementation whether a bit-field declared
plain int is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. How-
ever, this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bit-fields signed, because this is simplest.
Since int is the same as signed int in every other context, it is cleanest for them to
be the same in bit-fields as well.

Some computer manufacturers have published Application Binary Interface standards
which specify that plain bit-fields should be unsigned. It is a mistake, however, to say
anything about this issue in an ABI. This is because the handling of plain bit-fields
distinguishes two dialects of C. Both dialects are meaningful on every type of machine.
Whether a particular object file was compiled using signed bit-fields or unsigned is of
no concern to other object files, even if they access the same bit-fields in the same data
structures.

A given program is written in one or the other of these two dialects. The program
stands a chance to work on most any machine if it is compiled with the proper dialect.
It is unlikely to work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bit-fields differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On
these occasions, the users would benefit if the GNU C compiler were to support by
default the same dialect as the other compilers on that machine. But such applications
are rare. And users writing a program to run on more than one type of machine cannot
possibly benefit from this kind of compatibility.

This is why GCC does and will treat plain bit-fields in the same fashion on all types
of machines (by default).

There are some arguments for making bit-fields unsigned by default on all machines.
If, for example, this becomes a universal de facto standard, it would make sense for
GCC to go along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each
bit-field whether it is signed or not. In this way, they write programs which have the
same meaning in both C dialects.)

Chapter 9: Known Causes of Trouble with GCC 239

• Undefining __STDC__ when ‘-ansi’ is not used.
Currently, GCC defines __STDC__ as long as you don’t use ‘-traditional’. This
provides good results in practice.
Programmers normally use conditionals on __STDC__ to ask whether it is safe to use
certain features of ISO C, such as function prototypes or ISO token concatenation.
Since plain gcc supports all the features of ISO C, the correct answer to these questions
is “yes”.
Some users try to use __STDC__ to check for the availability of certain library facilities.
This is actually incorrect usage in an ISO C program, because the ISO C standard says
that a conforming freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding
implementation, and it is therefore required to define __STDC__, even though it does
not come with an ISO C library.
Sometimes people say that defining __STDC__ in a compiler that does not completely
conform to the ISO C standard somehow violates the standard. This is illogical. The
standard is a standard for compilers that claim to support ISO C, such as ‘gcc -ansi’—
not for other compilers such as plain gcc. Whatever the ISO C standard says is
relevant to the design of plain gcc without ‘-ansi’ only for pragmatic reasons, not as
a requirement.
GCC normally defines __STDC__ to be 1, and in addition defines __STRICT_ANSI__ if
you specify the ‘-ansi’ option, or a ‘-std’ option for strict conformance to some version
of ISO C. On some hosts, system include files use a different convention, where __STDC_
_ is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC
follows the host convention when processing system include files, but when processing
user files it follows the usual GNU C convention.

• Undefining __STDC__ in C++.
Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC_
_ to determine what kind of C preprocessor that compiler uses: whether they should
concatenate tokens in the ISO C fashion or in the traditional fashion.
These programs work properly with GNU C++ if __STDC__ is defined. They would not
work otherwise.
In addition, many header files are written to provide prototypes in ISO C but not in
traditional C. Many of these header files can work without change in C++ provided
__STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

• Deleting “empty” loops.
Historically, GCC has not deleted “empty” loops under the assumption that the most
likely reason you would put one in a program is to have a delay, so deleting them will
not make real programs run any faster.
However, the rationale here is that optimization of a nonempty loop cannot produce
an empty one, which holds for C but is not always the case for C++.
Moreover, with ‘-funroll-loops’ small “empty” loops are already removed, so the
current behavior is both sub-optimal and inconsistent and will change in the future.

240 Using and Porting the GNU Compiler Collection (GCC)

• Making side effects happen in the same order as in some other compiler.
It is never safe to depend on the order of evaluation of side effects. For example, a
function call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen
first. func might get the arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

• Not allowing structures with volatile fields in registers.
Strictly speaking, there is no prohibition in the ISO C standard against allowing struc-
tures with volatile fields in registers, but it does not seem to make any sense and is
probably not what you wanted to do. So the compiler will give an error message in
this case.

• Making certain warnings into errors by default.
Some ISO C testsuites report failure when the compiler does not produce an error
message for a certain program.
ISO C requires a “diagnostic” message for certain kinds of invalid programs, but a
warning is defined by GCC to count as a diagnostic. If GCC produces a warning but
not an error, that is correct ISO C support. If test suites call this “failure”, they should
be run with the GCC option ‘-pedantic-errors’, which will turn these warnings into
errors.

9.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each
kind has a different purpose:

Errors report problems that make it impossible to compile your program. GCC reports
errors with the source file name and line number where the problem is apparent.
Warnings report other unusual conditions in your code that may indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
file name and line number, but include the text ‘warning:’ to distinguish them from
error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU C or C++. Many warnings are issued only if you ask for them, with
one of the ‘-W’ options (for instance, ‘-Wall’ requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostic must be issued by a conforming compiler. The ‘-pedantic’
option tells GCC to issue warnings in such cases; ‘-pedantic-errors’ says to make them
errors instead. This does not mean that all non-ISO constructs get warnings or errors.

Chapter 9: Known Causes of Trouble with GCC 241

See Section 3.8 [Options to Request or Suppress Warnings], page 30, for more detail on
these and related command-line options.

242 Using and Porting the GNU Compiler Collection (GCC)

Chapter 10: Reporting Bugs 243

10 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.
When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 9 [Trouble], page 223. If it isn’t known, then you should report the problem.
Reporting a bug may help you by bringing a solution to your problem, or it may not.

(If it does not, look in the service directory; see Chapter 11 [Service], page 251.) In any
case, the principal function of a bug report is to help the entire community by making the
next version of GCC work better. Bug reports are your contribution to the maintenance of
GCC.

Since the maintainers are very overloaded, we cannot respond to every bug report. How-
ever, if the bug has not been fixed, we are likely to send you a patch and ask you to tell us
whether it works.

In order for a bug report to serve its purpose, you must include the information that
makes for fixing the bug.

10.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.
Reliable compilers never crash.

• If the compiler produces invalid assembly code, for any input whatever (except an
asm statement), that is a compiler bug, unless the compiler reports errors (not just
warnings) which would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.
However, you must double-check to make sure, because you may have run into an
incompatibility between GNU C and traditional C (see Section 9.5 [Incompatibilities],
page 228). These incompatibilities might be considered bugs, but they are inescapable
consequences of valuable features.
Or you may have a program whose behavior is undefined, which happened by chance
to give the desired results with another C or C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a
function instead of ‘return x;’, with the same results. But the value of the function
is undefined if return is omitted; it is not a bug when GCC produces different results.
Problems often result from expressions with two increment operators, as in f (*p++,
*p++). Your previous compiler might have interpreted that expression the way you
intended; GCC might interpret it another way. Neither compiler is wrong. The bug is
in your code.
After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well defined, you have found a compiler
bug.

• If the compiler produces an error message for valid input, that is a compiler bug.

244 Using and Porting the GNU Compiler Collection (GCC)

• If the compiler does not produce an error message for invalid input, that is a compiler
bug. However, you should note that your idea of “invalid input” might be my idea of
“an extension” or “support for traditional practice”.

• If you are an experienced user of one of the languages GCC supports, your suggestions
for improvement of GCC are welcome in any case.

10.2 Where to Report Bugs

Send bug reports for the GNU Compiler Collection to gcc-bugs@gcc.gnu.org. In ac-
cordance with the GNU-wide convention, in which bug reports for tool “foo” are sent to
‘bug-foo@gnu.org’, the address bug-gcc@gnu.org may also be used; it will forward to the
address given above.

Please read http://gcc.gnu.org/bugs.html for additional and/or more up-to-date bug
reporting instructions before you post a bug report.

10.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
they conclude that some details don’t matter. Thus, you might assume that the name of
the variable you use in an example does not matter. Well, probably it doesn’t, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the compiler into doing the right thing despite the bug.
Play it safe and give a specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it
is not known. It isn’t very important what happens if the bug is already known. Therefore,
always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

Try to make your bug report self-contained. If we have to ask you for more information, it
is best if you include all the previous information in your response, as well as the information
that was missing.

Please report each bug in a separate message. This makes it easier for us to track which
bugs have been fixed and to forward your bugs reports to the appropriate maintainer.

To enable someone to investigate the bug, you should include all these things:

• The version of GCC. You can get this by running it with the ‘-v’ option.

Without this, we won’t know whether there is any point in looking for the bug in the
current version of GCC.

mailto:gcc-bugs@gcc.gnu.org
mailto:bug-gcc@gnu.org
http://gcc.gnu.org/bugs.html

Chapter 10: Reporting Bugs 245

• A complete input file that will reproduce the bug. If the bug is in the C preprocessor,
send a source file and any header files that it requires. If the bug is in the compiler
proper (‘cc1’), send the preprocessor output generated by adding ‘-save-temps’ to the
compilation command (see Section 3.9 [Debugging Options], page 41). When you do
this, use the same ‘-I’, ‘-D’ or ‘-U’ options that you used in actual compilation. Then
send the input.i or input.ii files generated.

A single statement is not enough of an example. In order to compile it, it must be
embedded in a complete file of compiler input; and the bug might depend on the details
of how this is done.

Without a real example one can compile, all anyone can do about your bug report is
wish you luck. It would be futile to try to guess how to provoke the bug. For example,
bugs in register allocation and reloading frequently depend on every little detail of the
function they happen in.

Even if the input file that fails comes from a GNU program, you should still send the
complete test case. Don’t ask the GCC maintainers to do the extra work of obtaining
the program in question—they are all overworked as it is. Also, the problem may
depend on what is in the header files on your system; it is unreliable for the GCC
maintainers to try the problem with the header files available to them. By sending CPP
output, you can eliminate this source of uncertainty and save us a certain percentage
of wild goose chases.

• The command arguments you gave GCC to compile that example and observe the bug.
For example, did you use ‘-O’? To guarantee you won’t omit something important, list
all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we
would not encounter the bug.

• The type of machine you are using, and the operating system name and version number.

• The operands you gave to the configure command when you installed the compiler.

• A complete list of any modifications you have made to the compiler source. (We don’t
promise to investigate the bug unless it happens in an unmodified compiler. But if
you’ve made modifications and don’t tell us, then you are sending us on a wild goose
chase.)

Be precise about these changes. A description in English is not enough—send a context
diff for them.

Adding files of your own (such as a machine description for a machine we don’t support)
is a modification of the compiler source.

• Details of any other deviations from the standard procedure for installing GCC.

• A description of what behavior you observe that you believe is incorrect. For example,
“The compiler gets a fatal signal,” or, “The assembler instruction at line 208 in the
output is incorrect.”

Of course, if the bug is that the compiler gets a fatal signal, then one can’t miss it.
But if the bug is incorrect output, the maintainer might not notice unless it is glaringly
wrong. None of us has time to study all the assembler code from a 50-line C program
just on the chance that one instruction might be wrong. We need you to do this part!

246 Using and Porting the GNU Compiler Collection (GCC)

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the compiler is out of
synch, or you have encountered a bug in the C library on your system. (This has
happened!) Your copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know that the bug was not
happening. If you don’t say to expect a crash, then we would not know whether the bug
was happening. We would not be able to draw any conclusion from our observations.
If the problem is a diagnostic when compiling GCC with some other compiler, say
whether it is a warning or an error.
Often the observed symptom is incorrect output when your program is run. Sad to say,
this is not enough information unless the program is short and simple. None of us has
time to study a large program to figure out how it would work if compiled correctly,
much less which line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that line is executed.
A person who understands the program can find this as easily as finding a bug in the
program itself.

• If you send examples of assembler code output from GCC, please use ‘-g’ when you
make them. The debugging information includes source line numbers which are essen-
tial for correlating the output with the input.

• If you wish to mention something in the GCC source, refer to it by context, not by line
number.
The line numbers in the development sources don’t match those in your sources. Your
line numbers would convey no useful information to the maintainers.

• Additional information from a debugger might enable someone to find a problem on
a machine which he does not have available. However, you need to think when you
collect this information if you want it to have any chance of being useful.
For example, many people send just a backtrace, but that is never useful by itself.
A simple backtrace with arguments conveys little about GCC because the compiler is
largely data-driven; the same functions are called over and over for different RTL insns,
doing different things depending on the details of the insn.
Most of the arguments listed in the backtrace are useless because they are pointers to
RTL list structure. The numeric values of the pointers, which the debugger prints in
the backtrace, have no significance whatever; all that matters is the contents of the
objects they point to (and most of the contents are other such pointers).
In addition, most compiler passes consist of one or more loops that scan the RTL insn
sequence. The most vital piece of information about such a loop—which insn it has
reached—is usually in a local variable, not in an argument.
What you need to provide in addition to a backtrace are the values of the local variables
for several stack frames up. When a local variable or an argument is an RTX, first
print its value and then use the GDB command pr to print the RTL expression that it
points to. (If GDB doesn’t run on your machine, use your debugger to call the function
debug_rtx with the RTX as an argument.) In general, whenever a variable is a pointer,
its value is no use without the data it points to.

Here are some things that are not necessary:

Chapter 10: Reporting Bugs 247

• A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.
This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. You might as well save your time for something
else.
Of course, if you can find a simpler example to report instead of the original one, that
is a convenience. Errors in the output will be easier to spot, running under the de-
bugger will take less time, etc. Most GCC bugs involve just one function, so the most
straightforward way to simplify an example is to delete all the function definitions ex-
cept the one where the bug occurs. Those earlier in the file may be replaced by external
declarations if the crucial function depends on them. (Exception: inline functions may
affect compilation of functions defined later in the file.)
However, simplification is not vital; if you don’t want to do this, report the bug anyway
and send the entire test case you used.

• In particular, some people insert conditionals ‘#ifdef BUG’ around a statement which,
if removed, makes the bug not happen. These are just clutter; we won’t pay any
attention to them anyway. Besides, you should send us cpp output, and that can’t
have conditionals.

• A patch for the bug.
A patch for the bug is useful if it is a good one. But don’t omit the necessary informa-
tion, such as the test case, on the assumption that a patch is all we need. We might
see problems with your patch and decide to fix the problem another way, or we might
not understand it at all.
Sometimes with a program as complicated as GCC it is very hard to construct an
example that will make the program follow a certain path through the code. If you
don’t send the example, we won’t be able to construct one, so we won’t be able to
verify that the bug is fixed.
And if we can’t understand what bug you are trying to fix, or why your patch should
be an improvement, we won’t install it. A test case will help us to understand.
See Section 10.5 [Sending Patches], page 248, for guidelines on how to make it easy for
us to understand and install your patches.

• A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even I can’t guess right about such things without
first using the debugger to find the facts.

• A core dump file.
We have no way of examining a core dump for your type of machine unless we have
an identical system—and if we do have one, we should be able to reproduce the crash
ourselves.

10.4 The gccbug script

To simplify creation of bug reports, and to allow better tracking of reports, we use the
GNATS bug tracking system. Part of that system is the gccbug script. This is a Unix shell

248 Using and Porting the GNU Compiler Collection (GCC)

script, so you need a shell to run it. It is normally installed in the same directory where
gcc is installed.

The gccbug script is derived from send-pr, see section “Creating new Problem Reports”
in Reporting Problems. When invoked, it starts a text editor so you can fill out the various
fields of the report. When the you quit the editor, the report is automatically send to the
bug reporting address.

A number of fields in this bug report form are specific to GCC, and are explained at
http://gcc.gnu.org/gnats.html.

10.5 Sending Patches for GCC

If you would like to write bug fixes or improvements for the GNU C compiler, that is
very helpful. Send suggested fixes to the patches mailing list, gcc-patches@gcc.gnu.org.

Please follow these guidelines so we can study your patches efficiently. If you don’t follow
these guidelines, your information might still be useful, but using it will take extra work.
Maintaining GCC is a lot of work in the best of circumstances, and we can’t keep up unless
you do your best to help.
• Send an explanation with your changes of what problem they fix or what improvement

they bring about. For a bug fix, just include a copy of the bug report, and explain why
the change fixes the bug.
(Referring to a bug report is not as good as including it, because then we will have to
look it up, and we have probably already deleted it if we’ve already fixed the bug.)

• Always include a proper bug report for the problem you think you have fixed. We need
to convince ourselves that the change is right before installing it. Even if it is right, we
might have trouble judging it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.
If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one. If you send them all jumbled together in a
single set of diffs, we have to do extra work to disentangle them—to figure out which
parts of the change serve which purpose. If we don’t have time for this, we might have
to ignore your changes entirely.
If you send each change as soon as you have written it, with its own explanation, then
the two changes never get tangled up, and we can consider each one properly without
any extra work to disentangle them.
Ideally, each change you send should be impossible to subdivide into parts that we
might want to consider separately, because each of its parts gets its motivation from
the other parts.

• Send each change as soon as that change is finished. Sometimes people think they are
helping us by accumulating many changes to send them all together. As explained
above, this is absolutely the worst thing you could do.
Since you should send each change separately, you might as well send it right away.
That gives us the option of installing it immediately if it is important.

http://gcc.gnu.org/gnats.html
mailto:gcc-patches@gcc.gnu.org

Chapter 10: Reporting Bugs 249

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for us to install
reliably. More than that, they make it hard for us to study the diffs to decide whether
we want to install them. Unidiff format is better than contextless diffs, but not as easy
to read as ‘-c’ format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each
change occurs in.

• Write the change log entries for your changes. We get lots of changes, and we don’t
have time to do all the change log writing ourselves.
Read the ‘ChangeLog’ file to see what sorts of information to put in, and to learn the
style that we use. The purpose of the change log is to show people where to find what
was changed. So you need to be specific about what functions you changed; in large
functions, it’s often helpful to indicate where within the function the change was.
On the other hand, once you have shown people where to find the change, you need
not explain its purpose. Thus, if you add a new function, all you need to say about it
is that it is new. If you feel that the purpose needs explaining, it probably does—but
the explanation will be much more useful if you put it in comments in the code.
If you would like your name to appear in the header line for who made the change,
send us the header line.

• When you write the fix, keep in mind that we can’t install a change that would break
other systems.
People often suggest fixing a problem by changing machine-independent files such as
‘toplev.c’ to do something special that a particular system needs. Sometimes it is
totally obvious that such changes would break GCC for almost all users. We can’t
possibly make a change like that. At best it might tell us how to write another patch
that would solve the problem acceptably.
Sometimes people send fixes that might be an improvement in general—but it is hard
to be sure of this. It’s hard to install such changes because we have to study them very
carefully. Of course, a good explanation of the reasoning by which you concluded the
change was correct can help convince us.
The safest changes are changes to the configuration files for a particular machine. These
are safe because they can’t create new bugs on other machines.
Please help us keep up with the workload by designing the patch in a form that is good
to install.

250 Using and Porting the GNU Compiler Collection (GCC)

Chapter 11: How To Get Help with GCC 251

11 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to find it:
• Send a message to a suitable network mailing list. First try gcc-help@gcc.gnu.org (for

help installing or using GCC), and if that brings no response, try gcc@gcc.gnu.org.
For help changing GCC, ask gcc@gcc.gnu.org. If you think you have found a bug in
GCC, please report it following the instructions at see Section 10.3 [Bug Reporting],
page 244.

• Look in the service directory for someone who might help you for a fee. The service
directory is found at http://www.gnu.org/prep/service.html.

mailto:gcc-help@gcc.gnu.org
mailto:gcc@gcc.gnu.org
mailto:gcc@gcc.gnu.org
http://www.gnu.org/prep/service.html

252 Using and Porting the GNU Compiler Collection (GCC)

Chapter 12: Contributing to GCC Development 253

12 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, our current de-
velopment sources are available by CVS (see http://gcc.gnu.org/cvs.html). Source and
binary snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read http://gcc.gnu.org/contribute.html
and http://gcc.gnu.org/contributewhy.html for information on how to make useful
contributions and avoid duplication of effort. Suggested projects are listed at
http://gcc.gnu.org/projects/.

http://gcc.gnu.org/cvs.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

254 Using and Porting the GNU Compiler Collection (GCC)

Chapter 13: Using GCC on VMS 255

13 Using GCC on VMS

Here is how to use GCC on VMS.

13.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS, GCC attempts to
translate file names in ‘#include’ into names that VMS will understand. The basic strategy
is to prepend a prefix to the specification of the include file, convert the whole filename to
a VMS filename, and then try to open the file. GCC tries various prefixes one by one until
one of them succeeds:
1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where GNU C header

files are traditionally stored. If you wish to store header files in non-standard locations,
then you can assign the logical ‘GNU_CC_INCLUDE’ to be a search list, where each element
of the list is suitable for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT:[SYSLIB.]’. This is where VAX-C header files
are traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the preprocessor then
uses this name with no prefix in an attempt to open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not contain a device or
a directory specifier, and contains a ‘/’ character), the preprocessor tries to convert it
from Unix syntax to VMS syntax.
Conversion works like this: the first directory name becomes a device, and the rest
of the directories are converted into VMS-format directory names. For example, the
name ‘X11/foobar.h’ is translated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’,
whichever one can be opened. This strategy allows you to assign a logical name to
point to the actual location of the header files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:
#include foobar

are a common source of incompatibility between VAX-C and GCC. VAX-C treats this
much like a standard #include <foobar.h> directive. That is incompatible with the ISO
C behavior implemented by GCC: to expand the name foobar as a macro. Macro expansion
should eventually yield one of the two standard formats for #include:

#include "file"
#include <file>

If you have this problem, the best solution is to modify the source to convert the
#include directives to one of the two standard forms. That will work with either com-
piler. If you want a quick and dirty fix, define the file names as macros with the proper
expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else in the program.
Another source of incompatibility is that VAX-C assumes that:

256 Using and Porting the GNU Compiler Collection (GCC)

#include "foobar"

is actually asking for the file ‘foobar.h’. GCC does not make this assumption, and instead
takes what you ask for literally; it tries to read the file ‘foobar’. The best way to avoid
this problem is to always specify the desired file extension in your include directives.

GCC for VMS is distributed with a set of include files that is sufficient to compile most
general purpose programs. Even though the GCC distribution does not contain header
files to define constants and structures for some VMS system-specific functions, there is
no reason why you cannot use GCC with any of these functions. You first may have to
generate or create header files, either by using the public domain utility UNSDL (which can
be found on a DECUS tape), or by extracting the relevant modules from one of the system
macro libraries, and using an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The preprocessor reports
an I/O error if you attempt to use a node name, whether explicitly, or implicitly via a
logical name.

13.2 Global Declarations and VMS

GCC does not provide the globalref, globaldef and globalvalue keywords of VAX-
C. You can get the same effect with an obscure feature of GAS, the GNU assembler. (This
requires GAS version 1.39 or later.) The following macros allow you to use this feature in
a fairly natural way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \
globalref TYPE NAME

#define GLOBALDEF(TYPE,NAME,VALUE) \
globaldef TYPE NAME = VALUE

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
globalvalue TYPE NAME = VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
globalvalue TYPE NAME

#endif

Chapter 13: Using GCC on VMS 257

(The _$$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is removed by the
assembler, after it has modified the attributes of the symbol). These macros are provided
in the VMS binaries distribution in a header file ‘GNU_HACKS.H’. An example of the usage
is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays,
since there is no way to insert the array dimension into the declaration at the right place.
However, you can declare an array with these macros if you first define a typedef for the
array type, like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can define the initializer
to be a macro of its own, or you can expand the GLOBALDEF macro by hand. You may find
a case where you wish to use the GLOBALDEF macro with a large array, but you are not
interested in explicitly initializing each element of the array. In such cases you can use an
initializer like: {0,}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF
or GLOBALVALUEDEF is always an array. For example, the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done because a globalvalue
is actually a constant; its “value” is what the linker would normally consider an address.
That is not how an integer value works in C, but it is how an array works. So treating the
symbol as an array name gives consistent results—with the exception that the value seems
to have the wrong type. Don’t try to access an element of the array. It doesn’t have any
elements. The array “address” may not be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used.
Insert type casts to avoid the warnings. Here is an example; it takes advantage of the ISO
C feature allowing macros that expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don’t use globaldef or globalref with a variable whose type is an enumeration type;
this is not implemented. Instead, make the variable an integer, and use a globalvaluedef
for each of the enumeration values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

258 Using and Porting the GNU Compiler Collection (GCC)

13.3 Other VMS Issues

GCC automatically arranges for main to return 1 by default if you fail to specify an
explicit return value. This will be interpreted by VMS as a status code indicating a normal
successful completion. Version 1 of GCC did not provide this default.

GCC on VMS works only with the GNU assembler, GAS. You need version 1.37 or later
of GAS in order to produce value debugging information for the VMS debugger. Use the
ordinary VMS linker with the object files produced by GAS.

Under previous versions of GCC, the generated code would occasionally give strange
results when linked to the sharable ‘VAXCRTL’ library. Now this should work.

A caveat for use of const global variables: the const modifier must be specified in every
external declaration of the variable in all of the source files that use that variable. Otherwise
the linker will issue warnings about conflicting attributes for the variable. Your program
will still work despite the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global
symbols, most VMS compilers convert all such symbols into upper case and most run-time
library routines also have upper case names. To be able to reliably call such routines, GCC
(by means of the assembler GAS) converts global symbols into upper case like other VMS
compilers. However, since the usual practice in C is to distinguish case, GCC (via GAS)
tries to preserve usual C behavior by augmenting each name that is not all lower case. This
means truncating the name to at most 23 characters and then adding more characters at
the end which encode the case pattern of those 23. Names which contain at least one dollar
sign are an exception; they are converted directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precompiled libraries (such
as Xlib) which were generated by another compiler. You can use the compiler option
‘/NOCASE_HACK’ to inhibit augmentation; it makes external C functions and variables case-
independent as is usual on VMS. Alternatively, you could write all references to the func-
tions and variables in such libraries using lower case; this will work on VMS, but is not
portable to other systems. The compiler option ‘/NAMES’ also provides control over global
name handling.

Function and variable names are handled somewhat differently with G++. The GNU C++
compiler performs name mangling on function names, which means that it adds information
to the function name to describe the data types of the arguments that the function takes.
One result of this is that the name of a function can become very long. Since the VMS
linker only recognizes the first 31 characters in a name, special action is taken to ensure
that each function and variable has a unique name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length,
then no special action is performed. If the name is longer than 31 characters, the assembler
(GAS) will generate a hash string based upon the function name, truncate the function
name to 23 characters, and append the hash string to the truncated name. If the ‘/VERBOSE’
compiler option is used, the assembler will print both the full and truncated names of each
symbol that is truncated.

The ‘/NOCASE_HACK’ compiler option should not be used when you are compiling pro-
grams that use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf)
which become indistinguishable in a case-insensitive environment. This leads to cases where

Chapter 13: Using GCC on VMS 259

you need to inhibit augmentation selectively (if you were using libg++ and Xlib in the same
program, for example). There is no special feature for doing this, but you can get the result
by defining a macro for each mixed case symbol for which you wish to inhibit augmentation.
The macro should expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize the number of changes
to your source code.

260 Using and Porting the GNU Compiler Collection (GCC)

Chapter 14: Additional Makefile and configure information. 261

14 Additional Makefile and configure information.

14.1 Makefile Targets

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation. Also, make dvi is available for DVI-
formatted documentation, and make generated-manpages to generate man
pages.

mostlyclean
Delete the files made while building the compiler.

clean That, and all the other files built by make all.

distclean
That, and all the files created by configure.

extraclean
That, and any temporary or intermediate files, like emacs backup files.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

install Installs gcc.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.log’ files containing the results of the testing. You can run subsets
with, for example, make check-gcc. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

bootstrap
Builds gcc three times—once with the native compiler, once with the native-
built compiler it just built, and once with the compiler it built the second time.
In theory, the last two should produce the same results, which make compare
can check. Each step of this process is called a “stage”, and the results of each
stage N (N = 1. . .3) are copied to a subdirectory ‘stageN/’.

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

262 Using and Porting the GNU Compiler Collection (GCC)

bubblestrap
Once bootstrapped, this incrementally rebuilds each of the three stages, one
at a time. It does this by “bubbling” the stages up from their subdirectories,
rebuilding them, and copying them back to their subdirectories. This will allow
you to, for example, quickly rebuild a bootstrapped compiler after changing the
sources, without having to do a full bootstrap.

quickstrap
Rebuilds the most recently built stage. Since each stage requires special in-
vocation, using this target means you don’t have to keep track of which stage
you’re on or what invocation that stage needs.

cleanstrap
Removed everything (make clean) and rebuilds (make bootstrap).

stageN (N = 1...4)
For each stage, moves the appropriate files to the ‘stageN ’ subdirectory.

unstageN (N = 1...4)
Undoes the corresponding stageN .

restageN (N = 1...4)
Undoes the corresponding stageN and rebuilds it with the appropriate flags.

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

14.2 Configure Terms and History

This section is not instructions for building GCC. If you are trying to do a build, you
should first read http://gcc.gnu.org/install/ or whatever installation instructions came
with your source package.

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘--host=’, and ‘--target=’.

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are
the same but target is different, this is called a cross. If build, host, and target are all
different this is called a canadian (for obscure reasons dealing with Canada’s political party
and the background of the person working on the build at that time). If host and target
are the same, but build is different, you are using a cross-compiler to build a native for a
different system. Some people call this a host-x-host, crossed native, or cross-built native.

http://gcc.gnu.org/install/

Chapter 14: Additional Makefile and configure information. 263

If build and target are the same, but host is different, you are using a cross compiler to
build a cross compiler that produces code for the machine you’re building on. This is rare,
so there is no common say of describing it (although I propose calling it a crossback).

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you’re not building a compiler, you’re
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

Libiberty, for example, is built twice. The first time, host comes from ‘--host’ and the
second time host comes from ‘--target’. Historically, libiberty has not been built for the
build machine, though, which causes some interesting issues with programs used to generate
sources for the build. Fixing this, so that libiberty is built three times, has long been on
the to-do list.

264 Using and Porting the GNU Compiler Collection (GCC)

Chapter 15: GCC and Portability 265

15 GCC and Portability

The main goal of GCC was to make a good, fast compiler for machines in the class that
the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have several
general registers. Elegance, theoretical power and simplicity are only secondary.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, I have not hesitated to define an ad-hoc parameter to the machine
description. The purpose of portability is to reduce the total work needed on the compiler;
it was not of interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often I have not tried to address all possible cases, but only the common ones
or only the ones that I have encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

266 Using and Porting the GNU Compiler Collection (GCC)

Chapter 16: Interfacing to GCC Output 267

16 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in
use on the target system. This is done with the machine-description macros described (see
Chapter 21 [Target Macros], page 417).

However, returning of structure and union values is done differently on some target
machines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The machine-description macros
STRUCT_VALUE and STRUCT_INCOMING_VALUE tell GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the Sparc), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t want to write volatile
because old C compilers don’t accept it, just take the address of the variable. If a variable’s
address is ever taken, even if just to compute it and ignore it, then the variable cannot go
in a register:

{
int careful;
&careful;

268 Using and Porting the GNU Compiler Collection (GCC)

...
}

Code compiled with GCC may call certain library routines. Most of them handle arith-
metic for which there are no instructions. This includes multiply and divide on some
machines, and floating point operations on any machine for which floating point support
is disabled with ‘-msoft-float’. Some standard parts of the C library, such as bcopy or
memcpy, are also called automatically. The usual function call interface is used for calling
the library routines.

Some of these routines can be defined in mostly machine-independent C; they appear
in ‘libgcc2.c’. Others must be hand-written in assembly language for each processor.
Wherever they are defined, they are compiled into the support library, ‘libgcc.a’, which
is automatically searched when you link programs with GCC.

Chapter 17: Passes and Files of the Compiler 269

17 Passes and Files of the Compiler

The overall control structure of the compiler is in ‘toplev.c’. This file is responsible for
initialization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. A high level tree
representation is then generated from the input, one function at a time. This tree code
is then transformed into RTL intermediate code, and processed. The files involved in
transforming the trees into RTL are ‘expr.c’, ‘expmed.c’, and ‘stmt.c’. The order of trees
that are processed, is not necessarily the same order they are generated from the input, due
to deferred inlining, and other considerations.

Each time the parsing pass reads a complete function definition or top-level declara-
tion, it calls either the function rest_of_compilation, or the function rest_of_decl_
compilation in ‘toplev.c’, which are responsible for all further processing necessary, end-
ing with output of the assembler language. All other compiler passes run, in sequence,
within rest_of_compilation. When that function returns from compiling a function def-
inition, the storage used for that function definition’s compilation is entirely freed, unless
it is an inline function, or was deferred for some reason (this can occur in templates, for
example). (see Section 5.35 [An Inline Function is As Fast As a Macro], page 183).

Here is a list of all the passes of the compiler and their source files. Also included is a
description of where debugging dumps can be requested with ‘-d’ options.
• Parsing. This pass reads the entire text of a function definition, constructing a high

level tree representation. (Because of the semantic analysis that takes place during this
pass, it does more than is formally considered to be parsing.)
The tree representation does not entirely follow C syntax, because it is intended to
support other languages as well.
Language-specific data type analysis is also done in this pass, and every tree node
that represents an expression has a data type attached. Variables are represented as
declaration nodes.
The language-independent source files for parsing are ‘stor-layout.c’,
‘fold-const.c’, and ‘tree.c’. There are also header files ‘tree.h’ and ‘tree.def’
which define the format of the tree representation.
C Preprocessing, for language front ends, that want or require it, is performed by
cpplib, which is covered in seperate documentation. In particular, the internals are
covered in See section “Cpplib internals” in Cpplib Internals.
The source files to parse C are ‘c-aux-info.c’, ‘c-convert.c’, ‘c-decl.c’,
‘c-errors.c’, ‘c-lang.c’, ‘c-parse.in’, and ‘c-typeck.c’, along with a header file
‘c-tree.h’ and some files shared with Objective-C and C++.
The source files for parsing C++ are in ‘cp/’. They are ‘parse.y’, ‘class.c’, ‘cvt.c’,
‘decl.c’, ‘decl2.c’, ‘except.c’, ‘expr.c’, ‘init.c’, ‘lex.c’, ‘method.c’, ‘ptree.c’,
‘search.c’, ‘spew.c’, ‘semantics.c’, ‘tree.c’, ‘typeck2.c’, and ‘typeck.c’, along
with header files ‘cp-tree.def’, ‘cp-tree.h’, and ‘decl.h’.
The special source files for parsing Objective-C are in ‘objc/’. They are
‘objc-parse.y’, ‘objc-act.c’, ‘objc-tree.def’, and ‘objc-act.h’. Certain
C-specific files are used for this as well.

270 Using and Porting the GNU Compiler Collection (GCC)

The files ‘c-common.c’, ‘c-common.def’, ‘c-dump.c’, ‘c-format.c’, ‘c-lex.c’,
‘c-pragma.c’, and ‘c-semantics.c’, along with header files ‘c-common.h’, ‘c-dump.h’,
‘c-lex.h’, and ‘c-pragma.h’, are also used for all of the above languages.

• Tree optimization. This is the optimization of the tree representation, before converting
into RTL code.

Currently, the main optimization performed here is tree-based inlining. This is imple-
mented for C++ in ‘cp/optimize.c’. Note that tree based inlining turns off rtx based
inlining (since it’s more powerful, it would be a waste of time to do rtx based inlining
in addition). The C front end currently does not perform tree based inlining.

Constant folding and some arithmetic simplifications are also done during this pass,
on the tree representation. The routines that perform these tasks are located in
‘fold-const.c’.

• RTL generation. This is the conversion of syntax tree into RTL code.

This is where the bulk of target-parameter-dependent code is found, since often it is
necessary for strategies to apply only when certain standard kinds of instructions are
available. The purpose of named instruction patterns is to provide this information to
the RTL generation pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean oper-
ations or conditional expressions. Tail recursion is detected at this time also. Decisions
are made about how best to arrange loops and how to output switch statements.

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the
tree structure representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its sub-
sequent callers is made at the end of rtl generation. The function must meet certain
criteria, currently related to the size of the function and the types and number of pa-
rameters it has. Note that this function may contain loops, recursive calls to itself
(tail-recursive functions can be inlined!), gotos, in short, all constructs supported by
GCC. The file ‘integrate.c’ contains the code to save a function’s rtl for later inlining
and to inline that rtl when the function is called. The header file ‘integrate.h’ is also
used for this purpose.

The option ‘-dr’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.rtl’ to the input file name.

• Sibiling call optimization. This pass performs tail recursion elimination, and tail and
sibling call optimizations. The purpose of these optimizations is to reduce the overhead
of function calls, whenever possible.

The source file of this pass is ‘sibcall.c’

Chapter 17: Passes and Files of the Compiler 271

The option ‘-di’ causes a debugging dump of the RTL code after this pass is run. This
dump file’s name is made by appending ‘.sibling’ to the input file name.

• Jump optimization. This pass simplifies jumps to the following instruction, jumps
across jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code,
except that unreachable code that contains a loop is not recognized as unreachable in
this pass. (Such loops are deleted later in the basic block analysis.) It also converts
some code originally written with jumps into sequences of instructions that directly set
values from the results of comparisons, if the machine has such instructions.
Jump optimization is performed two or three times. The first time is immediately
following RTL generation. The second time is after CSE, but only if CSE says re-
peated jump optimization is needed. The last time is right before the final pass. That
time, cross-jumping and deletion of no-op move instructions are done together with the
optimizations described above.
The source file of this pass is ‘jump.c’.
The option ‘-dj’ causes a debugging dump of the RTL code after this pass is run for
the first time. This dump file’s name is made by appending ‘.jump’ to the input file
name.

• Register scan. This pass finds the first and last use of each register, as a guide for
common subexpression elimination. Its source is in ‘regclass.c’.

• Jump threading. This pass detects a condition jump that branches to an identical
or inverse test. Such jumps can be ‘threaded’ through the second conditional test.
The source code for this pass is in ‘jump.c’. This optimization is only performed if
‘-fthread-jumps’ is enabled.

• Static Single Assignment (SSA) based optimization passes. The SSA conversion passes
(to/from) are turned on by the ‘-fssa’ option (it is also done automatically if you
enable an SSA optimization pass). These passes utilize a form called Static Single
Assignment. In SSA form, each variable (pseudo register) is only set once, giving you
def-use and use-def chains for free, and enabling a lot more optimization passes to be
run in linear time. Conversion to and from SSA form is handled by functions in ‘ssa.c’.
The option ‘-de’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.ssa’ to the input file name.

• SSA Conditional Constant Propagation. Turned on by the ‘-fssa-ccp’ SSA Ag-
gressive Dead Code Elimination. Turned on by the ‘-fssa-dce’ option. This pass
performs conditional constant propagation to simplify instructions including con-
ditional branches. This pass is more aggressive than the constant propgation done
by the CSE and GCSE pases, but operates in linear time.
The option ‘-dW’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.ssaccp’ to the input file name.

• SSA Aggressive Dead Code Elimination. Turned on by the ‘-fssa-dce’ option.
This pass performs elimination of code considered unnecessary because it has no
externally visible effects on the program. It operates in linear time.
The option ‘-dX’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.ssadce’ to the input file name.

272 Using and Porting the GNU Compiler Collection (GCC)

• Common subexpression elimination. This pass also does constant propagation. Its
source files are ‘cse.c’, and ‘cselib.c’. If constant propagation causes conditional
jumps to become unconditional or to become no-ops, jump optimization is run again
when CSE is finished.
The option ‘-ds’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse’ to the input file name.

• Global common subexpression elimination. This pass performs two different types of
GCSE depending on whether you are optimizing for size or not (LCM based GCSE
tends to increase code size for a gain in speed, while Morel-Renvoise based GCSE
does not). When optimizing for size, GCSE is done using Morel-Renvoise Partial
Redundancy Elimination, with the exception that it does not try to move invariants
out of loops—that is left to the loop optimization pass. If MR PRE GCSE is done, code
hoisting (aka unification) is also done, as well as load motion. If you are optimizing
for speed, LCM (lazy code motion) based GCSE is done. LCM is based on the work
of Knoop, Ruthing, and Steffen. LCM based GCSE also does loop invariant code
motion. We also perform load and store motion when optimizing for speed. Regardless
of which type of GCSE is used, the GCSE pass also performs global constant and copy
propagation.
The source file for this pass is ‘gcse.c’, and the LCM routines are in ‘lcm.c’.
The option ‘-dG’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.gcse’ to the input file name.

• Loop optimization. This pass moves constant expressions out of loops, and optionally
does strength-reduction and loop unrolling as well. Its source files are ‘loop.c’ and
‘unroll.c’, plus the header ‘loop.h’ used for communication between them. Loop
unrolling uses some functions in ‘integrate.c’ and the header ‘integrate.h’. Loop
dependency analysis routines are contained in ‘dependence.c’.
The option ‘-dL’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.loop’ to the input file name.

• If ‘-frerun-cse-after-loop’ was enabled, a second common subexpression elimina-
tion pass is performed after the loop optimization pass. Jump threading is also done
again at this time if it was specified.
The option ‘-dt’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse2’ to the input file name.

• Data flow analysis (‘flow.c’). This pass divides the program into basic blocks (and
in the process deletes unreachable loops); then it computes which pseudo-registers are
live at each point in the program, and makes the first instruction that uses a value
point at the instruction that computed the value.
This pass also deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing.
The option ‘-df’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.flow’ to the input file name. If stupid register
allocation is in use, this dump file reflects the full results of such allocation.

• Instruction combination (‘combine.c’). This pass attempts to combine groups of two
or three instructions that are related by data flow into single instructions. It combines

Chapter 17: Passes and Files of the Compiler 273

the RTL expressions for the instructions by substitution, simplifies the result using
algebra, and then attempts to match the result against the machine description.
The option ‘-dc’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.combine’ to the input file name.

• If-conversion is a transformation that transforms control dependencies into data de-
pendencies (IE it transforms conditional code into a single control stream). It is im-
plemented in the file ‘ifcvt.c’.
The option ‘-dE’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.ce’ to the input file name.

• Register movement (‘regmove.c’). This pass looks for cases where matching constraints
would force an instruction to need a reload, and this reload would be a register to
register move. It then attempts to change the registers used by the instruction to avoid
the move instruction.
The option ‘-dN’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.regmove’ to the input file name.

• Instruction scheduling (‘sched.c’). This pass looks for instructions whose output will
not be available by the time that it is used in subsequent instructions. (Memory loads
and floating point instructions often have this behavior on RISC machines). It re-orders
instructions within a basic block to try to separate the definition and use of items that
otherwise would cause pipeline stalls.
Instruction scheduling is performed twice. The first time is immediately after instruc-
tion combination and the second is immediately after reload.
The option ‘-dS’ causes a debugging dump of the RTL code after this pass is run for
the first time. The dump file’s name is made by appending ‘.sched’ to the input file
name.

• Register class preferencing. The RTL code is scanned to find out which register class
is best for each pseudo register. The source file is ‘regclass.c’.

• Local register allocation (‘local-alloc.c’). This pass allocates hard registers to
pseudo registers that are used only within one basic block. Because the basic block is
linear, it can use fast and powerful techniques to do a very good job.
The option ‘-dl’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.lreg’ to the input file name.

• Global register allocation (‘global.c’). This pass allocates hard registers for the re-
maining pseudo registers (those whose life spans are not contained in one basic block).

• Reloading. This pass renumbers pseudo registers with the hardware registers numbers
they were allocated. Pseudo registers that did not get hard registers are replaced
with stack slots. Then it finds instructions that are invalid because a value has failed
to end up in a register, or has ended up in a register of the wrong kind. It fixes
up these instructions by reloading the problematical values temporarily into registers.
Additional instructions are generated to do the copying.
The reload pass also optionally eliminates the frame pointer and inserts instructions to
save and restore call-clobbered registers around calls.
Source files are ‘reload.c’ and ‘reload1.c’, plus the header ‘reload.h’ used for com-
munication between them.

274 Using and Porting the GNU Compiler Collection (GCC)

The option ‘-dg’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.greg’ to the input file name.

• Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory
loads generated for spilled pseudo registers.
The option ‘-dR’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.sched2’ to the input file name.

• Basic block reordering. This pass implements profile guided code positioning. If profile
information is not available, various types of static analysis are performed to make
the predictions normally coming from the profile feedback (IE execution frequency,
branch probability, etc). It is implemented in the file ‘bb-reorder.c’, and the various
prediction routines are in ‘predict.c’.
The option ‘-dB’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.bbro’ to the input file name.

• Jump optimization is repeated, this time including cross-jumping and deletion of no-op
move instructions.
The option ‘-dJ’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.jump2’ to the input file name.

• Delayed branch scheduling. This optional pass attempts to find instructions that can
go into the delay slots of other instructions, usually jumps and calls. The source file
name is ‘reorg.c’.
The option ‘-dd’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.dbr’ to the input file name.

• Branch shortening. On many RISC machines, branch instructions have a limited range.
Thus, longer sequences of instructions must be used for long branches. In this pass, the
compiler figures out what how far each instruction will be from each other instruction,
and therefore whether the usual instructions, or the longer sequences, must be used for
each branch.

• Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The source file name is ‘reg-stack.c’.
The options ‘-dk’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ‘.stack’ to the input file name.

• Final. This pass outputs the assembler code for the function. It is also responsible
for identifying spurious test and compare instructions. Machine-specific peephole opti-
mizations are performed at the same time. The function entry and exit sequences are
generated directly as assembler code in this pass; they never exist as RTL.
The source files are ‘final.c’ plus ‘insn-output.c’; the latter is generated auto-
matically from the machine description by the tool ‘genoutput’. The header file
‘conditions.h’ is used for communication between these files.

• Debugging information output. This is run after final because it must output the
stack slot offsets for pseudo registers that did not get hard registers. Source files
are ‘dbxout.c’ for DBX symbol table format, ‘sdbout.c’ for SDB symbol table for-
mat, ‘dwarfout.c’ for DWARF symbol table format, and the files ‘dwarf2out.c’ and
‘dwarf2asm.c’ for DWARF2 symbol table format.

Chapter 17: Passes and Files of the Compiler 275

Some additional files are used by all or many passes:
• Every pass uses ‘machmode.def’ and ‘machmode.h’ which define the machine modes.
• Several passes use ‘real.h’, which defines the default representation of floating point

constants and how to operate on them.
• All the passes that work with RTL use the header files ‘rtl.h’ and ‘rtl.def’, and

subroutines in file ‘rtl.c’. The tools gen* also use these files to read and work with
the machine description RTL.

• All the tools that read the machine description use support routines found in
‘gensupport.c’, ‘errors.c’, and ‘read-rtl.c’.

• Several passes refer to the header file ‘insn-config.h’ which contains a few parameters
(C macro definitions) generated automatically from the machine description RTL by
the tool genconfig.

• Several passes use the instruction recognizer, which consists of ‘recog.c’ and ‘recog.h’,
plus the files ‘insn-recog.c’ and ‘insn-extract.c’ that are generated automatically
from the machine description by the tools ‘genrecog’ and ‘genextract’.

• Several passes use the header files ‘regs.h’ which defines the information recorded
about pseudo register usage, and ‘basic-block.h’ which defines the information
recorded about basic blocks.

• ‘hard-reg-set.h’ defines the type HARD_REG_SET, a bit-vector with a bit for each hard
register, and some macros to manipulate it. This type is just int if the machine has few
enough hard registers; otherwise it is an array of int and some of the macros expand
into loops.

• Several passes use instruction attributes. A definition of the attributes defined for
a particular machine is in file ‘insn-attr.h’, which is generated from the machine
description by the program ‘genattr’. The file ‘insn-attrtab.c’ contains subroutines
to obtain the attribute values for insns. It is generated from the machine description
by the program ‘genattrtab’.

276 Using and Porting the GNU Compiler Collection (GCC)

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 277

18 Trees: The intermediate representation used
by the C and C++ front ends

This chapter documents the internal representation used by GCC and C++ to represent
C and C++ source programs. When presented with a C or C++ source program, GCC parses
the program, performs semantic analysis (including the generation of error messages), and
then produces the internal representation described here. This representation contains a
complete representation for the entire translation unit provided as input to the front end.
This representation is then typically processed by a code-generator in order to produce
machine code, but could also be used in the creation of source browsers, intelligent editors,
automatic documentation generators, interpreters, and any other programs needing the
ability to process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation which is largely a
superset of the representation used in the C front end. There is only one construct used in C
that does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that
uses this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcc@gcc.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

18.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of
yet, only preliminary documentation.

18.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take a trees as input and return trees as output. However, most macros require
a certain kinds of tree node as input. In other words, there is a type-system for trees, but
it is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘--enable-checking’. Although this
results in a significant performance penalty (since all tree types are checked at run-time), and

mailto:gcc@gcc.gnu.org

278 Using and Porting the GNU Compiler Collection (GCC)

is therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))
x = 1;

and

int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
non-zero codes where previously they returned only zero and one. Therefore, you should
not write code like

if (TEST_P (t) == 1)

as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lower case. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end.” These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes
of types not mentioned here, or macros documented to return entities of a particular kind
that instead return entities of some different kind, you have found a bug, either in the front
end or in the documentation. Please report these bugs as you would any other bug.

18.2.1 Trees

This section is not here yet.

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 279

18.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODEs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

18.2.3 Containers

Two common container data structures can be represented directly with tree nodes.
A TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving
the number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_
ELT macro, which takes two arguments. The first is the TREE_VEC in question; the second
is an integer indicating which element in the vector is desired. The elements are indexed
from zero.

280 Using and Porting the GNU Compiler Collection (GCC)

18.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often several nodes each of
which correspond to the same type.

For the most part, different kinds of types have different tree codes. (For example,
pointer types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However,
pointers to member functions use the RECORD_TYPE code. Therefore, when writing a switch
statement that depends on the code associated with a particular type, you should take care
to handle pointers to member functions under the RECORD_TYPE case label.

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int ()[7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 281

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

same_type_p
This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE
Used to represent the void type.

282 Using and Porting the GNU Compiler Collection (GCC)

INTEGER_TYPE
Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. Note that GCC’s CHAR_TYPE node is not used to represent char. The
TYPE_PRECISION is the number of bits used in the representation, represented
as an unsigned int. (Note that in the general case this is not the same value as
TYPE_SIZE; suppose that there were a 24-bit integer type, but that alignment
requirements for the ABI required 32-bit alignment. Then, TYPE_SIZE would
be an INTEGER_CST for 32, while TYPE_PRECISION would be 24.) The integer
type is unsigned if TREE_UNSIGNED holds; otherwise, it is signed.
The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

REAL_TYPE
Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TREE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.
The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form ‘T X::*’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 283

FUNCTION_TYPE
Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_
ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.
Note that in C (but not in C++) a function declared like void f() is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE
Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE
Used to represent struct and class types, as well as pointers to member
functions. If TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member
type. In that case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing
to a METHOD_TYPE. The METHOD_TYPE is the type of a function pointed to by the
pointer-to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is
a class type. For more information, see see Section 18.4.2 [Classes], page 285.

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

OFFSET_TYPE
This node is used to represent a data member; for example a pointer-to-data-
member is represented by a POINTER_TYPE whose TREE_TYPE is an OFFSET_
TYPE. For a data member X::m the TYPE_OFFSET_BASETYPE is X and the TREE_
TYPE is the type of m.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a

284 Using and Porting the GNU Compiler Collection (GCC)

template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

UNION_TYPE
Used to represent union types. For more information, see Section 18.4.2
[Classes], page 285.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.

integer_type_node
A node for int.

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

18.4 Scopes

The root of the entire intermediate representation is the variable global_namespace.
This is the namespace specified with :: in C++ source code. All other namespaces, types,
variables, functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types defined with the class, struct, and union key-
words.)

18.4.1 Namespaces

A namespace is represented by a NAMESPACE_DECL node.
However, except for the fact that it is distinguished as the root of the representation,

the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

DECL_NAME
This macro is used to obtain the IDENTIFIER_NODE corresponding to the un-
qualified name of the name of the namespace (see Section 18.2.2 [Identifiers],

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 285

page 279). The name of the global namespace is ‘::’, even though in C++
the global namespace is unnamed. However, you should use comparison with
global_namespace, rather than DECL_NAME to determine whether or not a
namespaces is the global one. An unnamed namespace will have a DECL_NAME
equal to anonymous_namespace_name. Within a single translation unit, all un-
named namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.
Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special ::std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.
Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.
For more information on the kinds of declarations that can occur on this list,
See Section 18.5 [Declarations], page 287. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.
This function cannot be used with namespaces that have DECL_NAMESPACE_
ALIAS set.

18.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one
member, the next can be found by following the TREE_CHAIN. You should not depend in

286 Using and Porting the GNU Compiler Collection (GCC)

any way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN field. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Im-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base classes for a particular
binfo can be obtained with BINFO_BASETYPES. These base-classes are themselves binfos.
The class type associated with a binfo is given by BINFO_TYPE. It is always the case that
BINFO_TYPE (TYPE_BINFO (x)) is the same type as x, up to qualifiers. However, it is not
always the case that TYPE_BINFO (BINFO_TYPE (y)) is always the same binfo as y. The
reason is that if y is a binfo representing a base-class B of a derived class D, then BINFO_TYPE
(y) will be B, and TYPE_INFO (BINFO_TYPE (y)) will be B as its own base-class, rather than
as a base-class of D.

The BINFO_BASETYPES is a TREE_VEC (see Section 18.2.3 [Containers], page 279).
Base types appear in left-to-right order in this vector. You can tell whether or
public, protected, or private inheritance was used by using the TREE_VIA_PUBLIC,
TREE_VIA_PROTECTED, and TREE_VIA_PRIVATE macros. Each of these macros takes a BINFO
and is true if and only if the indicated kind of inheritance was used. If TREE_VIA_VIRTUAL
holds of a binfo, then its BINFO_TYPE was inherited from virtually.

FIXME: Talk about TYPE_NONCOPIED_PARTS.
The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

CLASSTYPE_HAS_MUTABLE

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 287

TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

18.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 18.6 [Functions], page 289.

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

DECL_SOURCE_FILE
This macro returns the name of the file in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

DECL_SOURCE_LINE
This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

288 Using and Porting the GNU Compiler Collection (GCC)

struct S {};

is roughly equivalent to C code like:
struct S {};
typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P
This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P
This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P
This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL
These nodes are used to represent labels in function bodies. For more informa-
tion, see Section 18.6 [Functions], page 289. These nodes only appear in block
scopes.

CONST_DECL
These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL
These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

TYPE_DECL
These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

VAR_DECL These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.
If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 289

is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.
GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for
a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

PARM_DECL
Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.
The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

FIELD_DECL
These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The DECL_FIELD_BITPOS gives the first
bit used for this field, as an INTEGER_CST. These values are indexed from zero,
where zero indicates the first bit in the object.
If DECL_C_BIT_FIELD holds, this field is a bit-field.

NAMESPACE_DECL
See Section 18.4.1 [Namespaces], page 284.

TEMPLATE_DECL
These nodes are used to represent class, function, and variable (static data
member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_
DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_
DECL nodes on the specializations list just as they would ordinary FUNCTION_
DECL nodes.
For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

USING_DECL
Back ends can safely ignore these nodes.

18.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the

290 Using and Porting the GNU Compiler Collection (GCC)

function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_REAL_CONTEXT macro.
This macro will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace
(a NAMESPACE_DECL) of which the function is a member. For a virtual function, this macro
returns the class in which the function was actually defined, not the base class in which
the virtual declaration occurred. If a friend function is defined in a class scope, the DECL_
CLASS_CONTEXT macro can be used to determine the class in which it was defined. For
example, in

class C { friend void f() {} };

the DECL_REAL_CONTEXT for f will be the global_namespace, but the DECL_CLASS_
CONTEXT will be the RECORD_TYPE for C.

The DECL_REAL_CONTEXT and DECL_CLASS_CONTEXT are not available in C; instead you
should simply use DECL_CONTEXT. In C, the DECL_CONTEXT for a function maybe another
function. This representation indicates that the GNU nested function extension is in use.
For details on the semantics of nested functions, see the GCC Manual. The nested function
can refer to local variables in its containing function. Such references are not explicitly
marked in the tree structure; back ends must look at the DECL_CONTEXT for the referenced
VAR_DECL. If the DECL_CONTEXT for the referenced VAR_DECL is not the same as the func-
tion currently being processed, and neither DECL_EXTERNAL nor DECL_STATIC hold, then
the reference is to a local variable in a containing function, and the back end must take
appropriate action.

18.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P
This predicate holds for a function that is the program entry point ::code.

DECL_NAME
This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME
This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 291

to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)

DECL_EXTERNAL
This predicate holds if the function is undefined.

TREE_PUBLIC
This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P
This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED
This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P
This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P
This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.
FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

292 Using and Porting the GNU Compiler Collection (GCC)

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete
type.

DECL_OVERLOADED_OPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is non-zero the adjusted this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA
if (THUNK_VCALL_OFFSET)
this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P
This predicate holds if the function is not a thunk function.

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 293

GLOBAL_INIT_PRIORITY
If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL
This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so
forth.

DECL_ARGUMENTS
This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT
This macro returns the RESULT_DECL for the function.

TREE_TYPE
This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS
This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P
This predicate holds when the exception-specification of its arguments if of the
form ‘()’.

DECL_ARRAY_DELETE_OPERATOR_P
This predicate holds if the function an overloaded operator delete[].

18.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL
DECL_INITIAL. However, back ends should not make use of the particular value given by
DECL_INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function. This node
will usually be a COMPOUND_STMT representing the outermost block of the function, but it
may also be a TRY_BLOCK, a RETURN_INIT, or any other valid statement.

18.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs. These
are enumerated here, together with a list of the various macros that can be used to obtain
information about them. There are a few macros that can be used with all statements:

294 Using and Porting the GNU Compiler Collection (GCC)

STMT_LINENO
This macro returns the line number for the statement. If the statement spans
multiple lines, this value will be the number of the first line on which the
statement occurs. Although we mention CASE_LABEL below as if it were a
statement, they do not allow the use of STMT_LINENO. There is no way to
obtain the line number for a CASE_LABEL.

Statements do not contain information about the file from which they came;
that information is implicit in the FUNCTION_DECL from which the statements
originate.

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;

{
while (stmt)

{
switch (TREE_CODE (stmt))

{
case IF_STMT:

process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */
break;

...
}

stmt = TREE_CHAIN (stmt);
}

}

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 295

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

ASM_STMT

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.
If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_STMT.

BREAK_STMT
Used to represent a break statement. There are no additional fields.

CASE_LABEL
Use to represent a case label, range of case labels, or a default label. If CASE_
LOW is NULL TREE, then this is a a default label. Otherwise, if CASE_HIGH
is NULL TREE, then this is an ordinary case label. In this case, CASE_LOW
is an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.
Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... 5:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

CLEANUP_STMT
Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run

296 Using and Porting the GNU Compiler Collection (GCC)

in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

COMPOUND_STMT
Used to represent a brace-enclosed block. The first substatement is given by
COMPOUND_BODY. Subsequent substatements are found by following the TREE_
CHAIN link from one substatement to the next. The COMPOUND_BODY will be
NULL_TREE if there are no substatements.

CONTINUE_STMT
Used to represent a continue statement. There are no additional fields.

CTOR_STMT
Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

DECL_STMT
Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 18.6 [Functions], page 289.

DO_STMT

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR
Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

EXPR_STMT
Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

FOR_STMT

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

GOTO_STMT
Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 297

HANDLER

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
CATCH_ALL_TYPE if this handler is for all types. HANDLER_PARMS is the DECL_
STMT for the catch parameter, and HANDLER_BODY is the COMPOUND_STMT for the
block itself.

IF_STMT

Used to represent an if statement. The IF_COND is the expression.
If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i = 7) ...

where there is a new local variable (or variables) declared within the condition.
The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_STMT
Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_STMT_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_INIT
If the function uses the G++ “named return value” extension, meaning that the
function has been defined like:

S f(int) return s {...}

then there will be a RETURN_INIT. There is never a named returned value for a
constructor. The first argument to the RETURN_INIT is the name of the object
returned; the second argument is the initializer for the object. The object is
initialized when the RETURN_INIT is encountered. The object referred to is the
actual object returned; this extension is a manual way of doing the “return-
value optimization.” Therefore, the object must actually be constructed in the
place where the object will be returned.

RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

SCOPE_STMT
A scope-statement represents the beginning or end of a scope. If SCOPE_BEGIN_
P holds, this statement represents the beginning of a scope; if SCOPE_END_P
holds this statement represents the end of a scope. On exit from a scope, all
cleanups from CLEANUP_STMTs occurring in the scope must be run, in reverse
order to the order in which they were encountered. If SCOPE_NULLIFIED_P or
SCOPE_NO_CLEANUPS_P holds of the scope, back ends should behave as if the
SCOPE_STMT were not present at all.

298 Using and Porting the GNU Compiler Collection (GCC)

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_COND is the expression on
which the switch is occurring. See the documentation for an IF_STMT for more
information on the representation used for the condition. The SWITCH_BODY is
the body of the switch statement.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.
If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE DECL. This node is needed inside
template functions, to implement using directives during instantiation.

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.
The WHILE_BODY is the body of the loop.

18.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as
a TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE.
The TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if
there are no arguments; the arguments are stored as the TREE_VALUE of successive entries
in the list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the
next attribute in a list of attributes applying to the same declaration or type, or NULL_TREE
if there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be ac-
cessed with the following macros. At present only machine-dependent attributes are stored
in this way (other attributes cause changes to the declaration or type or to other internal

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 299

compiler data structures, but are not themselves stored along with the declaration or type),
but in future all attributes may be stored like this.

Tree Macrotree DECL_MACHINE_ATTRIBUTES (tree decl)
This macro returns the attributes on the declaration decl.

Tree Macrotree TYPE_ATTRIBUTES (tree type)
This macro returns the attributes on the type type.

18.8 Expressions

The internal representation for expressions is for the most part quite straightforward.
However, there are a few facts that one must bear in mind. In particular, the expression
“tree” is actually a directed acyclic graph. (For example there may be many references to
the integer constant zero throughout the source program; many of these will be represented
by the same expression node.) You should not rely on certain kinds of node being shared,
nor should rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are doc-
umented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)

As this example indicates, the operands are zero-indexed.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
+ TREE_INST_CST_LOW (e))

HOST BITS PER WIDE INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The

300 Using and Porting the GNU Compiler Collection (GCC)

value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
overflow, so it should not be used to calculate the value of the constant.
The variable integer_zero_node is a integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_
zero_node and size_one_node variables are analogous, but have type size_t
rather than int.
The function tree_int_cst_lt is a predicate which holds if its first argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant’s type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

COMPLEX_CST
These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

STRING_CST
These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.
For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.
FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

PTRMEM_CST
These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which
the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general different from from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 301

struct D : public B {};
int D::*dp = &D::i;

The PTRMEM_CST_CLASS for &D::i is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B::i is a member of B, not D.

VAR_DECL

These nodes represent variables, including static data members. For more in-
formation, see Section 18.5 [Declarations], page 287.

NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated.

PREDECREMENT_EXPR
PREINCREMENT_EXPR
POSTDECREMENT_EXPR
POSTINCREMENT_EXPR

These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

ADDR_EXPR
These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is void*.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

302 Using and Porting the GNU Compiler Collection (GCC)

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR
These nodes represent conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.
FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

REALPART_EXPR

IMAGPART_EXPR
These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR
These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

THROW_EXPR
These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 303

the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR
RSHIFT_EXPR

These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is larger
than the first operand’s type size.

BIT_IOR_EXPR
BIT_XOR_EXPR
BIT_AND_EXPR

These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR
TRUTH_ORIF_EXPR

These nodes represent logical and and logical or, respectively. These operators
are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of
the operands, and the result type, is always of boolean or integral type.

TRUTH_AND_EXPR
TRUTH_OR_EXPR
TRUTH_XOR_EXPR

These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter.

PLUS_EXPR
MINUS_EXPR
MULT_EXPR
TRUNC_DIV_EXPR
TRUNC_MOD_EXPR
RDIV_EXPR

These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first),
multiplication, integer division, integer remainder, and floating-point division.
The operands to the first three of these may have either integral or floating
type, but there will never be case in which one operand is of floating type and
the other is of integral type.

The result of a TRUNC_DIV_EXPR is always rounded towards zero. The TRUNC_
MOD_EXPR of two operands a and b is always a - a/b where the division is as if
computed by a TRUNC_DIV_EXPR.

304 Using and Porting the GNU Compiler Collection (GCC)

ARRAY_REF
These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array.

ARRAY_RANGE_REF
These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

EXACT_DIV_EXPR
Document.

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR

These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, equal, and not equal comparison operators. The first and
second operand with either be both of integral type or both of floating type.
The result type of these expressions will always be of integral or boolean type.

MODIFY_EXPR
These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.
These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+=’), by reduction to ‘=’ assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i = i + 3’.

INIT_EXPR
These nodes are just like MODIFY_EXPR, but are used only when a variable is
initialized, rather than assigned to subsequently.

COMPONENT_REF
These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member.

COMPOUND_EXPR
These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

COND_EXPR
These nodes represent ?: expressions. The first operand is of boolean or in-
tegral type. If it evaluates to a non-zero value, the second operand should be

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 305

evaluated, and returned as the value of the expression. Otherwise, the third
operand is evaluated, and returned as the value of the expression. As a GNU
extension, the middle operand of the ?: operator may be omitted in the source,
like this:

x ? : 3

which is equivalent to
x ? x : 3

assuming that x is an expression without side-effects. However, in the case that
the first operation causes side effects, the side-effects occur only once. Con-
sumers of the internal representation do not need to worry about this oddity;
the second operand will be always be present in the internal representation.

CALL_EXPR
These nodes are used to represent calls to functions, including non-static mem-
ber functions. The first operand is a pointer to the function to call; it is always
an expression whose type is a POINTER_TYPE. The second argument is a TREE_
LIST. The arguments to the call appear left-to-right in the list. The TREE_VALUE
of each list node contains the expression corresponding to that argument. (The
value of TREE_PURPOSE for these nodes is unspecified, and should be ignored.)
For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

STMT_EXPR
These nodes are used to represent GCC’s statement-expression extension. The
statement-expression extension allows code like this:

int f() { return ({ int j; j = 3; j + 7; }); }

In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression; this is
always a COMPOUND_STMT. The value of the expression is the value of the last
sub-statement in the COMPOUND_STMT. More precisely, the value is the value
computed by the last EXPR_STMT in the outermost scope of the COMPOUND_STMT.
For example, in:

({ 3; })

the value is 3 while in:
({ if (x) { 3; } })

(represented by a nested COMPOUND_STMT), there is no value. If the STMT_EXPR
does not yield a value, it’s type will be void.

BIND_EXPR
These nodes represent local blocks. The first operand is a list of temporary vari-
ables, connected via their TREE_CHAIN field. These will never require cleanups.
The scope of these variables is just the body of the BIND_EXPR. The body of
the BIND_EXPR is the second operand.

306 Using and Porting the GNU Compiler Collection (GCC)

LOOP_EXPR
These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

EXIT_EXPR
These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is non-zero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR
These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR
These nodes represent the brace-enclosed initializers for a structure or array.
The first operand is reserved for use by the back end. The second operand is a
TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or UNION_
TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a FIELD_
DECL and the TREE_VALUE of each node will be the expression used to initialize
that field. You should not depend on the fields appearing in any particular
order, nor should you assume that all fields will be represented. Unrepresented
fields may be assigned any value.
If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST. This constant
indicates which element of the array (indexed from zero) is being assigned to;
again, the TREE_VALUE is the corresponding initializer. If the TREE_PURPOSE is
NULL_TREE, then the initializer is for the next available array element.
Conceptually, before any initialization is done, the entire area of storage is
initialized to zero.

SAVE_EXPR
A SAVE_EXPR represents an expression (possibly involving side-effects) that is
used more than once. The side-effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side-
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR
A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated, and copied (bitwise) into the temporary.
Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary

Chapter 18: Trees: The intermediate representation used by the C and C++ front ends 307

variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.
The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.
See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR
An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as the second operand of a TARGET_EXPR. The first operand to the AGGR_INIT_
EXPR is the address of a function to call, just as in a CALL_EXPR. The second
operand are the arguments to pass that function, as a TREE_LIST, again in a
manner similar to that of a CALL_EXPR. The value of the expression is that
returned by the function.
If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the third operand of the AGGR_INIT_
EXPR, which is always a VAR_DECL, is taken, and this value replaces the first
argument in the argument list. In this case, the value of the expression is the
VAR_DECL given by the third operand to the AGGR_INIT_EXPR; constructors do
not return a value.

308 Using and Porting the GNU Compiler Collection (GCC)

Chapter 19: RTL Representation 309

19 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register
transfer language. In this language, the instructions to be output are described, pretty much
one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

19.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is
an integral object whose type is HOST_WIDE_INT (see Chapter 22 [Config], page 541); their
written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of ele-
ments in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]’) surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in upper case) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of

310 Using and Porting the GNU Compiler Collection (GCC)

an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lower case, but when they appear
in C code they are written in upper case. In this manual, they are shown as follows:
const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

19.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by
single characters. You can determine the class of an RTX code with the macro GET_RTX_
CLASS (code). Currently, ‘rtx.def’ defines these classes:

o An RTX code that represents an actual object, such as a register (REG) or
a memory location (MEM, SYMBOL_REF). Constants and basic transforms on
objects (ADDRESSOF, HIGH, LO_SUM) are also included. Note that SUBREG and
STRICT_LOW_PART are not in this class, but in class x.

< An RTX code for a comparison, such as NE or LT.

1 An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

c An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class <.

2 An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

b An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 19.10 [Bit-Fields], page 330.

3 An RTX code for other three input operations. Currently only IF_THEN_ELSE.

i An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 19.17 [Insns], page 340.

m An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

Chapter 19: RTL Representation 311

a An RTX code for an auto-increment addressing mode, such as POST_INC.

x All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on an
insn chain, such as NOTE, BARRIER, and CODE_LABEL.

For each expression type ‘rtl.def’ specifies the number of contained objects and their
kinds, with four possibilities: ‘e’ for expression (actually a pointer to an expression), ‘i’ for
integer, ‘w’ for wide integer, ‘s’ for string, and ‘E’ for vector of expressions. The sequence
of letters for an expression code is called its format. For example, the format of subreg is
‘ei’.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

V ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to
assume that all comparison operations have format ee.

1 All codes of this class have format e.

<
c
2 All codes of these classes have format ee.

b
3 All codes of these classes have format eee.

312 Using and Porting the GNU Compiler Collection (GCC)

i All codes of this class have formats that begin with iuueiee. See Section 19.17
[Insns], page 340. Note that not all RTL objects linked onto an insn chain are
of class i.

o
m
x You can make no assumptions about the format of these codes.

19.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR.
Each of these macros takes two arguments: an expression-pointer (RTX) and an operand
number (counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.
It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

Chapter 19: RTL Representation 313

19.4 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) and other values that are used
in certain types of expression. Most often they are accessed with the following macros:

MEM_VOLATILE_P (x)
In mem expressions, nonzero for volatile memory references. Stored in the
volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. Stored in the in_struct field and printed as ‘/s’. If
both this flag and MEM SCALAR P are clear, then we don’t know whether
this MEM is in a structure or not. Both flags should never be simultaneously
set.

MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this flag and
MEM STRUCT P are clear, then we don’t know whether this MEM is in a
structure or not. Both flags should never be simultaneously set.

MEM_ALIAS_SET (x)
In mem expressions, the alias set to which x belongs. If zero, x is not in any alias
set, and may alias anything. If nonzero, x may only alias objects in the same
alias set. This value is set (in a language-specific manner) by the front end.
This field is not a bit-field; it is in an integer, found as the second argument to
the mem.

REG_LOOP_TEST_P
In reg expressions, nonzero if this register’s entire life is contained in the exit
test code for some loop. Stored in the in_struct field and printed as ‘/s’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the integrated
field and printed as ‘/i’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

REG_POINTER (x)
Nonzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

314 Using and Porting the GNU Compiler Collection (GCC)

SUBREG_PROMOTED_VAR_P
Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 21.5 [Storage Layout], page 428). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SUBREG_PROMOTED_UNSIGNED_P
Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object
being referenced is kept zero-extended and zero if it is kept sign-extended.
Stored in the unchanging field and printed as ‘/u’.

RTX_UNCHANGING_P (x)
Nonzero in a reg or mem if the value is not changed. (This flag is not set for
memory references via pointers to constants. Such pointers only guarantee that
the object will not be changed explicitly by the current function. The object
might be changed by other functions or by aliasing.) Stored in the unchanging
field and printed as ‘/u’.

RTX_INTEGRATED_P (insn)
Nonzero in an insn if it resulted from an in-line function call. Stored in the
integrated field and printed as ‘/i’.

RTX_FRAME_RELATED_P (x)
Nonzero in an insn or expression which is part of a function prologue and sets
the stack pointer, sets the frame pointer, or saves a register. This flag should
also be set on an instruction that sets up a temporary register to use in place
of the frame pointer.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

Chapter 19: RTL Representation 315

SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.

SYMBOL_REF_WEAK (x)
In a symbol_ref, indicates that x has been declared weak. Stored in the
integrated field and printed as ‘/i’.

LABEL_OUTSIDE_LOOP_P
In label_ref expressions, nonzero if this is a reference to a label that is outside
the innermost loop containing the reference to the label. Stored in the in_
struct field and printed as ‘/s’.

INSN_DELETED_P (insn)
In an insn, nonzero if the insn has been deleted. Stored in the volatil field
and printed as ‘/v’.

INSN_ANNULLED_BRANCH_P (insn)
In an insn in the delay slot of a branch insn, indicates that an annulling
branch should be used. See the discussion under sequence below. Stored
in the unchanging field and printed as ‘/u’.

INSN_FROM_TARGET_P (insn)
In an insn in a delay slot of a branch, indicates that the insn is from the target
of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn
will only be executed if the branch is taken. For annulled branches with INSN_
FROM_TARGET_P clear, the insn will be executed only if the branch is not taken.
When INSN_ANNULLED_BRANCH_P is not set, this insn will always be executed.
Stored in the in_struct field and printed as ‘/s’.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s “constants
pool”. These are addresses close to the beginning of the function, and GCC
assumes they can be addressed directly (perhaps with the help of base registers).
Stored in the unchanging field and printed as ‘/u’.

CONST_CALL_P (x)
In a call_insn, indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.

LABEL_PRESERVE_P (x)
In a code_label, indicates that the label can never be deleted. Labels refer-
enced by a non-local goto will have this bit set. Stored in the in_struct field
and printed as ‘/s’.

SCHED_GROUP_P (insn)
During instruction scheduling, in an insn, indicates that the previous insn must
be scheduled together with this insn. This is used to ensure that certain groups
of instructions will not be split up by the instruction scheduling pass, for exam-
ple, use insns before a call_insn may not be separated from the call_insn.
Stored in the in_struct field and printed as ‘/s’.

These are the fields which the above macros refer to:

316 Using and Porting the GNU Compiler Collection (GCC)

used Normally, this flag is used only momentarily, at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 19.19 [Sharing], page 349).
In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.
In a reg, it is used by the leaf register renumbering code to ensure that each
register is only renumbered once.

volatil This flag is used in mem, symbol_ref and reg expressions and in insns. In RTL
dump files, it is printed as ‘/v’.
In a mem expression, it is 1 if the memory reference is volatile. Volatile memory
references may not be deleted, reordered or combined.
In a symbol_ref expression, it is used for machine-specific purposes.
In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.
In an insn, 1 means the insn has been deleted.

in_struct
In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.
In an insn in the delay slot of a branch, 1 means that this insn is from the
target of the branch.
During instruction scheduling, in an insn, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.
In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.
In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.
In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.
In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos.
In an RTL dump, this flag is represented as ‘/s’.

unchanging
In reg and mem expressions, 1 means that the value of the expression never
changes.
In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.
In an insn, 1 means that this is an annulling branch.
In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constants pool.

Chapter 19: RTL Representation 317

In a call_insn, 1 means that this instruction is a call to a const function.
In an RTL dump, this flag is represented as ‘/u’.

integrated
In some kinds of expressions, including insns, this flag means the rtl was pro-
duced by procedure integration.
In a reg expression, this flag indicates the register containing the value to
be returned by the current function. On machines that pass parameters in
registers, the same register number may be used for parameters as well, but
this flag is not set on such uses.

19.5 Machine Modes

A machine mode describes a size of data object and the representation used for it. In
the C code, machine modes are represented by an enumeration type, enum machine_mode,
defined in ‘machmode.def’. Each RTL expression has room for a machine mode and so do
certain kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 21.5 [Storage Layout], page 428).

BImode “Bit” mode represents a single bit, for predicate registers.

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes
but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (?) mode represents a sixteen-byte integer.

OImode “Octa Integer” (?) mode represents a thirty-two-byte integer.

QFmode “Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

HFmode “Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

318 Using and Porting the GNU Compiler Collection (GCC)

TQFmode “Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three
byte) floating point number.

SFmode “Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM
types.

DFmode “Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

XFmode “Extended Floating” mode represents a twelve byte floating point number. This
mode is used for IEEE extended floating point. On some systems not all bits
within these bytes will actually be used.

TFmode “Tetra Floating” mode represents a sixteen byte floating point number. This
gets used for both the 96-bit extended IEEE floating-point types padded to 128
bits, and true 128-bit extended IEEE floating-point types.

CCmode “Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use cc0 (see see Section 21.15
[Condition Code], page 487).

BLKmode “Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode,
respectively.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler

Chapter 19: RTL Representation 319

will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any modes
listed in the EXTRA_CC_MODES macro. See Section 20.11 [Jump Patterns],
page 390, also see Section 21.15 [Condition Code], page 487.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

320 Using and Porting the GNU Compiler Collection (GCC)

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

19.6 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).
There is only one expression object for the integer value zero; it is the value
of the variable const0_rtx. Likewise, the only expression for integer value one
is found in const1_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constm1_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return const0_rtx, const1_rtx,
const2_rtx or constm1_rtx as appropriate.

Chapter 19: RTL Representation 321

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE
is −1, const_true_rtx and constm1_rtx will point to the same object.

(const_double:m addr i0 i1 ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.
addr is used to contain the mem expression that corresponds to the location in
memory that at which the constant can be found. If it has not been allocated
a memory location, but is on the chain of all const_double expressions in this
compilation (maintained using an undisplayed field), addr contains const0_
rtx. If it is not on the chain, addr contains cc0_rtx. addr is customarily
accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_
DOUBLE_CHAIN.
If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.
If the constant is floating point (regardless of its precision), then the number of
integers used to store the value depends on the size of REAL_VALUE_TYPE (see
Section 21.21 [Cross-compilation], page 526). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 21.19.2 [Data Output], page 499).
The macro CONST0_RTX (mode) refers to an expression with value 0 in mode
mode. If mode mode is of mode class MODE_INT, it returns const0_rtx. Other-
wise, it returns a CONST_DOUBLE expression in mode mode. Similarly, the macro
CONST1_RTX (mode) refers to an expression with value 1 in mode mode and
similarly for CONST2_RTX.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 20.17 [Insn Attributes], page 404) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ‘_’.
The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref label)
Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label that appears in the instruction
sequence to identify the place where the label should go.

322 Using and Porting the GNU Compiler Collection (GCC)

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and
minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.
m should be Pmode.

(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.
m should be Pmode.

19.7 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

(reg:m n)
For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.
m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.
Even for a register that the machine can access in only one mode, the mode
must always be specified.
The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.
A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that

Chapter 19: RTL Representation 323

mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined, this points to immediately
above the first variable on the stack. Otherwise, it points to the
first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

324 Using and Porting the GNU Compiler Collection (GCC)

(subreg:m reg bytenum)
subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.
Each pseudo-register has a natural mode. If it is necessary to operate on it
in a different mode—for example, to perform a fullword move instruction on
a pseudo-register that contains a single byte—the pseudo-register must be en-
closed in a subreg. In such a case, bytenum is zero.
Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.
Sometimes m is wider than the mode of reg. These subreg expressions are
often called paradoxical. They are used in cases where we want to refer to an
object in a wider mode but do not care what value the additional bits have. The
reload pass ensures that paradoxical references are only made to hard registers.
The other use of subreg is to extract the individual registers of a multi-register
value. Machine modes such as DImode and TImode can indicate values longer
than a word, values which usually require two or more consecutive registers.
To access one of the registers, use a subreg with mode SImode and a bytenum
offset that says which register.
Storing in a non-paradoxical subreg has undefined results for bits belonging to
the same word as the subreg. This laxity makes it easier to generate efficient
code for such instructions. To represent an instruction that preserves all the
bits outside of those in the subreg, use strict_low_part around the subreg.
The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is part of the most significant word; otherwise, it is part of the least
significant word.
The compilation parameter BYTES_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is the most significant byte within a word; otherwise, it is the least
significant byte within a word.
On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_BIG_ENDIAN.
However, most parts of the compiler treat floating point values as if they had
the same endianness as integer values. This works because they handle them
solely as a collection of integer values, with no particular numerical value. Only
real.c and the runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.
Between the combiner pass and the reload pass, it is possible to have a paradox-
ical subreg which contains a mem instead of a reg as its first operand. After the
reload pass, it is also possible to have a non-paradoxical subreg which contains
a mem; this usually occurs when the mem is a stack slot which replaced a pseudo
register.
Note that it is not valid to access a DFmode value in SFmode using a subreg.
On some machines the most significant part of a DFmode value does not have
the same format as a single-precision floating value.
It is also not valid to access a single word of a multi-word value in a hard register
when less registers can hold the value than would be expected from its size. For
example, some 32-bit machines have floating-point registers that can hold an

Chapter 19: RTL Representation 325

entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF
10) 1) would be invalid because there is no way to convert that reference to a
single machine register. The reload pass prevents subreg expressions such as
these from being formed.

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

(scratch:m)
This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 19.14 [Side
Effects], page 333).

(cc0) This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

• To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, const0_rtx).

• To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if_then_else
(in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable
cc0_rtx. Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 21.15
[Condition Code], page 487. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

326 Using and Porting the GNU Compiler Collection (GCC)

Some machines, such as the Sparc and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.
There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.
All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

(addressof:m reg)
This RTX represents a request for the address of register reg. Its mode is always
Pmode. If there are any addressof expressions left in the function after CSE,
reg is forced into the stack and the addressof expression is replaced with a
plus expression for the address of its stack slot.

19.8 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)
Represents the sum of the values represented by x and y carried out in machine
mode m.

(lo_sum:m x y)
Like plus, except that it represents that sum of x and the low-order bits of
y. The number of low order bits is machine-dependent but is normally the
number of bits in a Pmode item minus the number of bits set by the high code
(see Section 19.6 [Constants], page 320).
m should be Pmode.

(minus:m x y)
Like plus but represents subtraction.

(ss_plus:m x y)
Like plus, but using signed saturation in case of an overflow.

Chapter 19: RTL Representation 327

(us_plus:m x y)
Like plus, but using unsigned saturation in case of an overflow.

(ss_minus:m x y)
Like minus, but using signed saturation in case of an overflow.

(us_minus:m x y)
Like minus, but using unsigned saturation in case of an overflow.

(compare:m x y)
Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.
Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in
the condition codes, either (cc0) or a register. See Section 19.9 [Comparisons],
page 329.
The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it
is some mode in class MODE_CC, often CCmode. See Section 21.15 [Condition
Code], page 487. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.
Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.
If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.
A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(neg:m x)
Represents the negation (subtraction from zero) of the value represented by x,
carried out in mode m.

(mult:m x y)
Represents the signed product of the values represented by x and y carried out
in machine mode m.
Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.
Write patterns for unsigned widening multiplication similarly using
zero_extend.

328 Using and Porting the GNU Compiler Collection (GCC)

(div:m x y)
Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient.
Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)
Like div but represents unsigned division.

(mod:m x y)
(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)
(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed integers in mode m.

(umin:m x y)
(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:m x y)
Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x c)
Represents the result of arithmetically shifting x left by c places. x have mode
m, a fixed-point machine mode. c be a fixed-point mode or be a constant
with mode VOIDmode; which mode is determined by the mode called for in the
machine description entry for the left-shift instruction. For example, on the
VAX, the mode of c is QImode regardless of m.

(lshiftrt:m x c)
(ashiftrt:m x c)

Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

Chapter 19: RTL Representation 329

(rotate:m x c)
(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may
be valid.

19.9 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 21.23 [Misc], page 529) if the relation holds, or zero if it does not. The
mode of the comparison operation is independent of the mode of the data being compared.
If the comparison operation is being tested (e.g., the first operand of an if_then_else),
the mode must be VOIDmode. If the comparison operation is producing data to be stored in
some variable, the mode must be in class MODE_INT. All comparison operations producing
data must use the same mode, which is machine-specific.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than −1 but
not unsigned greater-than, because −1 when regarded as unsigned is actually 0xffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point compar-
isons are distinguished by the machine modes of the operands.

330 Using and Porting the GNU Compiler Collection (GCC)

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

(gt:m x y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)
(ltu:m x y)

Like gt and gtu but test for “less than”.

(ge:m x y)
(geu:m x y)

Like gt and gtu but test for “greater than or equal”.

(le:m x y)
(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.
On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

(cond [test1 value1 test2 value2 ...] default)
Similar to if_then_else, but more general. Each of test1, test2, . . . is per-
formed in turn. The result of this expression is the value corresponding to the
first non-zero test, or default if none of the tests are non-zero expressions.
This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 20.17 [Insn Attributes], page 404.

19.10 Bit-Fields

Special expression codes exist to represent bit-field instructions. These types of expres-
sions are lvalues in RTL; they may appear on the left side of an assignment, indicating
insertion of a value into the specified bit-field.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts

Chapter 19: RTL Representation 331

at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.
If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 20.8 [Standard Names], page 374) and is usually a full-word integer
mode, which is the default if none is specified.
The mode of pos is machine-specific and is also specified in the insv or extv
pattern.
The mode m is the same as the mode that would be used for loc if it were a
register.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

19.11 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as
operating on each part of the vector independently. Additionally, there are a few new
expressions to describe specific vector operations.

(vec_merge:m vec1 vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vec1 or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vec1.

(vec_select:m vec1 selection)
This describes an operation that selects parts of a vector. vec1 is the source
vector, selection is a parallel that contains a const_int for each of the sub-
parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vec1 vec2)
Describes a vector concat operation. The result is a concatenation of the vectors
vec1 and vec2; its length is the sum of the lengths of the two inputs.

(vec_const:m subparts)
This describes a constant vector. subparts is a parallel that contains a con-
stant for each of the subparts of the vector.

(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

332 Using and Porting the GNU Compiler Collection (GCC)

19.12 Conversions

All conversions between machine modes must be represented by explicit conversion op-
erations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than
one way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

Chapter 19: RTL Representation 333

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a fixed point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fix:m x)
When m is a floating point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

19.13 Declarations

Declaration expression codes do not represent arithmetic operations but rather state
assertions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.
The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

19.14 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine in-
structions never produce values; they are meaningful only for their side effects on the state
of the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set lval x)
Represents the action of storing the value of x into the place represented by
lval. lval must be an expression representing a place that can be stored in: reg
(or subreg or strict_low_part), mem, pc, parallel, or cc0.
If lval is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

334 Using and Porting the GNU Compiler Collection (GCC)

If lval is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if lval is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.
If lval is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.
If lval is (cc0), it has no machine mode, and x may be either a compare ex-
pression or a value that may have any mode. The latter case represents a
“test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.
If lval is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list
whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.
If lval is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.
If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and
the mode of x must be valid for the mode of lval.
lval is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

(return) As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.
Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.
Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)
Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Chapter 19: RTL Representation 335

Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)
Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)), it means that all memory locations must be
presumed clobbered. If x is a parallel, it has the same meaning as a parallel
in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 20.4 [RTL Template],
page 353) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn. However, the reload phase may allocate a
register used for one of the inputs unless the ‘&’ constraint is specified for the
selected alternative (see Section 20.7.4 [Modifiers], page 365). You can clobber
either a specific hard register, a pseudo register, or a scratch expression; in
the latter two cases, GCC will allocate a hard register that is available there
for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
. . .)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In

336 Using and Porting the GNU Compiler Collection (GCC)

this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

(use x) Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.
In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behaviour of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3) (reg:SI 4)] 0))
(use (reg:SI 1))])

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.
This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘movstrm’ or ‘call’ patterns.
During the reload phase, an insn that has a use as pattern can carry a reg equal
note. These use insns will be deleted before the reload phase exits.
During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])
Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, x1 and so
on are individual side effect expressions—expressions of code set, call, return,
clobber or use.
“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.
It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

Chapter 19: RTL Representation 337

(parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else

(eq (cc0) (const_int 0))
(label_ref ...)
(pc)))])

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond expr])
Represents a conditionally executed expression. The expr is executed only if
the cond is non-zero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 20.17.7 [Delay Slots], page 412.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

338 Using and Porting the GNU Compiler Collection (GCC)

(unspec [operands ...] index)
(unspec_volatile [operands ...] index)

Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.
These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [lr0 lr1 ...])
Represents a table of jump addresses. The vector elements lr0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [lr0 lr1 ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector
elements lr0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

19.15 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is mod-
ified. x must be a reg or mem, but most machines allow only a reg. m must
be the machine mode for pointers on the machine in use. The amount x is

Chapter 19: RTL Representation 339

decremented by is the length in bytes of the machine mode of the containing
memory reference of which this expression serves as the address. Note that this
is not currently implemented.
The expression y must be one of three forms:

(plus:m x z), (minus:m x z), or (plus:m x i),

where z is an index register and i is a constant.
Here is an example of its use:

(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns
may not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent
pushes onto the stack. The ‘flow’ pass finds cases where registers are incremented or
decremented in one instruction and used as an address shortly before or after; these cases
are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

19.16 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:

(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands

340 Using and Porting the GNU Compiler Collection (GCC)

specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
. . . for successive output operands.

19.17 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects
called insns. Insns are expressions with special codes that are used for no other purpose.
Some insns are actual instructions; others represent dispatch tables for switch statements;
others represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.
After delay slot scheduling, some of the insns in the chain might be sequence expressions,

which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN

Chapter 19: RTL Representation 341

(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) is insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.
Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions). If there is an instruction
to return from the current function, it is recorded as a jump_insn.
jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.
For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; the only
way to find the others is to scan the entire body of the insn. In an addr_vec,
JUMP_LABEL is NULL_RTX.
Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

call_insn
The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.
call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.
A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 21.10.7 [Register Arguments], page 462) are
stored. If the argument is caller-copied (see Section 21.10.7 [Register Argu-
ments], page 462), the stack slot will be mentioned in CLOBBER and USE entries;
if it’s callee-copied, only a USE will appear, and the MEM may point to ad-
dresses that are not stack slots. These MEMs are used only in libcalls, because,
unlike regular function calls, CONST_CALLs (which libcalls generally are, see Sec-
tion 19.4 [Flags], page 313) aren’t assumed to read and write all memory, so
flow would consider the stores dead and remove them. Note that, since a libcall
must never return values in memory (see Section 21.10.9 [Aggregate Return],
page 467), there will never be a CLOBBER for a memory address holding a return
value.

342 Using and Porting the GNU Compiler Collection (GCC)

CLOBBERed registers in this list augment registers specified in CALL_USED_
REGISTERS (see Section 21.8.1 [Register Basics], page 440).

code_label
A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.
When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.
The field LABEL_NUSES is only defined once the jump optimization phase is
completed and contains the number of times this label is referenced in the
current function.
The field LABEL_ALTERNATE_NAME is used to associate a name with a code_
label. If this field is defined, the alternate name will be emitted instead of an
internally generated label name.

barrier Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.
If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.
Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_BLOCK_BEG
NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG
NOTE_INSN_EH_REGION_END

These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER
identifies which CODE_LABEL is associated with the given region.

Chapter 19: RTL Representation 343

NOTE_INSN_LOOP_BEG
NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_END
Appears near the end of the function body, just before the label that
return statements jump to (on machine where a single instruction
does not suffice for returning). This note may be deleted by jump
optimization.

NOTE_INSN_SETJMP
Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when
it is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)
An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel
must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or −1 if the matching has not yet been attempted.
Such matching is never attempted and this field remains −1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

344 Using and Porting the GNU Compiler Collection (GCC)

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.
In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may come
between the related insns.

REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has
two operands: the first is an insn, and the second is another insn_list expression (the
next one in the chain). The last insn_list in the chain has a null pointer as second
operand. The significant thing about the chain is which insns appear in it (as first operands
of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn. The instruction scheduling pass adds extra
links so that every dependence will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link distinguishes
these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have
mode REG_DEP_OUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.
It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

Chapter 19: RTL Representation 345

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.
The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_NO_CONFLICT
This insn does not cause a conflict between op and the item being set by this
insn even though it might appear that it does. In other words, if the destination
register and op could otherwise be assigned the same register, this insn does
not prevent that assignment.
Insns with this note are usually part of a block that begins with a clobber insn
specifying a multi-word pseudo register (which will be the output of the block),
a group of insns that each set one word of the value and have the REG_NO_
CONFLICT note attached, and a final insn that copies the output to itself with
an attached REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first and last
insns, respectively.

REG_LABEL
This insn uses op, a code_label, but is not a jump_insn, or it is a jump_
insn that required the label to be held in a register. The presence of this note
allows jump optimization to be aware that op is, in fact, being used, and flow
optimization to build an accurate flow graph.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.
For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns

346 Using and Porting the GNU Compiler Collection (GCC)

invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where
that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 21.10.6
[Stack Arguments], page 460.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout there entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

REG_WAS_0
The single output of this insn contained zero before this insn. op is the insn
that set it to zero. You can rely on this note if it is present and op has not
been deleted or turned into a note; its absence implies nothing.

Chapter 19: RTL Representation 347

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
first insn.

REG_RETVAL
This insn copies the value of a multi-insn sequence (for example, a library call),
and op is the first insn of the sequence (for a library call, the first insn that was
generated to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single opera-
tion for code motion purposes and flow analysis uses this note to delete such
sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the
expression being computed by the sequence.

These notes will be deleted after reload, since they are no longer accurate or
useful.

REG_LIBCALL
This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn
sequence, and it points to the last one.

These notes are deleted after reload, since they are no longer useful or accurate.

REG_CC_SETTER
REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting cc0
to point to the insn using cc0 and a REG_CC_SETTER note will be placed on the
insn using cc0 to point to the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode VOIDmode, and are printed without
any descriptive text.

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT
This indicates an output dependence (a write after write dependence).

These notes describe information gathered from gcov profile data. They are stored in
the REG_NOTES field of an insn as an expr_list.

REG_EXEC_COUNT
This is used to indicate the number of times a basic block was executed ac-
cording to the profile data. The note is attached to the first insn in the basic
block.

348 Using and Porting the GNU Compiler Collection (GCC)

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The value is stored as a value between 0 and
REG BR PROB BASE; larger values indicate a higher probability that the
branch will be taken.

REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR FLAG * values.

REG_FRAME_RELATED_EXPR
This is used on an RTX FRAME RELATED P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

19.18 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:
(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to
contain the return address. call_insn insns on these machines should have a body which

Chapter 19: RTL Representation 349

is a parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned it its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 21.8.1 [Register Basics], page 440) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

19.19 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not
exist two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

• Each pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

• For any symbolic label, there is only one symbol_ref object referring to it.
• All const_int expressions with equal values are shared.
• There is only one pc expression.
• There is only one cc0 expression.
• There is only one const_double expression with value 0 for each floating point mode.

Likewise for values 1 and 2.
• No label_ref or scratch appears in more than one place in the RTL structure; in

other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

• Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

• When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

• No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

350 Using and Porting the GNU Compiler Collection (GCC)

• During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

• During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

19.20 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in ‘read-rtl.c’. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files ‘tree.h’ and ‘tree.def’. The documentation for this struc-
ture (see Chapter 18 [Trees], page 277) is incomplete.

Chapter 20: Machine Descriptions 351

20 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

20.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:

1. The front end reads the source code and builds a parse tree.

2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_
insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_
expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rear-
range the insns in the insn list. This is where the define_split and define_peephole
patterns get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn
patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

20.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled
in later, operand constraints that restrict how the pieces can be filled in, and an output
pattern or C code to generate the assembler output, all wrapped up in a define_insn
expression.

A define_insn is an RTL expression containing four or five operands:

352 Using and Porting the GNU Compiler Collection (GCC)

1. An optional name. The presence of a name indicate that this instruction pattern can
perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are defined in the machine description.
The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.
Names that are not thus known and used in RTL-generation have no effect; they are
equivalent to no name at all.
For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

2. The RTL template (see Section 20.4 [RTL Template], page 353) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.
If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the final test to
decide whether an insn body matches this pattern.
For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.
For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands.

4. The output template: a string that says how to output matching insns as assembler
code. ‘%’ in this string specifies where to substitute the value of an operand. See
Section 20.5 [Output Template], page 357.
When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 20.6 [Output Statement], page 359.

5. Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 20.17 [Insn Attributes], page 404.

20.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.
(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""
"*

Chapter 20: Machine Descriptions 353

{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))

return \"tstl %0\";
return \"cmpl #0,%0\";

}")

This can also be written using braced strings:
(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""

{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";

return "cmpl #0,%0";
})

This is an instruction that sets the condition codes based on the value of a general
operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

‘"rm"’ is an operand constraint. Its meaning is explained below.

20.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how
to find their operands. For named patterns, the RTL template also says how to construct
an insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,

354 Using and Porting the GNU Compiler Collection (GCC)

any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a C function that accepts two arguments,
an expression and a machine mode. During matching, the function will be called
with the putative operand as the expression and m as the mode argument (if
m is not specified, VOIDmode will be used, which normally causes predicate to
accept any mode). If it returns zero, this instruction pattern fails to match.
predicate may be an empty string; then it means no test is to be done on the
operand, so anything which occurs in this position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 20.7 [Constraints], page 360).

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

On CISC machines, the most common predicate is "general_operand". This
function checks that the putative operand is either a constant, a register or a
memory reference, and that it is valid for mode m.

For an operand that must be a register, predicate should be "register_
operand". Using "general_operand" would be valid, since the reload pass
would copy any non-register operands through registers, but this would make
GCC do extra work, it would prevent invariant operands (such as constant)
from being removed from loops, and it would prevent the register allocator
from doing the best possible job. On RISC machines, it is usually most
efficient to allow predicate to accept only objects that the constraints allow.

For an operand that must be a constant, you must be sure to either use
"immediate_operand" for predicate, or make the instruction pattern’s extra
condition require a constant, or both. You cannot expect the constraints to
do this work! If the constraints allow only constants, but the predicate allows
something else, the compiler will crash when that case arises.

(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.

When matching patterns, this is equivalent to
(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 19.14 [Side Effects], page 333.

Chapter 20: Machine Descriptions 355

(match_dup n)
This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.
In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.
Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 20.7.1 [Simple Constraints], page 360)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.
When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.
When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.
Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:

int
commutative_operator (x, mode)

rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)

return 0;
return (GET_RTX_CLASS (code) == ’c’

|| code == EQ || code == NE);
}

Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.

356 Using and Porting the GNU Compiler Collection (GCC)

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances
of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.
The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.
When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.
When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.
There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

(match_op_dup:m n[operands...])
Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])
This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.
When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.
A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""

Chapter 20: Machine Descriptions 357

[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

This example comes from ‘a29k.md’. The function load_multiple_
operations is defined in ‘a29k.c’ and checks that subsequent elements in
the parallel are the same as the set in the pattern, except that they are
referencing subsequent registers and memory locations.
An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))

(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat...])
Like match_op_dup, but for match_parallel instead of match_operator.

(match_insn predicate)
Match a complete insn. Unlike the other match_* recognizers, match_insn does
not take an operand number.
The machine mode m of match_insn works like that of match_operand: it is
passed as the second argument to the predicate function, and that function is
solely responsible for deciding whether the expression to be matched “has” that
mode.

(match_insn2 n predicate)
Match a complete insn.
The machine mode m of match_insn2 works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

20.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for
an instruction pattern. Most of the template is a fixed string which is output literally.
The character ‘%’ is used to specify where to substitute an operand; it can also be used to
identify places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point
in the string.

358 Using and Porting the GNU Compiler Collection (GCC)

‘%’ followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

‘%cdigit’ can be used to substitute an operand that is a constant value without the syntax
that normally indicates an immediate operand.

‘%ndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

‘%adigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation.
This is useful for making local labels to be referred to more than once in a single template
that generates multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other
nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the
instructions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%.’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already
defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{option0|option1|option2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 21.19.7 [Instruction Output], page 512.

Chapter 20: Machine Descriptions 359

20.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code
for all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 20.7.2 [Multi-Alternative],
page 364). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

""
"@
addr %2,%0
addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather
a piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].
It is very common to select different ways of generating assembler code based on whether

an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

360 Using and Porting the GNU Compiler Collection (GCC)

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
{
return (which_alternative == 0

? "clrreg %0" : "clrmem %0");
})

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@’:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"@
clrreg %0
clrmem %0")

20.7 Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of
operands allowed. Constraints can say whether an operand may be in a register, and which
kinds of register; whether the operand can be a memory reference, and which kinds of
address; whether the operand may be an immediate constant, and which possible values it
may have. Constraints can also require two operands to match.

20.7.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one
kind of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

‘o’ A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.
For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated

Chapter 20: Machine Descriptions 361

indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.
Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

‘i’ An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

‘F’ An immediate floating operand (expression code const_double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.
This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between −128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

362 Using and Porting the GNU Compiler Collection (GCC)

‘X’ Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.
This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.
For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.
‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.
The machine description macro REG_CLASS_FROM_LETTER has first cut at the
otherwise unused letters. If it evaluates to NO_REGS, then EXTRA_CONSTRAINT
is evaluated.
A typical use for EXTRA_CONSTRANT would be to distinguish certain types of
memory references that affect other insn operands.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

Chapter 20: Machine Descriptions 363

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

""
"...")

which has two operands, one of which must appear in two places, and
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]

""
"...")

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

(insn n prev next
(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))
...)

the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns.” The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it.” It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
...)

(insn n n2 next
(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))
...)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.
• If the constraint accepts whatever operands the predicate permits, there is no problem:

reloading is never necessary for this operand.
For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.
An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than

364 Using and Porting the GNU Compiler Collection (GCC)

‘i’ will do; if the predicate is more selective, then the constraints may also be more
selective.

• Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

• A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

• A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

• If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

20.7.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For
example, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

...)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it
must match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data

Chapter 20: Machine Descriptions 365

register) for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the
constraints apply to all the alternatives; their meaning is explained in the next section (see
Section 20.7.3 [Class Preferences], page 365).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 20.6 [Output Statement], page 359.

20.7.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

20.7.4 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.
When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.
If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

366 Using and Porting the GNU Compiler Collection (GCC)

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.
‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.
An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. This is often
used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

...)

‘#’ Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.
Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

...)

20.7.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm argu-
ments, since they will convey meaning more readily to people reading your code. Failing
that, use the constraint letters that usually have very similar meanings across architectures.

Chapter 20: Machine Descriptions 367

The most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose reg-
isters respectively; see Section 20.7.1 [Simple Constraints], page 360), and ‘I’, usually the
letter indicating the most common immediate-constant format.

For each machine architecture, the ‘config/machine.h’ file defines additional
constraints. These constraints are used by the compiler itself for instruction generation,
as well as for asm statements; therefore, some of the constraints are not particularly
interesting for asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size
or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for con-
stants of greater than word size precision (usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only
defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best
way to be certain you have the right constraints. However, here is a summary of the
machine-dependent constraints available on some particular machines.

ARM family—‘arm.h’
f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it
were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(“m’’ is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current file

368 Using and Porting the GNU Compiler Collection (GCC)

AMD 29000 family—‘a29k.h’
l Local register 0

b Byte Pointer (‘BP’) register

q ‘Q’ register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16-bit constant whose high 8 bits are on (1)

M 32-bit constant whose high 16 bits are on (1)

N 32-bit negative constant that fits in 8 bits

O The constant 0x80000000 or, on the 29050, any 32-bit constant
whose low 16 bits are 0.

P 16-bit negative constant that fits in 8 bits

G
H A floating point constant (in asm statements, use the machine in-

dependent ‘E’ or ‘F’ instead)

AVR family—‘avr.h’
l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’
command

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

Chapter 20: Machine Descriptions 369

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0

IBM RS6000—‘rs6000.h’
b Address base register

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘FPMEM’ stack memory for FPR-GPR transfers

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

Q Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

R AIX TOC entry

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

370 Using and Porting the GNU Compiler Collection (GCC)

U System V Release 4 small data area reference

Intel 386—‘i386.h’
q ‘a’, b, c, or d register for the i386. For x86-64 it is equivalent to ‘r’

class. (for 8-bit instructions that do not use upper halves)

Q ‘a’, b, c, or d register. (for 8-bit instructions, that do use upper
halves)

R Legacy register—equivalent to r class in i386 mode. (for non-8-bit
registers used together with 8-bit upper halves in a single instruc-
tion)

A Specifies the ‘a’ or ‘d’ registers. This is primarily useful for 64-bit
integer values (when in 32-bit mode) intended to be returned with
the ‘d’ register holding the most significant bits and the ‘a’ register
holding the least significant bits.

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

b ‘b’ register

c ‘c’ register

d ‘d’ register

D ‘di’ register

S ‘si’ register

x ‘xmm’ SSE register

y MMX register

I Constant in range 0 to 31 (for 32-bit shifts)

J Constant in range 0 to 63 (for 64-bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

N Constant in range 0 to 255 (for out instruction)

Z Constant in range 0 to 0xffffffff or symbolic reference known to
fit specified range. (for using immediates in zero extending 32-bit
to 64-bit x86-64 instructions)

e Constant in range −2147483648 to 2147483647 or symbolic refer-
ence known to fit specified range. (for using immediates in 64-bit
x86-64 instructions)

Chapter 20: Machine Descriptions 371

G Standard 80387 floating point constant

Intel 960—‘i960.h’
f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from −31 to 0

G Floating point 0

H Floating point 1

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

I Signed 16-bit constant (for arithmetic instructions)

J Zero

K Zero-extended 16-bit constant (for logic instructions)

L Constant with low 16 bits zero (can be loaded with lui)

M 32-bit constant which requires two instructions to load (a constant
which is not ‘I’, ‘K’, or ‘L’)

N Negative 16-bit constant

O Exact power of two

P Positive 16-bit constant

G Floating point zero

Q Memory reference that can be loaded with more than one instruc-
tion (‘m’ is preferable for asm statements)

R Memory reference that can be loaded with one instruction (‘m’ is
preferable for asm statements)

S Memory reference in external OSF/rose PIC format (‘m’ is prefer-
able for asm statements)

372 Using and Porting the GNU Compiler Collection (GCC)

Motorola 680x0—‘m68k.h’
a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

G Floating point constant that is not a 68881 constant

H Floating point constant that can be used by Sun FPA

Motorola 68HC11 & 68HC12 families—‘m68hc11.h’
a Register ’a’

b Register ’b’

d Register ’d’

q An 8-bit register

t Temporary soft register .tmp

u A soft register .d1 to .d31

w Stack pointer register

x Register ’x’

y Register ’y’

z Pseudo register ’z’ (replaced by ’x’ or ’y’ at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range −65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or −1

O Constant integer 16

P Constants in the range −8 to 2

SPARC—‘sparc.h’

Chapter 20: Machine Descriptions 373

f Floating-point register that can hold 32- or 64-bit values.

e Floating-point register that can hold 64- or 128-bit values.

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

TMS320C3x/C4x—‘c4x.h’
a Auxiliary (address) register (ar0-ar7)

b Stack pointer register (sp)

c Standard (32-bit) precision integer register

f Extended (40-bit) precision register (r0-r11)

k Block count register (bk)

q Extended (40-bit) precision low register (r0-r7)

t Extended (40-bit) precision register (r0-r1)

u Extended (40-bit) precision register (r2-r3)

v Repeat count register (rc)

x Index register (ir0-ir1)

y Status (condition code) register (st)

z Data page register (dp)

G Floating-point zero

H Immediate 16-bit floating-point constant

I Signed 16-bit constant

J Signed 8-bit constant

K Signed 5-bit constant

374 Using and Porting the GNU Compiler Collection (GCC)

L Unsigned 16-bit constant

M Unsigned 8-bit constant

N Ones complement of unsigned 16-bit constant

O High 16-bit constant (32-bit constant with 16 LSBs zero)

Q Indirect memory reference with signed 8-bit or index register dis-
placement

R Indirect memory reference with unsigned 5-bit displacement

S Indirect memory reference with 1 bit or index register displacement

T Direct memory reference

U Symbolic address

S/390 and zSeries—‘s390.h’
a Address register (general purpose register except r0)

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Unsigned 16-bit constant (0–65535)

Q Memory reference without index register

S Symbolic constant suitable for use with the larl instruction

20.8 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation
pass of the compiler. Giving one of these names to an instruction pattern tells the RTL
generation pass that it can use the pattern to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lower case. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.
If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part of
the register that corresponds to mode m. The effect on the rest of the register
is undefined.
This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be defined, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, ‘movm’ must be defined for integer modes of those
sizes.

Chapter 20: Machine Descriptions 375

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.
Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_
expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.
This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.
During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.
The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.
The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.
If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.
If there are cases needing scratch registers after reload, you must define
SECONDARY_INPUT_RELOAD_CLASS and perhaps also SECONDARY_OUTPUT_
RELOAD_CLASS to detect them, and provide patterns ‘reload_inm’ or
‘reload_outm’ to handle them. See Section 21.9 [Register Classes], page 445.
The global variable no_new_pseudos can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.
The constraints on a ‘movm’ must permit moving any hard register to any
other hard register provided that HARD_REGNO_MODE_OK permits mode m in both
registers and REGISTER_MOVE_COST applied to their classes returns a value of 2.
It is obligatory to support floating point ‘movm’ instructions into and out of
any registers that can hold fixed point values, because unions and structures
(which have modes SImode or DImode) can be in those registers and they may
have floating point members.
There may also be a need to support fixed point ‘movm’ instructions in and
out of floating point registers. Unfortunately, I have forgotten why this was
so, and I don’t know whether it is still true. If HARD_REGNO_MODE_OK rejects
fixed point values in floating point registers, then the constraints of the fixed

376 Using and Porting the GNU Compiler Collection (GCC)

point ‘movm’ instructions must be designed to avoid ever trying to reload into
a floating point register.

‘reload_inm’
‘reload_outm’

Like ‘movm’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 21.9 [Register
Classes], page 445.
There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of defining
an ALL_REGS constraint letter just for these patterns.

‘movstrictm’
Like ‘movm’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘load_multiple’
Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.
Define this only if the target machine really has such an instruction; do not
define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.
On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 20.14 [Expander Definitions], page 394) and make the pattern fail if the
restrictions are not met.
Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber
elements). Use a match_parallel (see Section 20.4 [RTL Template], page 353)
to recognize the insn. See ‘a29k.md’ and ‘rs6000.md’ for examples of the use
of this insn pattern.

‘store_multiple’
Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

‘pushm’ Output an push instruction. Operand 0 is value to push. Used only when
PUSH_ROUNDING is defined. For historical reason, this pattern may be missing

Chapter 20: Machine Descriptions 377

and in such case an mov expander is used instead, with a MEM expression forming
the push operation. The mov expander method is deprecated.

‘addm3’ Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

‘subm3’, ‘mulm3’
‘divm3’, ‘udivm3’, ‘modm3’, ‘umodm3’
‘sminm3’, ‘smaxm3’, ‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘minm3’, ‘maxm3’
Floating point min and max operations. If both operands are zeros, or if either
operand is NaN, then it is unspecified which of the two operands is returned as
the result.

‘mulhisi3’
Multiply operands 1 and 2, which have mode HImode, and store a SImode
product in operand 0.

‘mulqihi3’, ‘mulsidi3’
Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’, ‘umulsidi3’
Similar widening-multiplication instructions that do unsigned multiplication.

‘smulm3_highpart’
Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded.

‘umulm3_highpart’
Similar, but the multiplication is unsigned.

‘divmodm4’
Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when
both the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’
Similar, but does unsigned division.

378 Using and Porting the GNU Compiler Collection (GCC)

‘ashlm3’ Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.

‘ashrm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3’
Other shift and rotate instructions, analogous to the ashlm3 instructions.

‘negm2’ Negate operand 1 and store the result in operand 0.

‘absm2’ Store the absolute value of operand 1 into operand 0.

‘sqrtm2’ Store the square root of operand 1 into operand 0.
The sqrt built-in function of C always uses the mode which corresponds to the
C data type double.

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s
mode is specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.
The ffs built-in function of C always uses the mode which corresponds to the
C data type int.

‘one_cmplm2’
Store the bitwise-complement of operand 1 into operand 0.

‘cmpm’ Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:

(set (cc0) (compare (match_operand:m 0 ...)
(match_operand:m 1 ...)))

‘tstm’ Compare operand 0 against zero, and set the condition codes. The RTL pattern
should look like this:

(set (cc0) (match_operand:m 0 ...))

‘tstm’ patterns should not be defined for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The ‘cmpm’ patterns should be used instead.

‘movstrm’ Block move instruction. The addresses of the destination and source strings are
the first two operands, and both are in mode Pmode.
The number of bytes to move is the third operand, in mode m. Usually, you
specify word_mode for m. However, if you can generate better code knowing
the range of valid lengths is smaller than those representable in a full word, you
should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0–127; note we avoid
numbers that appear negative) and also a pattern with word_mode.
The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.
Descriptions of multiple movstrm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth

Chapter 20: Machine Descriptions 379

operands. Note that the mode m in movstrm does not impose any restriction
on the mode of individually moved data units in the block.
These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

‘clrstrm’ Block clear instruction. The addresses of the destination string is the first
operand, in mode Pmode. The number of bytes to clear is the second operand,
in mode m. See ‘movstrm’ for a discussion of the choice of mode.
The third operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.
The use for multiple clrstrm is as for movstrm.

‘cmpstrm’ Block compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘movstrm’.
The two memory blocks specified are compared byte by byte in lexicographic
order. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

‘strlenm’ Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,
operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

‘floatmn2’
Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘floatunsmn2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘fixunsmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm2’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point mode m, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn2’
Like ‘fixmn2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn2’
Like ‘fixunsmn2’ but works for any floating point value of mode m by convert-
ing the value to an integer.

380 Using and Porting the GNU Compiler Collection (GCC)

‘truncmn2’
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn2’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn2’
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

‘extv’ Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.
The RTL generation pass generates this instruction only with constants for
operands 2 and 3.
The bit-field value is sign-extended to a full word integer before it is stored in
operand 0.

‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.

‘insv’ Store operand 3 (which must be valid for word_mode) into a bit-field in operand
0, where operand 1 specifies the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.
The RTL generation pass generates this instruction only with constants for
operands 1 and 2.

‘movmodecc’
Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.
The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.
If the machine does not have conditional move instructions, do not define these
patterns.

‘scond’ Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero iff the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, lt or leu.
You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.
The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it

Chapter 20: Machine Descriptions 381

from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 21.23 [Misc],
page 529). If a description cannot be found that can be used for all the ‘scond’
patterns, you should omit those operations from the machine description.
These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.
If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of
zero to the target. If this code is more efficient than the potential instructions
used for the ‘scond’ pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the ‘scond’ operations from the
machine description.

‘bcond’ Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.
Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
‘cmpm’ (and ‘tstm’) patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 20.14 [Expander
Definitions], page 394) for the conditional branch operations. All calls to ex-
pand ‘bcond’ patterns are immediately preceded by calls to expand either a
‘cmpm’ pattern or a ‘tstm’ pattern.
Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 20.11 [Jump Patterns], page 390.
The above discussion also applies to the ‘movmodecc’ and ‘scond’ patterns.

‘jump’ A jump inside a function; an unconditional branch. Operand 0 is the label_ref
of the label to jump to. This pattern name is mandatory on all machines.

‘call’ Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int;
operand 2 is the number of registers used as operands.
On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.
Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 20.14 [Expander Definitions], page 394) that
places the address into a register and uses that register in the call instruction.

‘call_value’
Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

382 Using and Porting the GNU Compiler Collection (GCC)

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’
Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is non-zero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’
Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

‘return’ Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true
when reload_completed is non-zero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_
function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such
as

(define_insn ""
[(set (pc)

(if_then_else (match_operator
0 "comparison_operator"
[(cc0) (const_int 0)])

(return)
(pc)))]

"condition"
"...")

where condition would normally be the same condition specified on the named
‘return’ pattern.

Chapter 20: Machine Descriptions 383

‘untyped_return’
Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.
Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

‘nop’ No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’
An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

‘casesi’ Instruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:
1. The index to dispatch on, which has mode SImode.
2. The lower bound for indices in the table, an integer constant.
3. The total range of indices in the table—the largest index minus the smallest

one (both inclusive).
4. A label that precedes the table itself.
5. A label to jump to if the index has a value outside the bounds. (If the

machine-description macro CASE_DROPS_THROUGH is defined, then an out-
of-bounds index drops through to the code following the jump table instead
of jumping to this label. In that case, this label is not actually used by the
‘casesi’ instruction, but it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the difference between the upper bound and
the lower bound.

‘tablejump’
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.
This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_
RELATIVE evaluates to a nonzero value then the first operand is an offset which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the first operand has mode Pmode.
The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘decrement_and_branch_until_zero’
Conditional branch instruction that decrements a register and jumps if the
register is non-zero. Operand 0 is the register to decrement and test; operand

384 Using and Porting the GNU Compiler Collection (GCC)

1 is the label to jump to if the register is non-zero. See Section 20.12 [Looping
Patterns], page 391.
This optional instruction pattern is only used by the combiner, typically for
loops reversed by the loop optimizer when strength reduction is enabled.

‘doloop_end’
Conditional branch instruction that decrements a register and jumps if the
register is non-zero. This instruction takes five operands: Operand 0 is the
register to decrement and test; operand 1 is the number of loop iterations as a
const_int or const0_rtx if this cannot be determined until run-time; operand
2 is the actual or estimated maximum number of iterations as a const_int;
operand 3 is the number of enclosed loops as a const_int (an innermost loop
has a value of 1); operand 4 is the label to jump to if the register is non-zero.
See Section 20.12 [Looping Patterns], page 391.
This optional instruction pattern should be defined for machines with low-
overhead looping instructions as the loop optimizer will try to modify suit-
able loops to utilize it. If nested low-overhead looping is not supported, use a
define_expand (see Section 20.14 [Expander Definitions], page 394) and make
the pattern fail if operand 3 is not const1_rtx. Similarly, if the actual or esti-
mated maximum number of iterations is too large for this instruction, make it
fail.

‘doloop_begin’
Companion instruction to doloop_end required for machines that need to per-
form some initialisation, such as loading special registers used by a low-overhead
looping instruction. If initialisation insns do not always need to be emitted, use
a define_expand (see Section 20.14 [Expander Definitions], page 394) and make
it fail.

‘canonicalize_funcptr_for_compare’
Canonicalize the function pointer in operand 1 and store the result into operand
0.
Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.
Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.
Only define this pattern if function pointers on the target machine can have
different values but still call the same function when used in an indirect call.

‘save_stack_block’
‘save_stack_function’
‘save_stack_nonlocal’
‘restore_stack_block’
‘restore_stack_function’
‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.

Chapter 20: Machine Descriptions 385

Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 20.14 [Expander Definitions], page 394)
that produces the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that
allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but
you can override that choice by defining the STACK_SAVEAREA_MODE macro (see
Section 21.5 [Storage Layout], page 428). You must specify an integral mode, or
VOIDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-specific save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx
when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_
stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

386 Using and Porting the GNU Compiler Collection (GCC)

‘probe’ Some machines require instructions to be executed after space is allocated from
the stack, for example to generate a reference at the bottom of the stack.
If you need to emit instructions before the stack has been adjusted, put them
into the ‘allocate_stack’ pattern. Otherwise, define this pattern to emit the
required instructions.
No operands are provided.

‘check_stack’
If stack checking cannot be done on your system by probing the stack with
a load or store instruction (see Section 21.10.3 [Stack Checking], page 456),
define this pattern to perform the needed check and signaling an error if the
stack has overflowed. The single operand is the location in the stack furthest
from the current stack pointer that you need to validate. Normally, on machines
where this pattern is needed, you would obtain the stack limit from a global or
thread-specific variable or register.

‘nonlocal_goto’
Emit code to generate a non-local goto, e.g., a jump from one function to a
label in an outer function. This pattern has four arguments, each representing
a value to be used in the jump. The first argument is to be loaded into the
frame pointer, the second is the address to branch to (code to dispatch to the
actual label), the third is the address of a location where the stack is saved, and
the last is the address of the label, to be placed in the location for the incoming
static chain.
On most machines you need not define this pattern, since GCC will already
generate the correct code, which is to load the frame pointer and static chain,
restore the stack (using the ‘restore_stack_nonlocal’ pattern, if defined),
and jump indirectly to the dispatcher. You need only define this pattern if this
code will not work on your machine.

‘nonlocal_goto_receiver’
This pattern, if defined, contains code needed at the target of a nonlocal goto
after the code already generated by GCC. You will not normally need to define
this pattern. A typical reason why you might need this pattern is if some value,
such as a pointer to a global table, must be restored when the frame pointer
is restored. Note that a nonlocal goto only occurs within a unit-of-translation,
so a global table pointer that is shared by all functions of a given module need
not be restored. There are no arguments.

‘exception_receiver’
This pattern, if defined, contains code needed at the site of an exception handler
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored after control
flow is branched to the handler of an exception. There are no arguments.

‘builtin_setjmp_setup’
This pattern, if defined, contains additional code needed to initialize the jmp_
buf. You will not normally need to define this pattern. A typical reason why

Chapter 20: Machine Descriptions 387

you might need this pattern is if some value, such as a pointer to a global table,
must be restored. Though it is preferred that the pointer value be recalculated
if possible (given the address of a label for instance). The single argument is
a pointer to the jmp_buf. Note that the buffer is five words long and that the
first three are normally used by the generic mechanism.

‘builtin_setjmp_receiver’
This pattern, if defined, contains code needed at the site of an built-in setjmp
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored. It takes one
argument, which is the label to which builtin longjmp transfered control; this
pattern may be emitted at a small offset from that label.

‘builtin_longjmp’
This pattern, if defined, performs the entire action of the longjmp. You will not
normally need to define this pattern unless you also define builtin_setjmp_
setup. The single argument is a pointer to the jmp_buf.

‘eh_return’
This pattern, if defined, affects the way __builtin_eh_return, and thence the
call frame exception handling library routines, are built. It is intended to handle
non-trivial actions needed along the abnormal return path.

The pattern takes two arguments. The first is an offset to be applied to the stack
pointer. It will have been copied to some appropriate location (typically EH_
RETURN_STACKADJ_RTX) which will survive until after reload to when the normal
epilogue is generated. The second argument is the address of the exception
handler to which the function should return. This will normally need to copied
by the pattern to some special register or memory location.

This pattern only needs to be defined if call frame exception handling
is to be used, and simple moves to EH_RETURN_STACKADJ_RTX and
EH_RETURN_HANDLER_RTX are not sufficient.

‘prologue’
This pattern, if defined, emits RTL for entry to a function. The function entry is
responsible for setting up the stack frame, initializing the frame pointer register,
saving callee saved registers, etc.

Using a prologue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_PROLOGUE to emit assembly code for the prologue.

The prologue pattern is particularly useful for targets which perform instruc-
tion scheduling.

‘epilogue’
This pattern, if defined, emits RTL for exit from a function. The function exit
is responsible for deallocating the stack frame, restoring callee saved registers
and emitting the return instruction.

Using an epilogue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_EPILOGUE to emit assembly code for the epilogue.

388 Using and Porting the GNU Compiler Collection (GCC)

The epilogue pattern is particularly useful for targets which perform instruc-
tion scheduling or which have delay slots for their return instruction.

‘sibcall_epilogue’
This pattern, if defined, emits RTL for exit from a function without the final
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.
The sibcall_epilogue pattern must not clobber any arguments used for pa-
rameter passing or any stack slots for arguments passed to the current function.

‘trap’ This pattern, if defined, signals an error, typically by causing some kind of
signal to be raised. Among other places, it is used by the Java front end to
signal ‘invalid array index’ exceptions.

‘conditional_trap’
Conditional trap instruction. Operand 0 is a piece of RTL which performs a
comparison. Operand 1 is the trap code, an integer.
A typical conditional_trap pattern looks like

(define_insn "conditional_trap"
[(trap_if (match_operator 0 "trap_operator"

[(cc0) (const_int 0)])
(match_operand 1 "const_int_operand" "i"))]

""
"...")

‘cycle_display’
This pattern, if present, will be emitted by the instruction scheduler at the be-
ginning of each new clock cycle. This can be used for annotating the assembler
output with cycle counts. Operand 0 is a const_int that holds the clock cycle.

20.9 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears first in the machine description is the one used. Therefore, more specific patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it
is not valid. For example, the 68000 has an instruction for converting a fullword to floating
point and another for converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern to convert the fullword
first to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

20.10 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch
names ‘bcond’. The recognition template must always have the form

Chapter 20: Machine Descriptions 389

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern for each of the
possible reverse-conditional branches. Their templates look like

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into
reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of
patterns that must be specified for branches. For example,

(define_insn ""
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])

(pc)
(label_ref (match_operand 1 "" ""))))]

"condition"
"...")

In some cases machines support instructions identical except for the machine mode of
one or more operands. For example, there may be “sign-extend halfword” and “sign-extend
byte” instructions whose patterns are

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
first in the file. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and
decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

390 Using and Porting the GNU Compiler Collection (GCC)

20.11 Defining Jump Instruction Patterns

For most machines, GCC assumes that the machine has a condition code. A comparison
insn sets the condition code, recording the results of both signed and unsigned comparison
of the given operands. A separate branch insn tests the condition code and branches or not
according its value. The branch insns come in distinct signed and unsigned flavors. Many
common machines, such as the VAX, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one
set of conditional branch instructions. The easiest way to handle these machines is to treat
them just like the others until the final stage where assembly code is written. At this time,
when outputting code for the compare instruction, peek ahead at the following branch using
next_cc0_user (insn). (The variable insn refers to the insn being output, in the output-
writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output
an unsigned compare; otherwise output a signed compare. When the branch itself is output,
you can treat signed and unsigned branches identically.

The reason you can do this is that GCC always generates a pair of consecutive RTL
insns, possibly separated by note insns, one to set the condition code and one to test it,
and keeps the pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_
UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar
technique works for them. When it is time to “output” a compare instruction, record its
operands in two static variables. When outputting the branch-on-condition-code instruction
that follows, actually output a compare-and-branch instruction that uses the remembered
operands.

It also works to define patterns for compare-and-branch instructions. In optimizing
compilation, the pair of compare and branch instructions will be combined according to
these patterns. But this does not happen if optimization is not requested. So you must use
one of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there
may not even be a separate condition code register. On these machines, the restriction
that the definition and use of the condition code be adjacent insns is not necessary and can
prevent important optimizations. For example, on the IBM RS/6000, there is a delay for
taken branches unless the condition code register is set three instructions earlier than the
conditional branch. The instruction scheduler cannot perform this optimization if it is not
permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition
code. If there is a specific condition code register in the machine, use a hard register. If
the condition code or comparison result can be placed in any general register, or if there
are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the
condition code was produced; for example, on the 68k and Sparc, setting the condition code
directly from an add or subtract instruction does not clear the overflow bit the way that a
test instruction does, so a different branch instruction must be used for some conditional
branches. For machines that use (cc0), the set and use of the condition code must be

Chapter 20: Machine Descriptions 391

adjacent (separated only by note insns) allowing flags in cc_status to be used. (See
Section 21.15 [Condition Code], page 487.) Also, the comparison and branch insns can be
located from each other by using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no
assumptions can be made about the adjacency of the compare and branch insns and the
above methods cannot be used. Instead, we use the machine mode of the condition code
register to record different formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_
CC. Normally, it will be CCmode. If additional modes are required (as for the add example
mentioned above in the Sparc), define the macro EXTRA_CC_MODES to list the additional
modes required (see Section 21.15 [Condition Code], page 487). Also define SELECT_CC_
MODE to choose a mode given an operand of a compare.

If it is known during RTL generation that a different mode will be required (for example,
if the machine has separate compare instructions for signed and unsigned quantities, like
most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the
macro SELECT_CC_MODE determines which machine mode should be used for the comparison
result. The patterns should be written using that mode. To support the case of the add on
the Sparc discussed above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)

(compare:CC_NOOV
(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

""
"...")

The SELECT_CC_MODE macro on the Sparc returns CC_NOOVmode for comparisons whose
argument is a plus.

20.12 Defining Looping Instruction Patterns

Some machines have special jump instructions that can be utilised to make loops more
efficient. A common example is the 68000 ‘dbra’ instruction which performs a decrement
of a register and a branch if the result was greater than zero. Other machines, in particular
digital signal processors (DSPs), have special block repeat instructions to provide low-
overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat
instruction that loads special registers to mark the top and end of a loop and to count the
number of loop iterations. This avoids the need for fetching and executing a ‘dbra’-like
instruction and avoids pipeline stalls associated with the jump.

GCC has three special named patterns to support low overhead looping,
‘decrement_and_branch_until_zero’, ‘doloop_begin’, and ‘doloop_end’. The first
pattern, ‘decrement_and_branch_until_zero’, is not emitted during RTL generation but
may be emitted during the instruction combination phase. This requires the assistance of
the loop optimizer, using information collected during strength reduction, to reverse a loop
to count down to zero. Some targets also require the loop optimizer to add a REG_NONNEG

392 Using and Porting the GNU Compiler Collection (GCC)

note to indicate that the iteration count is always positive. This is needed if the target
performs a signed loop termination test. For example, the 68000 uses a pattern similar to
the following for its dbra instruction:

(define_insn "decrement_and_branch_until_zero"
[(set (pc)

(if_then_else
(ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")

(const_int -1))
(const_int 0))

(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)

(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")

Note that since the insn is both a jump insn and has an output, it must deal with
its own reloads, hence the ‘m’ constraints. Also note that since this insn is generated by
the instruction combination phase combining two sequential insns together into an implicit
parallel insn, the iteration counter needs to be biased by the same amount as the decrement
operation, in this case −1. Note that the following similar pattern will not be matched by
the combiner.

(define_insn "decrement_and_branch_until_zero"
[(set (pc)

(if_then_else
(ge (match_operand:SI 0 "general_operand" "+d*am")

(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)

(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")

The other two special looping patterns, ‘doloop_begin’ and ‘doloop_end’, are emitted
by the loop optimiser for certain well-behaved loops with a finite number of loop iterations
using information collected during strength reduction.

The ‘doloop_end’ pattern describes the actual looping instruction (or the implicit loop-
ing operation) and the ‘doloop_begin’ pattern is an optional companion pattern that can
be used for initialisation needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the
top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping
instruction at the top of the loop can cause problems with flow analysis. So instead, a
dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass
checks for the presence of this doloop insn and then searches back to the top of the loop,
where it inserts the true looping insn (provided there are no instructions in the loop which
would cause problems). Any additional labels can be emitted at this point. In addition,

Chapter 20: Machine Descriptions 393

if the desired special iteration counter register was not allocated, this machine dependent
reorg pass could emit a traditional compare and jump instruction pair.

The essential difference between the ‘decrement_and_branch_until_zero’ and the
‘doloop_end’ patterns is that the loop optimizer allocates an additional pseudo register
for the latter as an iteration counter. This pseudo register cannot be used within the loop
(i.e., general induction variables cannot be derived from it), however, in many cases the
loop induction variable may become redundant and removed by the flow pass.

20.13 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation
performed by a single machine instruction. This situation is most commonly encountered
with logical, branch, and multiply-accumulate instructions. In such cases, the compiler
attempts to convert these multiple RTL expressions into a single canonical form to reduce
the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:
• For commutative and comparison operators, a constant is always made the second

operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.
For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the first operand.

• For the compare operator, a constant is always the second operand on machines where
cc0 is used (see Section 20.11 [Jump Patterns], page 390). On other machines, there are
rare cases where the compiler might want to construct a compare with a constant as the
first operand. However, these cases are not common enough for it to be worthwhile to
provide a pattern matching a constant as the first operand unless the machine actually
has such an instruction.
An operand of neg, not, mult, plus, or minus is made the first operand under the
same conditions as above.

• (minus x (const_int n)) is converted to (plus x (const_int -n)).
• Within address computations (i.e., inside mem), a left shift is converted into the appro-

priate multiplication by a power of two.
• De‘Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or logical-

or operation. If this results in only one operand being a not expression, it will be the
first one.
A machine that has an instruction that performs a bitwise logical-and of one operand
with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""
[(set (match_operand:m 0 ...)

(and:m (not:m (match_operand:m 1 ...))
(match_operand:m 2 ...)))]

"..."
"...")

Similarly, a pattern for a “NAND” instruction should be written

394 Using and Porting the GNU Compiler Collection (GCC)

(define_insn ""
[(set (match_operand:m 0 ...)

(ior:m (not:m (match_operand:m 1 ...))
(not:m (match_operand:m 2 ...))))]

"..."
"...")

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

• The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

• The sum of three items, one of which is a constant, will only appear in the form
(plus:m (plus:m x y) constant)

• On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.
• Equality comparisons of a group of bits (usually a single bit) with zero will be written

using zero_extract rather than the equivalent and or sign_extract operations.

20.14 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but,
unlike the latter, a define_expand is used only for RTL generation and it can produce
more than one RTL insn.

A define_expand RTX has four operands:
• The name. Each define_expand must have a name, since the only use for it is to refer

to it by name.
• The RTL template. This is a vector of RTL expressions representing a sequence of

separate instructions. Unlike define_insn, there is no implicit surrounding PARALLEL.
• The condition, a string containing a C expression. This expression is used to express

how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GCC is run. This is just like the condition of a define_
insn that has a standard name. Therefore, the condition (if present) may not depend
on the data in the insn being matched, but only the target-machine-type flags. The
compiler needs to test these conditions during initialization in order to learn exactly
which named instructions are available in a particular run.

• The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.
Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

Chapter 20: Machine Descriptions 395

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be specified when this pattern is used. In particular, it gives a
predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern,
should be described with a match_operand in its first occurrence in the RTL template.
This enters information on the operand’s predicate into the tables that record such things.
GCC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal “operands” which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bit-field (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand
acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If
the preparation statement always invokes DONE or FAIL, the RTL template may be reduced
to a simple list of operands, such as this example:

(define_expand "addsi3"
[(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")]
""
"

{
handle_add (operands[0], operands[1], operands[2]);
DONE;

}")

Here is an example, the definition of left-shift for the SPUR chip:

396 Using and Porting the GNU Compiler Collection (GCC)

(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]

""
"

{
if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren’t available. When it fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to
copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn’t so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]
""
"operands[2]

Chapter 20: Machine Descriptions 397

= force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bit-field operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don’t need a real
insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

20.15 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 20.17.7 [Delay Slots],
page 412) or that have instructions whose output is not available for multiple cycles (see
Section 20.17.8 [Function Units], page 413), the compiler phases that optimize these cases
need to be able to move insns into one-instruction delay slots. However, some insns may
generate more than one machine instruction. These insns cannot be placed into a delay
slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:

(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2
...]
"preparation-statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation-statements are similar to those statements that are specified for define_
expand (see Section 20.14 [Expander Definitions], page 394) and are executed before the
new RTL is generated to prepare for the generated code or emit some insns whose pattern
is not fixed. Unlike those in define_expand, however, these statements must not generate

398 Using and Porting the GNU Compiler Collection (GCC)

any new pseudo-registers. Once reload has completed, they also must not allocate any space
in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known
to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is non-zero, is known to satisfy the constraints of that define_insn. In
that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is non-zero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from
‘a29k.md’, which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)

(ashift:SI (match_dup 1)
(const_int 16)))

(set (match_dup 0)
(ashiftrt:SI (match_dup 0)

(const_int 16)))]
"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass first tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly two new insn patterns to be generated. It will verify that these patterns match
some define_insn definitions, so you need not do this test in the define_split (of course,
there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:
(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")
(plus:SI (match_operand:SI 1 "gen_reg_operand" "")

(match_operand:SI 2 "non_add_cint_operand" "")))]
""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"
{

int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= 0xffff0000;

operands[3] = GEN_INT (high << 16);
operands[4] = GEN_INT (low);

Chapter 20: Machine Descriptions 399

}")

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality com-
parison of a register and a large constant:

(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
"

{
/* Get the constant we are comparing against, C, and see what it

looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = GEN_INT (xorv);
operands[5] = GEN_INT (sextc);

}")

To avoid confusion, don’t write a single define_split that accepts some insns that
match some define_insn as well as some insns that don’t. Instead, write two separate
define_split definitions, one for the insns that are valid and one for the insns that are
not valid.

The splitter is allowed to split jump instructions into sequence of jumps or create new
jumps in while splitting non-jump instructions. As the central flowgraph and branch pre-
diction information needs to be updated, several restriction apply.

Splitting of jump instruction into sequence that over by another jump instruction is
always valid, as compiler expect identical behaviour of new jump. When new sequence
contains multiple jump instructions or new labels, more assistance is needed. Splitter
is required to create only unconditional jumps, or simple conditional jump instructions.
Additionally it must attach a REG_BR_PROB note to each conditional jump. An global
variable split_branch_probability hold the probability of original branch in case it was
an simple conditional jump, −1 otherwise. To simplify recomputing of edge frequencies,
new sequence is required to have only forward jumps to the newly created labels.

For the common case where the pattern of a define split exactly matches the pattern of
a define insn, use define_insn_and_split. It looks like this:

400 Using and Porting the GNU Compiler Collection (GCC)

(define_insn_and_split
[insn-pattern]
"condition"
"output-template"
"split-condition"
[new-insn-pattern-1
new-insn-pattern-2
...]
"preparation-statements"
[insn-attributes])

insn-pattern, condition, output-template, and insn-attributes are used as in define_
insn. The new-insn-pattern vector and the preparation-statements are used as in a define_
split. The split-condition is also used as in define_split, with the additional behavior
that if the condition starts with ‘&&’, the condition used for the split will be the constructed
as a logical “and” of the split condition with the insn condition. For example, from i386.md:

(define_insn_and_split "zero_extendhisi2_and"
[(set (match_operand:SI 0 "register_operand" "=r")

(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
(clobber (reg:CC 17))]
"TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
"#"
"&& reload_completed"
[(parallel [(set (match_dup 0) (and:SI (match_dup 0) (const_int 65535)))

(clobber (reg:CC 17))])]
""
[(set_attr "type" "alu1")])

In this case, the actual split condition will be ‘TARGET_ZERO_EXTEND_WITH_AND &&
!optimize_size && reload_completed’.

The define_insn_and_split construction provides exactly the same functionality as
two separate define_insn and define_split patterns. It exists for compactness, and as
a maintenance tool to prevent having to ensure the two patterns’ templates match.

20.16 Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to
use a register computed in the first one. A machine-specific peephole optimizer can detect
such opportunities.

There are two forms of peephole definitions that may be used. The original define_
peephole is run at assembly output time to match insns and substitute assembly text. Use
of define_peephole is deprecated.

Chapter 20: Machine Descriptions 401

A newer define_peephole2 matches insns and substitutes new insns. The peephole2
pass is run after register allocation but before scheduling, which may result in much better
code for targets that do scheduling.

20.16.1 RTL to Text Peephole Optimizers

A definition looks like this:
(define_peephole
[insn-pattern-1
insn-pattern-2
...]
"condition"
"template"
"optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information
in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn
patterns in the definition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect
on the applicability of the peephole, but they will be validated afterward, so make sure your
constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write
constraints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the final decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete.
Therefore, the peephole definition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand
number i (as matched by (match_operand i ...)). Use the variable insn to refer to the
last of the insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_
set_p (insn, op), where insn is the insn in which you expect the value to be used for the

402 Using and Porting the GNU Compiler Collection (GCC)

last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn.
The template controls ultimate output of assembler code for this combined insn. It works
exactly like the template of a define_insn. Operand numbers in this template are the
same ones used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn
patterns in the machine description; it does not even have an opportunity to match them.
The peephole optimizer definition itself serves as the insn pattern to control how the insn
is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:
(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"

{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA
output_asm_insn ("move.l %1,(sp)", xoperands);
output_asm_insn ("move.l %1,-(sp)", operands);
return "fmove.d (sp)+,%0";

#else
output_asm_insn ("movel %1,sp@", xoperands);
output_asm_insn ("movel %1,sp@-", operands);
return "fmoved sp@+,%0";

#endif
})

The effect of this optimization is to change
jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d0,sp@-
fmoved sp@+,fp0

into
jbsr _foobar
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important difference: the second operand of define_insn consists of one or more
RTX’s enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a

Chapter 20: Machine Descriptions 403

define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"
"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:
(define_peephole

[...
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])

...]
...)

20.16.2 RTL to RTL Peephole Optimizers

The define_peephole2 definition tells the compiler how to substitute one sequence of
instructions for another sequence, what additional scratch registers may be needed and
what their lifetimes must be.

(define_peephole2
[insn-pattern-1
insn-pattern-2
...]
"condition"
[new-insn-pattern-1
new-insn-pattern-2
...]
"preparation-statements")

The definition is almost identical to define_split (see Section 20.15 [Insn Splitting],
page 397) except that the pattern to match is not a single instruction, but a sequence of
instructions.

It is possible to request additional scratch registers for use in the output template. If
appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the
input pattern. The allocated register (initially) will be dead at the point requested within
the original sequence. If the scratch is used at more than a single point, a match_dup
pattern at the top level of the input pattern marks the last position in the input sequence
at which the register must be available.

404 Using and Porting the GNU Compiler Collection (GCC)

Here is an example from the IA-32 machine description:
(define_peephole2
[(match_scratch:SI 2 "r")
(parallel [(set (match_operand:SI 0 "register_operand" "")

(match_operator:SI 3 "arith_or_logical_operator"
[(match_dup 0)
(match_operand:SI 1 "memory_operand" "")]))

(clobber (reg:CC 17))])]
"! optimize_size && ! TARGET_READ_MODIFY"
[(set (match_dup 2) (match_dup 1))
(parallel [(set (match_dup 0)

(match_op_dup 3 [(match_dup 0) (match_dup 2)]))
(clobber (reg:CC 17))])]

"")

This pattern tries to split a load from its use in the hopes that we’ll be able to schedule
around the memory load latency. It allocates a single SImode register of class GENERAL_REGS
("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here’s a silly
made-up example:

(define_peephole2
[(match_scratch:SI 4 "r")
(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
(set (match_operand:SI 2 "" "") (match_dup 1))
(match_dup 4)
(set (match_operand:SI 3 "" "") (match_dup 1))]
"/* determine 1 does not overlap 0 and 2 */"
[(set (match_dup 4) (match_dup 1))
(set (match_dup 0) (match_dup 4))
(set (match_dup 2) (match_dup 4))]
(set (match_dup 3) (match_dup 4))]
"")

If we had not added the (match_dup 4) in the middle of the input sequence, it might have
been the case that the register we chose at the beginning of the sequence is killed by the
first or second set.

20.17 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file
also defines a group of attributes and a set of values for each. Every generated insn is
assigned a value for each attribute. One possible attribute would be the effect that the insn
has on the machine’s condition code. This attribute can then be used by NOTICE_UPDATE_CC
to track the condition codes.

20.17.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target
machine. It looks like:

Chapter 20: Machine Descriptions 405

(define_attr name list-of-values default)

name is a string specifying the name of the attribute being defined.
list-of-values is either a string that specifies a comma-separated list of values that can

be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose definition does not include an explicit value for this attribute. See
Section 20.17.4 [Attr Example], page 409, for more information on the handling of defaults.
See Section 20.17.6 [Constant Attributes], page 411, for information on attributes that do
not depend on any particular insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’
file. For cases where an explicit set of values is specified for an attribute, the following are
defined:
• A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.
• An enumeral class is defined for ‘attr_name’ with elements of the form ‘upper-

name_upper-value’ where the attribute name and value are first converted to upper
case.

• A function ‘get_attr_name’ is defined that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the ‘md’ file:
(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file ‘insn-attr.h’.
#define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to
obtain the attribute’s value will return int.

20.17.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few
specific to attribute definitions, to be discussed below. Attribute value expressions must
have one of the following forms:

(const_int i)
The integer i specifies the value of a numeric attribute. i must be non-negative.
The value of a numeric attribute can be specified either with a const_int, or
as an integer represented as a string in const_string, eq_attr (see below),
attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on
specific instructions (see Section 20.17.3 [Tagging Insns], page 408).

(const_string value)
The string value specifies a constant attribute value. If value is specified as
‘"*"’, it means that the default value of the attribute is to be used for the

406 Using and Porting the GNU Compiler Collection (GCC)

insn containing this expression. ‘"*"’ obviously cannot be used in the default
expression of a define_attr.
If the attribute whose value is being specified is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)
test specifies an attribute test, whose format is defined below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 ...] default)
The first operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the first true test
expression. If none of the test expressions are true, the value of the cond
expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)
This test is true if i is non-zero and false otherwise.

(not test)
(ior test1 test2)
(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)
This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is VOIDmode) and
the function specified by the string pred returns a non-zero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).
The constraints operand is ignored and should be the null string.

(le arith1 arith2)
(leu arith1 arith2)
(lt arith1 arith2)
(ltu arith1 arith2)
(gt arith1 arith2)
(gtu arith1 arith2)
(ge arith1 arith2)
(geu arith1 arith2)
(ne arith1 arith2)
(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expres-
sions.
const_int and symbol_ref are always valid terms (see Section 20.17.5 [Insn
Lengths], page 410,for additional forms). symbol_ref is a string denoting a C

Chapter 20: Machine Descriptions 407

expression that yields an int when evaluated by the ‘get_attr_...’ routine.
It should normally be a global variable.

(eq_attr name value)
name is a string specifying the name of an attribute.
value is a string that is either a valid value for attribute name, a comma-
separated list of values, or ‘!’ followed by a value or list. If value does not
begin with a ‘!’, this test is true if the value of the name attribute of the
current insn is in the list specified by value. If value begins with a ‘!’, this test
is true if the attribute’s value is not in the specified list.
For example,

(eq_attr "type" "load,store")

is equivalent to
(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of ‘alternative’, it refers to the value of the
compiler variable which_alternative (see Section 20.6 [Output Statement],
page 359) and the values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to
(ior (eq (symbol_ref "which_alternative") (const_int 2))

(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)
The value of an attr_flag expression is true if the flag specified by name is
true for the insn currently being scheduled.
name is a string specifying one of a fixed set of flags to test. Test the flags
forward and backward to determine the direction of a conditional branch. Test
the flags very_likely, likely, very_unlikely, and unlikely to determine if
a conditional branch is expected to be taken.
If the very_likely flag is true, then the likely flag is also true. Likewise for
the very_unlikely and unlikely flags.
This example describes a conditional branch delay slot which can be nullified for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward flags are false if the current insn being scheduled
is not a conditional branch.

408 Using and Porting the GNU Compiler Collection (GCC)

The very_likely and likely flags are true if the insn being scheduled is not
a conditional branch. The very_unlikely and unlikely flags are false if the
insn being scheduled is not a conditional branch.
attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

(attr name)
The value of another attribute is returned. This is most useful for numeric
attributes, as eq_attr and attr_flag produce more efficient code for non-
numeric attributes.

20.17.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular insn is set to the
default value for that attribute, as specified in its define_attr. Extensive use of default
values for attributes permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which defines the value for a single attribute. The most general way of
assigning an attribute’s value is to use a set expression whose first operand is an attr
expression giving the name of the attribute being set. The second operand of the set is
an attribute expression (see Section 20.17.2 [Expressions], page 405) giving the value of the
attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the specification of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.
Note that it may be useful to specify ‘*’ for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 ...])
Depending on the alternative of the insn, the value will be one of the specified
values. This is a shorthand for using a cond with tests on the ‘alternative’
attribute.

Chapter 20: Machine Descriptions 409

(set (attr name) value)
The first operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three different ways of representing the same attribute value speci-
fication:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the “worst case” attribute values. For example, they might
indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the
length of an asm insn is to multiply the length specified in the expression define_asm_
attributes by the number of machine instructions specified in the asm statement, deter-
mined by counting the number of semicolons and newlines in the string. Therefore, the
value of the length attribute specified in a define_asm_attributes should be the maxi-
mum possible length of a single machine instruction.

20.17.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to
represent this value. This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition
code and will limit ourselves to the following possible effects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

410 Using and Porting the GNU Compiler Collection (GCC)

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")

(const_string "change0")
(eq_attr "type" "store,branch")

(const_string "unchanged")
(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")
(const_string "set")
(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"
[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on
quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

20.17.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the
‘length’ attribute, is defined. This attribute must be defined to have numeric values by
specifying a null string in its define_attr.

In the case of the ‘length’ attribute, two additional forms of arithmetic terms are allowed
in test expressions:

(match_dup n)
This refers to the address of operand n of the current insn, which must be a
label_ref.

(pc) This refers to the address of the current insn. It might have been more consis-
tent with other usage to make this the address of the next insn but this would
be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the ‘length’ attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).
The following macros can be used to refine the length computation:

Chapter 20: Machine Descriptions 411

FIRST_INSN_ADDRESS
When the length insn attribute is used, this macro specifies the value to be
assigned to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially
computed length of the insn and should be updated with the correct length of
the insn.
This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:
(define_insn "jump"
[(set (pc)

(label_ref (match_operand 0 "" "")))]
""

{
return (get_attr_length (insn) == 4

? "b %l0" : "l r15,=a(%l0); br r15");
}

[(set (attr "length") (if_then_else (lt (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])

20.17.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const
expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")

412 Using and Porting the GNU Compiler Collection (GCC)

(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to define the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

20.17.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if
any, on a target machine. An instruction is said to require a delay slot if some instructions
that are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data flow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2
...])

test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled
if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may
be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the ‘md’ file:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression
specifies different delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

Chapter 20: Machine Descriptions 413

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
(nil)])

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

20.17.8 Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a
specific number of cycles. Common cases are instructions that load data from memory. On
many machines, a pipeline stall will result if the data is referenced too soon after the load
instruction.

In addition, many newer microprocessors have multiple function units, usually one for
integer and one for floating point, and often will incur pipeline stalls when a result that is
needed is not yet ready.

The descriptions in this section allow the specification of how much time must elapse
between the execution of an instruction and the time when its result is used. It also
allows specification of when the execution of an instruction will delay execution of similar
instructions due to function unit conflicts.

For the purposes of the specifications in this section, a machine is divided into func-
tion units, each of which execute a specific class of instructions in first-in-first-out order.
Function units that accept one instruction each cycle and allow a result to be used in the
succeeding instruction (usually via forwarding) need not be specified. Classic RISC micro-
processors will normally have a single function unit, which we can call ‘memory’. The newer
“superscalar” processors will often have function units for floating point operations, usually
at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_
unit expression, which looks like this:

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay
[conflict-list])

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units in the processor. If more
than one unit is specified, they will be scheduled independently. Only truly independent
units should be counted; a pipelined unit should be specified as a single unit. (The only
common example of a machine that has multiple function units for a single instruction class
that are truly independent and not pipelined are the two multiply and two increment units
of the CDC 6600.)

simultaneity specifies the maximum number of insns that can be executing in each
instance of the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name must have the
same name and values for multiplicity and simultaneity.

414 Using and Porting the GNU Compiler Collection (GCC)

test is an attribute test that selects the insns we are describing in this definition. Note
that an insn may use more than one function unit and a function unit may be specified in
more than one define_function_unit.

ready-delay is an integer that specifies the number of cycles after which the result of the
instruction can be used without introducing any stalls.

issue-delay is an integer that specifies the number of cycles after the instruction matching
the test expression begins using this unit until a subsequent instruction can begin. A cost of
N indicates an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier
instruction has a longer ready-delay value. This blocking effect is computed using the
simultaneity, ready-delay, issue-delay, and conflict-list terms. For a normal non-pipelined
function unit, simultaneity is one, the unit is taken to block for the ready-delay cycles of
the executing insn, and smaller values of issue-delay are ignored.

conflict-list is an optional list giving detailed conflict costs for this unit. If specified,
it is a list of condition test expressions to be applied to insns chosen to execute in name
following the particular insn matching test that is already executing in name. For each insn
in the list, issue-delay specifies the conflict cost; for insns not in the list, the cost is zero. If
not specified, conflict-list defaults to all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit can pipeline either
single- or double-precision operations, but not both, or where a memory unit can pipeline
loads, but not stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction
is not available for two cycles (a single “delay” instruction is required) and where only one
load instruction can be executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)

For the case of a floating point function unit that can pipeline either single or double
precision, but not both, the following could be specified:

(define_function_unit
"fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])

(define_function_unit
"fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])

Note: The scheduler attempts to avoid function unit conflicts and uses all the specifica-
tions in the define_function_unit expression. It has recently come to our attention that
these specifications may not allow modeling of some of the newer “superscalar” processors
that have insns using multiple pipelined units. These insns will cause a potential conflict
for the second unit used during their execution and there is no way of representing that
conflict. We welcome any examples of how function unit conflicts work in such processors
and suggestions for their representation.

20.18 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication.
The hallmark of this feature is the ability to nullify most of the instructions in the instruction
set. When the instruction set is large and not entirely symmetric, it can be quite tedious
to describe these forms directly in the ‘.md’ file. An alternative is the define_cond_exec
template.

Chapter 20: Machine Descriptions 415

(define_cond_exec
[predicate-pattern]
"condition"
"output-template")

predicate-pattern is the condition that must be true for the insn to be executed at
runtime and should match a relational operator. One can use match_operator to match
several relational operators at once. Any match_operand operands must have no more than
one alternative.

condition is a C expression that must be true for the generated pattern to match.
output-template is a string similar to the define_insn output template (see Section 20.5

[Output Template], page 357), except that the ‘*’ and ‘@’ special cases do not apply. This
is only useful if the assembly text for the predicate is a simple prefix to the main insn. In
order to handle the general case, there is a global variable current_insn_predicate that
will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

When define_cond_exec is used, an implicit reference to the predicable instruction
attribute is made. See Section 20.17 [Insn Attributes], page 404. This attribute must be
boolean (i.e. have exactly two elements in its list-of-values). Further, it must not be used
with complex expressions. That is, the default and all uses in the insns must be a simple
constant, not dependent on the alternative or anything else.

For each define_insn for which the predicable attribute is true, a new define_insn
pattern will be generated that matches a predicated version of the instruction. For example,

(define_insn "addsi"
[(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]

"test1"
"add %2,%1,%0")

(define_cond_exec
[(ne (match_operand:CC 0 "register_operand" "c")

(const_int 0))]
"test2"
"(%0)")

generates a new pattern
(define_insn ""

[(cond_exec
(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))))]

"(test2) && (test1)"
"(%3) add %2,%1,%0")

20.19 Constant Definitions

Using literal constants inside instruction patterns reduces legibility and can be a main-
tenance problem.

416 Using and Porting the GNU Compiler Collection (GCC)

To overcome this problem, you may use the define_constants expression. It contains
a vector of name-value pairs. From that point on, wherever any of the names appears in
the MD file, it is as if the corresponding value had been written instead. You may use
define_constants multiple times; each appearance adds more constants to the table. It
is an error to redefine a constant with a different value.

To come back to the a29k load multiple example, instead of
(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

You could write:
(define_constants [

(R_BP 177)
(R_FC 178)
(R_CR 179)
(R_Q 180)

])

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI R_CR))
(clobber (reg:SI R_CR))])]

""
"loadm 0,0,%1,%2")

The constants that are defined with a define constant are also output in the insn-codes.h
header file as #defines.

Chapter 21: Target Description Macros and Functions 417

21 Target Description Macros and Functions

In addition to the file ‘machine.md’, a machine description includes a C header file
conventionally given the name ‘machine.h’ and a C source file named ‘machine.c’. The
header file defines numerous macros that convey the information about the target machine
that does not fit into the scheme of the ‘.md’ file. The file ‘tm.h’ should be a link to
‘machine.h’. The header file ‘config.h’ includes ‘tm.h’ and most compiler source files
include ‘config.h’. The source file defines a variable targetm, which is a structure con-
taining pointers to functions and data relating to the target machine. ‘machine.c’ should
also contain their definitions, if they are not defined elsewhere in GCC, and other functions
called through the macros defined in the ‘.h’ file.

21.1 The Global targetm Variable

Variablestruct gcc_target targetm
The target ‘.c’ file must define the global targetm variable which contains pointers
to functions and data relating to the target machine. The variable is declared in
‘target.h’; ‘target-def.h’ defines the macro TARGET_INITIALIZER which is used
to initialize the variable, and macros for the default initializers for elements of the
structure. The ‘.c’ file should override those macros for which the default definition
is inappropriate. For example:

#include "target.h"
#include "target-def.h"

/* Initialize the GCC target structure. */

#undef TARGET_VALID_TYPE_ATTRIBUTE
#define TARGET_VALID_TYPE_ATTRIBUTE machine_valid_type_attribute_p

struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be defined in the ‘.c’ file in this manner to form part of the
targetm structure, it is documented below as a “Target Hook” with a prototype. Many
macros will change in future from being defined in the ‘.h’ file to being part of the targetm
structure.

21.2 Controlling the Compilation Driver, ‘gcc’

You can control the compilation driver.

SWITCH_TAKES_ARG (char)
A C expression which determines whether the option ‘-char’ takes arguments.
The value should be the number of arguments that option takes–zero, for many
options.
By default, this macro is defined as DEFAULT_SWITCH_TAKES_ARG, which handles
the standard options properly. You need not define SWITCH_TAKES_ARG unless

418 Using and Porting the GNU Compiler Collection (GCC)

you wish to add additional options which take arguments. Any redefinition
should call DEFAULT_SWITCH_TAKES_ARG and then check for additional options.

WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option ‘-name’ takes arguments.
The value should be the number of arguments that option takes–zero, for many
options. This macro rather than SWITCH_TAKES_ARG is used for multi-character
option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which
handles the standard options properly. You need not define WORD_SWITCH_
TAKES_ARG unless you wish to add additional options which take arguments.
Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and then check
for additional options.

SWITCH_CURTAILS_COMPILATION (char)
A C expression which determines whether the option ‘-char’ stops compilation
before the generation of an executable. The value is boolean, non-zero if the
option does stop an executable from being generated, zero otherwise.

By default, this macro is defined as DEFAULT_SWITCH_CURTAILS_COMPILATION,
which handles the standard options properly. You need not define SWITCH_
CURTAILS_COMPILATION unless you wish to add additional options which affect
the generation of an executable. Any redefinition should call DEFAULT_SWITCH_
CURTAILS_COMPILATION and then check for additional options.

SWITCHES_NEED_SPACES
A string-valued C expression which enumerates the options for which the linker
needs a space between the option and its argument.

If this macro is not defined, the default value is "".

TARGET_OPTION_TRANSLATE_TABLE
If defined, a list of pairs of strings, the first of which is a potential command
line target to the ‘gcc’ driver program, and the second of which is a space-
separated (tabs and other whitespace are not supported) list of options with
which to replace the first option. The target defining this list is responsible for
assuring that the results are valid. Replacement options may not be the --opt
style, they must be the -opt style. It is the intention of this macro to provide a
mechanism for substitution that affects the multilibs chosen, such as one option
that enables many options, some of which select multilibs. Example nonsensical
definition, where -malt-abi, -EB, and -mspoo cause different multilibs to be
chosen:

#define TARGET_OPTION_TRANSLATE_TABLE \
{ "-fast", "-march=fast-foo -malt-abi -I/usr/fast-foo" }, \
{ "-compat", "-EB -malign=4 -mspoo" }

CPP_SPEC A C string constant that tells the GCC driver program options to pass to CPP.
It can also specify how to translate options you give to GCC into options for
GCC to pass to the CPP.

Do not define this macro if it does not need to do anything.

Chapter 21: Target Description Macros and Functions 419

CPLUSPLUS_CPP_SPEC
This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do
not define this macro, then the value of CPP_SPEC (if any) will be used instead.

NO_BUILTIN_SIZE_TYPE
If this macro is defined, the preprocessor will not define the built-in macro __
SIZE_TYPE__. The macro __SIZE_TYPE__ must then be defined by CPP_SPEC
instead.

This should be defined if SIZE_TYPE depends on target dependent flags which
are not accessible to the preprocessor. Otherwise, it should not be defined.

NO_BUILTIN_PTRDIFF_TYPE
If this macro is defined, the preprocessor will not define the built-in macro
__PTRDIFF_TYPE__. The macro __PTRDIFF_TYPE__ must then be defined by
CPP_SPEC instead.

This should be defined if PTRDIFF_TYPE depends on target dependent flags
which are not accessible to the preprocessor. Otherwise, it should not be de-
fined.

NO_BUILTIN_WCHAR_TYPE
If this macro is defined, the preprocessor will not define the built-in macro __
WCHAR_TYPE__. The macro __WCHAR_TYPE__ must then be defined by CPP_SPEC
instead.

This should be defined if WCHAR_TYPE depends on target dependent flags which
are not accessible to the preprocessor. Otherwise, it should not be defined.

NO_BUILTIN_WINT_TYPE
If this macro is defined, the preprocessor will not define the built-in macro __
WINT_TYPE__. The macro __WINT_TYPE__ must then be defined by CPP_SPEC
instead.

This should be defined if WINT_TYPE depends on target dependent flags which
are not accessible to the preprocessor. Otherwise, it should not be defined.

SIGNED_CHAR_SPEC
A C string constant that tells the GCC driver program options to pass to CPP.
By default, this macro is defined to pass the option ‘-D__CHAR_UNSIGNED__’ to
CPP if char will be treated as unsigned char by cc1.

Do not define this macro unless you need to override the default definition.

CC1_SPEC A C string constant that tells the GCC driver program options to pass to cc1,
cc1plus, f771, and the other language front ends. It can also specify how to
translate options you give to GCC into options for GCC to pass to front ends.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC
A C string constant that tells the GCC driver program options to pass to
cc1plus. It can also specify how to translate options you give to GCC into
options for GCC to pass to the cc1plus.

420 Using and Porting the GNU Compiler Collection (GCC)

Do not define this macro if it does not need to do anything. Note that everything
defined in CC1 SPEC is already passed to cc1plus so there is no need to
duplicate the contents of CC1 SPEC in CC1PLUS SPEC.

ASM_SPEC A C string constant that tells the GCC driver program options to pass to the
assembler. It can also specify how to translate options you give to GCC into
options for GCC to pass to the assembler. See the file ‘sun3.h’ for an example
of this.
Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC
A C string constant that tells the GCC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See
the file ‘mips.h’ for an example of this.
Do not define this macro if it does not need to do anything.

LINK_SPEC
A C string constant that tells the GCC driver program options to pass to the
linker. It can also specify how to translate options you give to GCC into options
for GCC to pass to the linker.
Do not define this macro if it does not need to do anything.

LIB_SPEC Another C string constant used much like LINK_SPEC. The difference between
the two is that LIB_SPEC is used at the end of the command given to the linker.
If this macro is not defined, a default is provided that loads the standard C
library from the usual place. See ‘gcc.c’.

LIBGCC_SPEC
Another C string constant that tells the GCC driver program how and when
to place a reference to ‘libgcc.a’ into the linker command line. This constant
is placed both before and after the value of LIB_SPEC.
If this macro is not defined, the GCC driver provides a default that passes the
string ‘-lgcc’ to the linker.

STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that STARTFILE_SPEC is used at the very beginning of the command
given to the linker.
If this macro is not defined, a default is provided that loads the standard C
startup file from the usual place. See ‘gcc.c’.

ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that ENDFILE_SPEC is used at the very end of the command given to
the linker.
Do not define this macro if it does not need to do anything.

THREAD_MODEL_SPEC
GCC -v will print the thread model GCC was configured to use. However, this
doesn’t work on platforms that are multilibbed on thread models, such as AIX

Chapter 21: Target Description Macros and Functions 421

4.3. On such platforms, define THREAD_MODEL_SPEC such that it evaluates to
a string without blanks that names one of the recognized thread models. %*,
the default value of this macro, will expand to the value of thread_file set in
‘config.gcc’.

EXTRA_SPECS
Define this macro to provide additional specifications to put in the ‘specs’ file
that can be used in various specifications like CC1_SPEC.
The definition should be an initializer for an array of structures, containing a
string constant, that defines the specification name, and a string constant that
provides the specification.
Do not define this macro if it does not need to do anything.
EXTRA_SPECS is useful when an architecture contains several related targets,
which have various ..._SPECS which are similar to each other, and the main-
tainer would like one central place to keep these definitions.
For example, the PowerPC System V.4 targets use EXTRA_SPECS to define either
_CALL_SYSV when the System V calling sequence is used or _CALL_AIX when
the older AIX-based calling sequence is used.
The ‘config/rs6000/rs6000.h’ target file defines:

#define EXTRA_SPECS \
{ "cpp_sysv_default", CPP_SYSV_DEFAULT },

#define CPP_SYS_DEFAULT ""

The ‘config/rs6000/sysv.h’ target file defines:
#undef CPP_SPEC
#define CPP_SPEC \
"%{posix: -D_POSIX_SOURCE } \
%{mcall-sysv: -D_CALL_SYSV } %{mcall-aix: -D_CALL_AIX } \
%{!mcall-sysv: %{!mcall-aix: %(cpp_sysv_default) }} \
%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"

#undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"

while the ‘config/rs6000/eabiaix.h’ target file defines CPP_SYSV_DEFAULT
as:

#undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_AIX"

LINK_LIBGCC_SPECIAL
Define this macro if the driver program should find the library ‘libgcc.a’ itself
and should not pass ‘-L’ options to the linker. If you do not define this macro,
the driver program will pass the argument ‘-lgcc’ to tell the linker to do the
search and will pass ‘-L’ options to it.

LINK_LIBGCC_SPECIAL_1
Define this macro if the driver program should find the library ‘libgcc.a’.
If you do not define this macro, the driver program will pass the argument

422 Using and Porting the GNU Compiler Collection (GCC)

‘-lgcc’ to tell the linker to do the search. This macro is similar to LINK_
LIBGCC_SPECIAL, except that it does not affect ‘-L’ options.

LINK_COMMAND_SPEC
A C string constant giving the complete command line need to execute the
linker. When you do this, you will need to update your port each time a change
is made to the link command line within ‘gcc.c’. Therefore, define this macro
only if you need to completely redefine the command line for invoking the linker
and there is no other way to accomplish the effect you need.

LINK_ELIMINATE_DUPLICATE_LDIRECTORIES
A nonzero value causes collect2 to remove duplicate ‘-Ldirectory ’ search di-
rectories from linking commands. Do not give it a nonzero value if removing
duplicate search directories changes the linker’s semantics.

MULTILIB_DEFAULTS
Define this macro as a C expression for the initializer of an array of string to
tell the driver program which options are defaults for this target and thus do
not need to be handled specially when using MULTILIB_OPTIONS.
Do not define this macro if MULTILIB_OPTIONS is not defined in the target
makefile fragment or if none of the options listed in MULTILIB_OPTIONS are set
by default. See Section 23.1 [Target Fragment], page 545.

RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a
‘-L’ linker option if the prefix indicates an absolute file name.

STANDARD_EXEC_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/lib/gcc-lib/’ as the default prefix to try when search-
ing for the executable files of the compiler.

MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after STANDARD_EXEC_
PREFIX. MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or the
compiler is built as a cross compiler. If you define MD_EXEC_PREFIX, then be sure
to add it to the list of directories used to find the assembler in ‘configure.in’.

STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/lib/’ as the default prefix to try when searching for
startup files such as ‘crt0.o’.

MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after the standard
prefixes. MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or
when the compiler is built as a cross compiler.

MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the standard
prefixes. It is not searched when the ‘-b’ option is used, or when the compiler
is built as a cross compiler.

Chapter 21: Target Description Macros and Functions 423

INIT_ENVIRONMENT
Define this macro as a C string constant if you wish to set environment variables
for programs called by the driver, such as the assembler and loader. The driver
passes the value of this macro to putenv to initialize the necessary environment
variables.

LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/include’ as the default prefix to try when searching for
local header files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in
the search order.
Cross compilers do not use this macro and do not search either
‘/usr/local/include’ or its replacement.

MODIFY_TARGET_NAME
Define this macro if you with to define command-line switches that modify the
default target name
For each switch, you can include a string to be appended to the first part of the
configuration name or a string to be deleted from the configuration name, if
present. The definition should be an initializer for an array of structures. Each
array element should have three elements: the switch name (a string constant,
including the initial dash), one of the enumeration codes ADD or DELETE to
indicate whether the string should be inserted or deleted, and the string to be
inserted or deleted (a string constant).
For example, on a machine where ‘64’ at the end of the configuration name
denotes a 64-bit target and you want the ‘-32’ and ‘-64’ switches to select
between 32- and 64-bit targets, you would code

#define MODIFY_TARGET_NAME \
{ { "-32", DELETE, "64"}, \

{"-64", ADD, "64"}}

SYSTEM_INCLUDE_DIR
Define this macro as a C string constant if you wish to specify a system-specific
directory to search for header files before the standard directory. SYSTEM_
INCLUDE_DIR comes before STANDARD_INCLUDE_DIR in the search order.
Cross compilers do not use this macro and do not search the directory specified.

STANDARD_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/include’ as the default prefix to try when searching for header
files.
Cross compilers do not use this macro and do not search either ‘/usr/include’
or its replacement.

STANDARD_INCLUDE_COMPONENT
The “component” corresponding to STANDARD_INCLUDE_DIR. See INCLUDE_
DEFAULTS, below, for the description of components. If you do not define this
macro, no component is used.

424 Using and Porting the GNU Compiler Collection (GCC)

INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default search path for
include files. For a native compiler, the default search path usually consists
of GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_
INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_
DIR and GCC_INCLUDE_DIR are defined automatically by ‘Makefile’, and specify
private search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used
only for C++ programs.
The definition should be an initializer for an array of structures. Each array
element should have four elements: the directory name (a string constant), the
component name (also a string constant), a flag for C++-only directories, and
a flag showing that the includes in the directory don’t need to be wrapped
in extern ‘C’ when compiling C++. Mark the end of the array with a null
element.
The component name denotes what GNU package the include file is part of, if
any, in all upper-case letters. For example, it might be ‘GCC’ or ‘BINUTILS’. If
the package is part of a vendor-supplied operating system, code the component
name as ‘0’.
For example, here is the definition used for VAX/VMS:

#define INCLUDE_DEFAULTS \
{ \

{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
{ "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
{ ".", 0, 0, 0}, \
{ 0, 0, 0, 0} \

}

Here is the order of prefixes tried for exec files:
1. Any prefixes specified by the user with ‘-B’.
2. The environment variable GCC_EXEC_PREFIX, if any.
3. The directories specified by the environment variable COMPILER_PATH.
4. The macro STANDARD_EXEC_PREFIX.
5. ‘/usr/lib/gcc/’.
6. The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:
1. Any prefixes specified by the user with ‘-B’.
2. The environment variable GCC_EXEC_PREFIX, if any.
3. The directories specified by the environment variable LIBRARY_PATH (or port-specific

name; native only, cross compilers do not use this).
4. The macro STANDARD_EXEC_PREFIX.
5. ‘/usr/lib/gcc/’.
6. The macro MD_EXEC_PREFIX, if any.
7. The macro MD_STARTFILE_PREFIX, if any.

Chapter 21: Target Description Macros and Functions 425

8. The macro STANDARD_STARTFILE_PREFIX.
9. ‘/lib/’.

10. ‘/usr/lib/’.

21.3 Run-time Target Specification

Here are run-time target specifications.

CPP_PREDEFINES
Define this to be a string constant containing ‘-D’ options to define the pre-
defined macros that identify this machine and system. These macros will be
predefined unless the ‘-ansi’ option (or a ‘-std’ option for strict ISO C con-
formance) is specified.
In addition, a parallel set of macros are predefined, whose names are made
by appending ‘__’ at the beginning and at the end. These ‘__’ macros are
permitted by the ISO standard, so they are predefined regardless of whether
‘-ansi’ or a ‘-std’ option is specified.
For example, on the Sun, one can use the following value:

"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and __unix__ un-
conditionally, and the macros mc68000, sun and unix provided ‘-ansi’ is not
specified.

extern int target_flags;
This declaration should be present.

TARGET_...
This series of macros is to allow compiler command arguments to enable or
disable the use of optional features of the target machine. For example, one
machine description serves both the 68000 and the 68020; a command argument
tells the compiler whether it should use 68020-only instructions or not. This
command argument works by means of a macro TARGET_68020 that tests a bit
in target_flags.
Define a macro TARGET_featurename for each such option. Its definition should
test a bit in target_flags. It is recommended that a helper macro TARGET_
MASK_featurename is defined for each bit-value to test, and used in TARGET_
featurename and TARGET_SWITCHES. For example:

#define TARGET_MASK_68020 1
#define TARGET_68020 (target_flags & TARGET_MASK_68020)

One place where these macros are used is in the condition-expressions of in-
struction patterns. Note how TARGET_68020 appears frequently in the 68000
machine description file, ‘m68k.md’. Another place they are used is in the defi-
nitions of the other macros in the ‘machine.h’ file.

TARGET_SWITCHES
This macro defines names of command options to set and clear bits in target_
flags. Its definition is an initializer with a subgrouping for each command
option.

426 Using and Porting the GNU Compiler Collection (GCC)

Each subgrouping contains a string constant, that defines the option name, a
number, which contains the bits to set in target_flags, and a second string
which is the description displayed by ‘--help’. If the number is negative then
the bits specified by the number are cleared instead of being set. If the descrip-
tion string is present but empty, then no help information will be displayed
for that option, but it will not count as an undocumented option. The actual
option name is made by appending ‘-m’ to the specified name. Non-empty de-
scription strings should be marked with N_(...) for xgettext. In addition
to the description for ‘--help’, more detailed documentation for each option
should be added to ‘invoke.texi’.
One of the subgroupings should have a null string. The number in this grouping
is the default value for target_flags. Any target options act starting with that
value.
Here is an example which defines ‘-m68000’ and ‘-m68020’ with opposite mean-
ings, and picks the latter as the default:

#define TARGET_SWITCHES \
{ { "68020", TARGET_MASK_68020, "" }, \

{ "68000", -TARGET_MASK_68020, \
N_("Compile for the 68000") }, \

{ "", TARGET_MASK_68020, "" }}

TARGET_OPTIONS
This macro is similar to TARGET_SWITCHES but defines names of command op-
tions that have values. Its definition is an initializer with a subgrouping for
each command option.
Each subgrouping contains a string constant, that defines the fixed part of the
option name, the address of a variable, and a description string (which should
again be marked with N_(...)). The variable, type char *, is set to the variable
part of the given option if the fixed part matches. The actual option name is
made by appending ‘-m’ to the specified name. Again, each option should also
be documented in ‘invoke.texi’.
Here is an example which defines ‘-mshort-data-number’. If the given option
is ‘-mshort-data-512’, the variable m88k_short_data will be set to the string
"512".

extern char *m88k_short_data;
#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data, \

N_("Specify the size of the short data section") } }

TARGET_VERSION
This macro is a C statement to print on stderr a string describing the particular
machine description choice. Every machine description should define TARGET_
VERSION. For example:

#ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");

#else

Chapter 21: Target Description Macros and Functions 427

#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");

#endif

OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make sense on
a particular target machine. You can define a macro OVERRIDE_OPTIONS to
take account of this. This macro, if defined, is executed once just after all the
command options have been parsed.

Don’t use this macro to turn on various extra optimizations for ‘-O’. That is
what OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level, size)
Some machines may desire to change what optimizations are performed for
various optimization levels. This macro, if defined, is executed once just after
the optimization level is determined and before the remainder of the command
options have been parsed. Values set in this macro are used as the default
values for the other command line options.

level is the optimization level specified; 2 if ‘-O2’ is specified, 1 if ‘-O’ is specified,
and 0 if neither is specified.

size is non-zero if ‘-Os’ is specified and zero otherwise.

You should not use this macro to change options that are not machine-specific.
These should uniformly selected by the same optimization level on all supported
machines. Use this macro to enable machine-specific optimizations.

Do not examine write_symbols in this macro! The debugging options are not
supposed to alter the generated code.

CAN_DEBUG_WITHOUT_FP
Define this macro if debugging can be performed even without a frame pointer.
If this macro is defined, GCC will turn on the ‘-fomit-frame-pointer’ option
whenever ‘-O’ is specified.

21.4 Defining data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro
and a couple of variables to allow this. Note, just using statics to store the information is
a bad idea, since GCC supports nested functions, so you can be halfway through encoding
one function when another one comes along.

GCC defines a data structure called struct function which contains all of the data
specific to an individual function. This structure contains a field called machine whose
type is struct machine_function *, which can be used by targets to point to their own
specific data.

If a target needs per-function specific data it should define the type struct machine_
function and also the macro INIT_EXPANDERS. This macro should be used to initialise
some or all of the function pointers init_machine_status, free_machine_status and
mark_machine_status. These pointers are explained below.

428 Using and Porting the GNU Compiler Collection (GCC)

One typical use of per-function, target specific data is to create an RTX to hold the
register containing the function’s return address. This RTX can then be used to implement
the __builtin_return_address function, for level 0.

Note—earlier implementations of GCC used a single data area to hold all of the per-
function information. Thus when processing of a nested function began the old per-function
data had to be pushed onto a stack, and when the processing was finished, it had to be
popped off the stack. GCC used to provide function pointers called save_machine_status
and restore_machine_status to handle the saving and restoring of the target specific
information. Since the single data area approach is no longer used, these pointers are no
longer supported.

The macro and function pointers are described below.

INIT_EXPANDERS
Macro called to initialise any target specific information. This macro is called
once per function, before generation of any RTL has begun. The intention of
this macro is to allow the initialisation of the function pointers below.

init_machine_status
This is a void (*)(struct function *) function pointer. If this pointer is non-
NULL it will be called once per function, before function compilation starts,
in order to allow the target to perform any target specific initialisation of the
struct function structure. It is intended that this would be used to initialise
the machine of that structure.

free_machine_status
This is a void (*)(struct function *) function pointer. If this pointer is
non-NULL it will be called once per function, after the function has been com-
piled, in order to allow any memory allocated during the init_machine_status
function call to be freed.

mark_machine_status
This is a void (*)(struct function *) function pointer. If this pointer is
non-NULL it will be called once per function in order to mark any data items
in the struct machine_function structure which need garbage collection.

21.5 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments mea-
sured in bits do not need to be constant. They can be C expressions that refer to static
variables, such as the target_flags. See Section 21.3 [Run-time Target], page 425.

BITS_BIG_ENDIAN
Define this macro to have the value 1 if the most significant bit in a byte has
the lowest number; otherwise define it to have the value zero. This means that
bit-field instructions count from the most significant bit. If the machine has
no bit-field instructions, then this must still be defined, but it doesn’t matter
which value it is defined to. This macro need not be a constant.
This macro does not affect the way structure fields are packed into bytes or
words; that is controlled by BYTES_BIG_ENDIAN.

Chapter 21: Target Description Macros and Functions 429

BYTES_BIG_ENDIAN
Define this macro to have the value 1 if the most significant byte in a word has
the lowest number. This macro need not be a constant.

WORDS_BIG_ENDIAN
Define this macro to have the value 1 if, in a multiword object, the most sig-
nificant word has the lowest number. This applies to both memory locations
and registers; GCC fundamentally assumes that the order of words in memory
is the same as the order in registers. This macro need not be a constant.

LIBGCC2_WORDS_BIG_ENDIAN
Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a con-
stant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
only when compiling ‘libgcc2.c’. Typically the value will be set based on
preprocessor defines.

FLOAT_WORDS_BIG_ENDIAN
Define this macro to have the value 1 if DFmode, XFmode or TFmode floating
point numbers are stored in memory with the word containing the sign bit at
the lowest address; otherwise define it to have the value 0. This macro need
not be a constant.
You need not define this macro if the ordering is the same as for multi-word
integers.

BITS_PER_UNIT
Define this macro to be the number of bits in an addressable storage unit (byte);
normally 8.

BITS_PER_WORD
Number of bits in a word; normally 32.

MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the default is BITS_
PER_WORD. Otherwise, it is the constant value that is the largest value that
BITS_PER_WORD can have at run-time.

UNITS_PER_WORD
Number of storage units in a word; normally 4.

MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is undefined, the default is UNITS_
PER_WORD. Otherwise, it is the constant value that is the smallest value that
UNITS_PER_WORD can have at run-time.

POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width
of Pmode. If it is not equal to the width of Pmode, you must define POINTERS_
EXTEND_UNSIGNED.

POINTERS_EXTEND_UNSIGNED
A C expression whose value is greater than zero if pointers that need to be
extended from being POINTER_SIZE bits wide to Pmode are to be zero-extended

430 Using and Porting the GNU Compiler Collection (GCC)

and zero if they are to be sign-extended. If the value is less then zero then there
must be an "ptr extend" instruction that extends a pointer from POINTER_SIZE
to Pmode.

You need not define this macro if the POINTER_SIZE is equal to the width of
Pmode.

PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and
which has the specified mode and signedness is to be stored in a register. This
macro is only called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full reg-
ister, define this macro to set m to word_mode if m is an integer mode narrower
than BITS_PER_WORD. In most cases, only integer modes should be widened be-
cause wider-precision floating-point operations are usually more expensive than
their narrower counterparts.

For most machines, the macro definition does not change unsignedp. However,
some machines, have instructions that preferentially handle either signed or
unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
loads from memory and 32-bit add instructions sign-extend the result to 64
bits. On such machines, set unsignedp according to which kind of extension is
more efficient.

Do not define this macro if it would never modify m.

PROMOTE_FUNCTION_ARGS
Define this macro if the promotion described by PROMOTE_MODE should also be
done for outgoing function arguments.

PROMOTE_FUNCTION_RETURN
Define this macro if the promotion described by PROMOTE_MODE should also be
done for the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions
done by PROMOTE_MODE.

PROMOTE_FOR_CALL_ONLY
Define this macro if the promotion described by PROMOTE_MODE should only be
performed for outgoing function arguments or function return values, as speci-
fied by PROMOTE_FUNCTION_ARGS and PROMOTE_FUNCTION_RETURN, respectively.

PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All
stack parameters receive at least this much alignment regardless of data type.
On most machines, this is the same as the size of an integer.

STACK_BOUNDARY
Define this macro if there is a guaranteed alignment for the stack pointer on this
machine. The definition is a C expression for the desired alignment (measured
in bits). This value is used as a default if PREFERRED_STACK_BOUNDARY is not
defined.

Chapter 21: Target Description Macros and Functions 431

PREFERRED_STACK_BOUNDARY
Define this macro if you wish to preserve a certain alignment for the stack
pointer. The definition is a C expression for the desired alignment (measured
in bits). If STACK_BOUNDARY is also defined, this macro must evaluate to a value
equal to or larger than STACK_BOUNDARY.

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified
boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment than
PREFERRED_STACK_BOUNDARY, the stack may be momentarily unaligned while
pushing arguments.

FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits.

MINIMUM_ATOMIC_ALIGNMENT
If defined, the smallest alignment, in bits, that can be given to an object that can
be referenced in one operation, without disturbing any nearby object. Normally,
this is BITS_PER_UNIT, but may be larger on machines that don’t have byte or
half-word store operations.

BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure or union field can require on this ma-
chine, in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure and
union fields only, unless the field alignment has been set by the __attribute__
((aligned (n))) construct.

ADJUST_FIELD_ALIGN (field, computed)
An expression for the alignment of a structure field field if the alignment com-
puted in the usual way is computed. GCC uses this value instead of the value
in BIGGEST_ALIGNMENT or BIGGEST_FIELD_ALIGNMENT, if defined, for structure
fields only.

MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this machine. Use this
macro to limit the alignment which can be specified using the __attribute_
_ ((aligned (n))) construct. If not defined, the default value is BIGGEST_
ALIGNMENT.

DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the static
store. type is the data type, and basic-align is the alignment that the object
would ordinarily have. The value of this macro is used instead of that alignment
to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all
fit in fewer cache lines. Another is to cause character arrays to be word-aligned
so that strcpy calls that copy constants to character arrays can be done inline.

432 Using and Porting the GNU Compiler Collection (GCC)

CONSTANT_ALIGNMENT (constant, basic-align)
If defined, a C expression to compute the alignment given to a constant that
is being placed in memory. constant is the constant and basic-align is the
alignment that the object would ordinarily have. The value of this macro is
used instead of that alignment to align the object.
If this macro is not defined, then basic-align is used.
The typical use of this macro is to increase alignment for string constants to be
word aligned so that strcpy calls that copy constants can be done inline.

LOCAL_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the local
store. type is the data type, and basic-align is the alignment that the object
would ordinarily have. The value of this macro is used instead of that alignment
to align the object.
If this macro is not defined, then basic-align is used.
One use of this macro is to increase alignment of medium-size data to make it
all fit in fewer cache lines.

EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit-field that follows an empty field
such as int : 0;.
Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results
from an empty field.

STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a multiple of. Each
structure or union’s size is rounded up to a multiple of this.
If you do not define this macro, the default is the same as BITS_PER_UNIT.

STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to work if given data
not on the nominal alignment. If instructions will merely go slower in that case,
define this macro as 0.

PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers handle
alignment of bit-fields and the structures that contain them.
The behavior is that the type written for a bit-field (int, short, or other integer
type) imposes an alignment for the entire structure, as if the structure really did
contain an ordinary field of that type. In addition, the bit-field is placed within
the structure so that it would fit within such a field, not crossing a boundary
for it.
Thus, on most machines, a bit-field whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole
structure. (The alignment used may not be four bytes; it is controlled by the
other alignment parameters.)
If the macro is defined, its definition should be a C expression; a nonzero value
for the expression enables this behavior.

Chapter 21: Target Description Macros and Functions 433

Note that if this macro is not defined, or its value is zero, some bit-fields may
cross more than one alignment boundary. The compiler can support such ref-
erences if there are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference
memory.
The other known way of making bit-fields work is to define STRUCTURE_SIZE_
BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be ac-
cessed with fullwords.
Unless the machine has bit-field instructions or you define STRUCTURE_SIZE_
BOUNDARY that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a
nonzero value.
If your aim is to make GCC use the same conventions for laying out bit-fields as
are used by another compiler, here is how to investigate what the other compiler
does. Compile and run this program:

struct foo1
{
char x;
char :0;
char y;

};

struct foo2
{
char x;
int :0;
char y;

};

main ()
{
printf ("Size of foo1 is %d\n",

sizeof (struct foo1));
printf ("Size of foo2 is %d\n",

sizeof (struct foo2));
exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you would get from
PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED
Like PCC BITFIELD TYPE MATTERS except that its effect is limited to
aligning a bit-field within the structure.

MEMBER_TYPE_FORCES_BLK (field)
Return 1 if a structure or array containing field should be accessed using
BLKMODE.
Normally, this is not needed. See the file ‘c4x.h’ for an example of how to
use this macro to prevent a structure having a floating point field from being
accessed in an integer mode.

434 Using and Porting the GNU Compiler Collection (GCC)

ROUND_TYPE_SIZE (type, computed, specified)
Define this macro as an expression for the overall size of a type (given by type
as a tree node) when the size computed in the usual way is computed and the
alignment is specified.
The default is to round computed up to a multiple of specified.

ROUND_TYPE_SIZE_UNIT (type, computed, specified)
Similar to ROUND_TYPE_SIZE, but sizes and alignments are specified in units
(bytes). If you define ROUND_TYPE_SIZE, you must also define this macro and
they must be defined consistently with each other.

ROUND_TYPE_ALIGN (type, computed, specified)
Define this macro as an expression for the alignment of a type (given by type
as a tree node) if the alignment computed in the usual way is computed and
the alignment explicitly specified was specified.
The default is to use specified if it is larger; otherwise, use the smaller of
computed and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode
that should actually be used. All integer machine modes of this size or smaller
can be used for structures and unions with the appropriate sizes. If this macro
is undefined, GET_MODE_BITSIZE (DImode) is assumed.

VECTOR_MODE_SUPPORTED_P(mode)
Define this macro to be nonzero if the port is prepared to handle insns involving
vector mode mode. At the very least, it must have move patterns for this mode.

STACK_SAVEAREA_MODE (save level)
If defined, an expression of type enum machine_mode that specifies the mode of
the save area operand of a save_stack_level named pattern (see Section 20.8
[Standard Names], page 374). save level is one of SAVE_BLOCK, SAVE_FUNCTION,
or SAVE_NONLOCAL and selects which of the three named patterns is having its
mode specified.
You need not define this macro if it always returns Pmode. You would most
commonly define this macro if the save_stack_level patterns need to support
both a 32- and a 64-bit mode.

STACK_SIZE_MODE
If defined, an expression of type enum machine_mode that specifies the mode
of the size increment operand of an allocate_stack named pattern (see Sec-
tion 20.8 [Standard Names], page 374).
You need not define this macro if it always returns word_mode. You would most
commonly define this macro if the allocate_stack pattern needs to support
both a 32- and a 64-bit mode.

CHECK_FLOAT_VALUE (mode, value, overflow)
A C statement to validate the value value (of type double) for mode mode. This
means that you check whether value fits within the possible range of values for
mode mode on this target machine. The mode mode is always a mode of class

Chapter 21: Target Description Macros and Functions 435

MODE_FLOAT. overflow is nonzero if the value is already known to be out of
range.
If value is not valid or if overflow is nonzero, you should set overflow to 1 and
then assign some valid value to value. Allowing an invalid value to go through
the compiler can produce incorrect assembler code which may even cause Unix
assemblers to crash.
This macro need not be defined if there is no work for it to do.

TARGET_FLOAT_FORMAT
A code distinguishing the floating point format of the target machine. There
are five defined values:

IEEE_FLOAT_FORMAT
This code indicates IEEE floating point. It is the default; there is
no need to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT
This code indicates the peculiar format used on the VAX.

IBM_FLOAT_FORMAT
This code indicates the format used on the IBM System/370.

C4X_FLOAT_FORMAT
This code indicates the format used on the TMS320C3x/C4x.

UNKNOWN_FLOAT_FORMAT
This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see Chapter 22
[Config], page 541) to determine whether the target machine has the same for-
mat as the host machine. If any other formats are actually in use on supported
machines, new codes should be defined for them.
The ordering of the component words of floating point values stored in memory
is controlled by FLOAT_WORDS_BIG_ENDIAN for the target machine and HOST_
FLOAT_WORDS_BIG_ENDIAN for the host.

21.6 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
specific features of C and related languages, rather than to fundamental aspects of storage
layout.

INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If
you don’t define this, the default is one word.

MAX_INT_TYPE_SIZE
Maximum number for the size in bits of the type int on the target machine. If
this is undefined, the default is INT_TYPE_SIZE. Otherwise, it is the constant

436 Using and Porting the GNU Compiler Collection (GCC)

value that is the largest value that INT_TYPE_SIZE can have at run-time. This
is used in cpp.

SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If
you don’t define this, the default is half a word. (If this would be less than one
storage unit, it is rounded up to one unit.)

LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If
you don’t define this, the default is one word.

MAX_LONG_TYPE_SIZE
Maximum number for the size in bits of the type long on the target machine. If
this is undefined, the default is LONG_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that LONG_TYPE_SIZE can have at run-time. This
is used in cpp.

LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine.
If you don’t define this, the default is two words. If you want to support GNU
Ada on your machine, the value of this macro must be at least 64.

CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If
you don’t define this, the default is BITS_PER_UNIT.

MAX_CHAR_TYPE_SIZE
Maximum number for the size in bits of the type char on the target machine. If
this is undefined, the default is CHAR_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that CHAR_TYPE_SIZE can have at run-time. This
is used in cpp.

BOOL_TYPE_SIZE
A C expression for the size in bits of the C++ type bool on the target machine.
If you don’t define this, the default is CHAR_TYPE_SIZE.

FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the target machine. If
you don’t define this, the default is one word.

DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the target machine.
If you don’t define this, the default is two words.

LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the target ma-
chine. If you don’t define this, the default is two words.
Maximum number for the size in bits of the type long double on the target ma-
chine. If this is undefined, the default is LONG_DOUBLE_TYPE_SIZE. Otherwise,
it is the constant value that is the largest value that LONG_DOUBLE_TYPE_SIZE
can have at run-time. This is used in cpp.

Chapter 21: Target Description Macros and Functions 437

Define this macro to be 1 if the target machine uses 80-bit floating-point values
with 128-bit size and alignment. This is used in ‘real.c’.

WIDEST_HARDWARE_FP_SIZE
A C expression for the size in bits of the widest floating-point format supported
by the hardware. If you define this macro, you must specify a value less than or
equal to the value of LONG_DOUBLE_TYPE_SIZE. If you do not define this macro,
the value of LONG_DOUBLE_TYPE_SIZE is the default.

DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should
be signed or unsigned by default. The user can always override this default
with the options ‘-fsigned-char’ and ‘-funsigned-char’.

DEFAULT_SHORT_ENUMS
A C expression to determine whether to give an enum type only as many bytes
as it takes to represent the range of possible values of that type. A nonzero
value means to do that; a zero value means all enum types should be allocated
like int.
If you don’t define the macro, the default is 0.

SIZE_TYPE
A C expression for a string describing the name of the data type to use for size
values. The typedef name size_t is defined using the contents of the string.
The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally
int. The string must exactly match one of the data type names defined in the
function init_decl_processing in the file ‘c-decl.c’. You may not omit int
or change the order—that would cause the compiler to crash on startup.
If you don’t define this macro, the default is "long unsigned int".

PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for
the result of subtracting two pointers. The typedef name ptrdiff_t is defined
using the contents of the string. See SIZE_TYPE above for more information.
If you don’t define this macro, the default is "long int".

WCHAR_TYPE
A C expression for a string describing the name of the data type to use for
wide characters. The typedef name wchar_t is defined using the contents of
the string. See SIZE_TYPE above for more information.
If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is
used in cpp, which cannot make use of WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE
Maximum number for the size in bits of the data type for wide characters. If
this is undefined, the default is WCHAR_TYPE_SIZE. Otherwise, it is the constant

438 Using and Porting the GNU Compiler Collection (GCC)

value that is the largest value that WCHAR_TYPE_SIZE can have at run-time. This
is used in cpp.

GCOV_TYPE_SIZE
A C expression for the size in bits of the type used for gcov counters on the
target machine. If you don’t define this, the default is one LONG_TYPE_SIZE in
case it is greater or equal to 64-bit and LONG_LONG_TYPE_SIZE otherwise. You
may want to re-define the type to ensure atomicity for counters in multithreaded
programs.

WINT_TYPE
A C expression for a string describing the name of the data type to use for
wide characters passed to printf and returned from getwc. The typedef name
wint_t is defined using the contents of the string. See SIZE_TYPE above for
more information.
If you don’t define this macro, the default is "unsigned int".

INTMAX_TYPE
A C expression for a string describing the name of the data type that can
represent any value of any standard or extended signed integer type. The
typedef name intmax_t is defined using the contents of the string. See SIZE_
TYPE above for more information.
If you don’t define this macro, the default is the first of "int", "long int", or
"long long int" that has as much precision as long long int.

UINTMAX_TYPE
A C expression for a string describing the name of the data type that can
represent any value of any standard or extended unsigned integer type. The
typedef name uintmax_t is defined using the contents of the string. See SIZE_
TYPE above for more information.
If you don’t define this macro, the default is the first of "unsigned int", "long
unsigned int", or "long long unsigned int" that has as much precision as
long long unsigned int.

OBJC_SELECTORS_WITHOUT_LABELS
Define this macro if the compiler can group all the selectors together into a
vector and use just one label at the beginning of the vector. Otherwise, the
compiler must give each selector its own assembler label.
On certain machines, it is important to have a separate label for each selector
because this enables the linker to eliminate duplicate selectors.

TARGET_PTRMEMFUNC_VBIT_LOCATION
The C++ compiler represents a pointer-to-member-function with a struct that
looks like:

struct {
union {

void (*fn)();
ptrdiff_t vtable_index;

};

Chapter 21: Target Description Macros and Functions 439

ptrdiff_t delta;
};

The C++ compiler must use one bit to indicate whether the function that will be
called through a pointer-to-member-function is virtual. Normally, we assume
that the low-order bit of a function pointer must always be zero. Then, by
ensuring that the vtable index is odd, we can distinguish which variant of the
union is in use. But, on some platforms function pointers can be odd, and so
this doesn’t work. In that case, we use the low-order bit of the delta field, and
shift the remainder of the delta field to the left.
GCC will automatically make the right selection about where to store this bit
using the FUNCTION_BOUNDARY setting for your platform. However, some plat-
forms such as ARM/Thumb have FUNCTION_BOUNDARY set such that functions
always start at even addresses, but the lowest bit of pointers to functions indi-
cate whether the function at that address is in ARM or Thumb mode. If this
is the case of your architecture, you should define this macro to ptrmemfunc_
vbit_in_delta.
In general, you should not have to define this macro. On architectures in which
function addresses are always even, according to FUNCTION_BOUNDARY, GCC
will automatically define this macro to ptrmemfunc_vbit_in_pfn.

21.7 Target Character Escape Sequences

By default, GCC assumes that the C character escape sequences take on their ASCII
values for the target. If this is not correct, you must explicitly define all of the macros
below.

TARGET_BELL
A C constant expression for the integer value for escape sequence ‘\a’.

TARGET_ESC
A C constant expression for the integer value of the target escape character.
As an extension, GCC evaluates the escape sequences ‘\e’ and ‘\E’ to this.

TARGET_BS
TARGET_TAB
TARGET_NEWLINE

C constant expressions for the integer values for escape sequences ‘\b’, ‘\t’ and
‘\n’.

TARGET_VT
TARGET_FF
TARGET_CR

C constant expressions for the integer values for escape sequences ‘\v’, ‘\f’ and
‘\r’.

21.8 Register Usage

This section explains how to describe what registers the target machine has, and how
(in general) they can be used.

440 Using and Porting the GNU Compiler Collection (GCC)

The description of which registers a specific instruction can use is done with register
classes; see Section 21.9 [Register Classes], page 445. For information on using registers to
access a stack frame, see Section 21.10.4 [Frame Registers], page 457. For passing values
in registers, see Section 21.10.7 [Register Arguments], page 462. For returning values in
registers, see Section 21.10.8 [Scalar Return], page 466.

21.8.1 Basic Characteristics of Registers

Registers have various characteristics.

FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers
0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number
really is assigned the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS
An initializer that says which registers are used for fixed purposes all throughout
the compiled code and are therefore not available for general allocation. These
would include the stack pointer, the frame pointer (except on machines where
that can be used as a general register when no frame pointer is needed), the
program counter on machines where that is considered one of the addressable
registers, and any other numbered register with a standard use.
This information is expressed as a sequence of numbers, separated by commas
and surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.
The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of
the macro CONDITIONAL_REGISTER_USAGE, or by the user with the command
options ‘-ffixed-reg ’, ‘-fcall-used-reg ’ and ‘-fcall-saved-reg ’.

CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general)
by function calls as well as for fixed registers. This macro therefore identifies
the registers that are not available for general allocation of values that must
live across function calls.
If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it
on function entry and restores it on function exit, if the register is used within
the function.

CALL_REALLY_USED_REGISTERS
Like CALL_USED_REGISTERS except this macro doesn’t require that the entire set
of FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset
of FIXED_REGISTERS). This macro is optional. If not specified, it defaults to
the value of CALL_USED_REGISTERS.

HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)
A C expression that is non-zero if it is not permissible to store a value of
mode mode in hard register number regno across a call without some part of
it being clobbered. For most machines this macro need not be defined. It is

Chapter 21: Target Description Macros and Functions 441

only required for machines that do not preserve the entire contents of a register
across a call.

CONDITIONAL_REGISTER_USAGE
Zero or more C statements that may conditionally modify five variables
fixed_regs, call_used_regs, global_regs, (these three are of type
char []), reg_names (of type const char * []) and reg_class_contents
(of type HARD_REG_SET). Before the macro is called fixed_regs,
call_used_regs reg_class_contents and reg_names have been initialized
from FIXED_REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS and
REGISTER_NAMES, respectively, global_regs has been cleared, and any
‘-ffixed-reg ’, ‘-fcall-used-reg ’ and ‘-fcall-saved-reg ’ command options
have been applied.
This is necessary in case the fixed or call-clobbered registers depend on target
flags.
You need not define this macro if it has no work to do.
If the usage of an entire class of registers depends on the target flags, you may
indicate this to GCC by using this macro to modify fixed_regs and call_
used_regs to 1 for each of the registers in the classes which should not be used
by GCC. Also define the macro REG_CLASS_FROM_LETTER to return NO_REGS if
it is called with a letter for a class that shouldn’t be used.
(However, if this class is not included in GENERAL_REGS and all of the insn pat-
terns whose constraints permit this class are controlled by target switches, then
GCC will automatically avoid using these registers when the target switches
are opposed to them.)

NON_SAVING_SETJMP
If this macro is defined and has a nonzero value, it means that setjmp and
related functions fail to save the registers, or that longjmp fails to restore them.
To compensate, the compiler avoids putting variables in registers in functions
that use setjmp.

INCOMING_REGNO (out)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the
register number out as seen by the calling function. Return out if register
number out is not an outbound register.

OUTGOING_REGNO (in)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the
register number in as seen by the called function. Return in if register number
in is not an inbound register.

LOCAL_REGNO (regno)
Define this macro if the target machine has register windows. This C expression
returns true if the register is call-saved but is in the register window. Unlike
most call-saved registers, such registers need not be explicitly restored on func-
tion exit or during non-local gotos.

442 Using and Porting the GNU Compiler Collection (GCC)

21.8.2 Order of Allocation of Registers

Registers are allocated in order.

REG_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GCC should prefer to use them (from most
preferred to least).
If this macro is not defined, registers are used lowest numbered first (all else
being equal).
One use of this macro is on machines where the highest numbered registers
must always be saved and the save-multiple-registers instruction supports only
sequences of consecutive registers. On such machines, define REG_ALLOC_ORDER
to be an initializer that lists the highest numbered allocable register first.

ORDER_REGS_FOR_LOCAL_ALLOC
A C statement (sans semicolon) to choose the order in which to allocate hard
registers for pseudo-registers local to a basic block.
Store the desired register order in the array reg_alloc_order. Element 0
should be the register to allocate first; element 1, the next register; and so on.
The macro body should not assume anything about the contents of reg_alloc_
order before execution of the macro.
On most machines, it is not necessary to define this macro.

21.8.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

HARD_REGNO_NREGS (regno, mode)
A C expression for the number of consecutive hard registers, starting at register
number regno, required to hold a value of mode mode.
On a machine where all registers are exactly one word, a suitable definition of
this macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)

HARD_REGNO_MODE_OK (regno, mode)
A C expression that is nonzero if it is permissible to store a value of mode mode
in hard register number regno (or in several registers starting with that one).
For a machine where all registers are equivalent, a suitable definition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

You need not include code to check for the numbers of fixed registers, because
the allocation mechanism considers them to be always occupied.

Chapter 21: Target Description Macros and Functions 443

On some machines, double-precision values must be kept in even/odd register
pairs. You can implement that by defining this macro to reject odd register
numbers for such modes.

The minimum requirement for a mode to be OK in a register is that the
‘movmode’ instruction pattern support moves between the register and other
hard register in the same class and that moving a value into the register and
back out not alter it.

Since the same instruction used to move word_mode will work for all narrower
integer modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to
distinguish between these modes, provided you define patterns ‘movhi’, etc.,
to take advantage of this. This is useful because of the interaction between
HARD_REGNO_MODE_OK and MODES_TIEABLE_P; it is very desirable for all integer
modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people
assume that floating point machine modes are allowed only in floating point
registers. This is not true. Any registers that can hold integers can safely hold
a floating point machine mode, whether or not floating arithmetic can be done
on it in those registers. Integer move instructions can be used to move the
values.

On some machines, though, the converse is true: fixed-point machine modes
may not go in floating registers. This is true if the floating registers normalize
any value stored in them, because storing a non-floating value there would
garble it. In this case, HARD_REGNO_MODE_OK should reject fixed-point machine
modes in floating registers. But if the floating registers do not automatically
normalize, if you can store any bit pattern in one and retrieve it unchanged
without a trap, then any machine mode may go in a floating register, so you
can define this macro to say so.

The primary significance of special floating registers is rather that they are the
registers acceptable in floating point arithmetic instructions. However, this is
of no concern to HARD_REGNO_MODE_OK. You handle it by writing the proper
constraints for those instructions.

On some machines, the floating registers are especially slow to access, so that
it is better to store a value in a stack frame than in such a register if floating
point arithmetic is not being done. As long as the floating registers are not
in class GENERAL_REGS, they will not be used unless some pattern’s constraint
asks for one.

MODES_TIEABLE_P (mode1, mode2)
A C expression that is nonzero if a value of mode mode1 is accessible in mode
mode2 without copying.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2)
are always the same for any r, then MODES_TIEABLE_P (mode1, mode2)
should be nonzero. If they differ for any r, you should define this macro to
return zero unless some other mechanism ensures the accessibility of the value
in a narrower mode.

444 Using and Porting the GNU Compiler Collection (GCC)

You should define this macro to return nonzero in as many cases as possible
since doing so will allow GCC to perform better register allocation.

AVOID_CCMODE_COPIES
Define this macro if the compiler should avoid copies to/from CCmode registers.
You should only define this macro if support for copying to/from CCmode is
incomplete.

SUBREG_REGNO_OFFSET
Define this macro if the compiler needs to handle subregs in a non-standard
way. The macro returns the correct regno offset for mode YMODE given a subreg
of type XMODE. This macro takes 4 parameters:

XREGNO A regno of an inner hard subreg reg (or what will become one).

XMODE The mode of xregno.

OFFSET The byte offset.

YMODE The mode of a top level SUBREG (or what may become one).

The default function can be found in ‘rtlanal.c’, function subreg_regno_
offset. Normally this does not need to be defined.

21.8.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently
if it does not make its own register window. Often this means it is required to receive its
arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term “leaf function” to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily “leaf functions”.

GCC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function.
The following macros accomplish this.

LEAF_REGISTERS
Name of a char vector, indexed by hard register number, which contains 1 for
a register that is allowable in a candidate for leaf function treatment.
If leaf function treatment involves renumbering the registers, then the registers
marked here should be the ones before renumbering—those that GCC would
ordinarily allocate. The registers which will actually be used in the assembler
code, after renumbering, should not be marked with 1 in this vector.
Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions.

LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be
renumbered, when a function is treated as a leaf function.

Chapter 21: Target Description Macros and Functions 445

If regno is a register number which should not appear in a leaf function before
renumbering, then the expression should yield −1, which will cause the compiler
to abort.
Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions, and registers need to be renumbered to do this.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE
must treat leaf functions specially. They can test the C variable current_function_is_
leaf which is nonzero for leaf functions. current_function_is_leaf is set prior to local
register allocation and is valid for the remaining compiler passes. They can also test the
C variable current_function_uses_only_leaf_regs which is nonzero for leaf functions
which only use leaf registers. current_function_uses_only_leaf_regs is valid after
reload and is only useful if LEAF_REGISTERS is defined.

21.8.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a
stack, as in the 80387 coprocessor for the 80386. Stack registers are normally written by
pushing onto the stack, and are numbered relative to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be
consecutively numbered.

STACK_REGS
Define this if the machine has any stack-like registers.

FIRST_STACK_REG
The number of the first stack-like register. This one is the top of the stack.

LAST_STACK_REG
The number of the last stack-like register. This one is the bottom of the stack.

21.9 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in
some instructions. These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS
is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

446 Using and Porting the GNU Compiler Collection (GCC)

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL_REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond
to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a floating point (coprocessor)
register or a general register for a certain operand, you should define a class FLOAT_OR_
GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each fixed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass
consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

enum reg_class
An enumeral type that must be defined with all the register class names as
enumeral values. NO_REGS must be first. ALL_REGS must be the last register
class, followed by one more enumeral value, LIM_REG_CLASSES, which is not a
register class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name
to type int. The number serves as an index in many of the tables described
below.

N_REG_CLASSES
The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants.
These names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as integers which
are bit masks. The nth integer specifies the contents of class n. The way the
integer mask is interpreted is that register r is in the class if mask & (1 << r)
is 1.

Chapter 21: Target Description Macros and Functions 447

When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings containing
several integers. Each sub-initializer must be suitable as an initializer for the
type HARD_REG_SET which is defined in ‘hard-reg-set.h’. In this situation,
the first integer in each sub-initializer corresponds to registers 0 through 31,
the second integer to registers 32 through 63, and so on.

REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno.
In general there is more than one such class; choose a class which is minimal,
meaning that no smaller class also contains the register.

BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid base register
must belong. A base register is one used in an address which is the register
value plus a displacement.

INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid index register
must belong. An index register is one used in an address where its value is either
multiplied by a scale factor or added to another register (as well as added to a
displacement).

REG_CLASS_FROM_LETTER (char)
A C expression which defines the machine-dependent operand constraint letters
for register classes. If char is such a letter, the value should be the register class
corresponding to it. Otherwise, the value should be NO_REGS. The register letter
‘r’, corresponding to class GENERAL_REGS, will not be passed to this macro; you
do not need to handle it.

REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable for use as a
base register in operand addresses. It may be either a suitable hard register or
a pseudo register that has been allocated such a hard register.

REGNO_MODE_OK_FOR_BASE_P (num, mode)
A C expression that is just like REGNO_OK_FOR_BASE_P, except that that ex-
pression may examine the mode of the memory reference in mode. You should
define this macro if the mode of the memory reference affects whether a register
may be used as a base register. If you define this macro, the compiler will use
it instead of REGNO_OK_FOR_BASE_P.

REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an
index register in operand addresses. It may be either a suitable hard register
or a pseudo register that has been allocated such a hard register.
The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,

448 Using and Porting the GNU Compiler Collection (GCC)

looking for one that is valid, and will reload one or both registers only if neither
labeling works.

PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use
when it is necessary to copy value x into a register in class class. The value
is a register class; perhaps class, or perhaps another, smaller class. On many
machines, the following definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example,
on the 68000, when x is an integer constant that is in range for a ‘moveq’
instruction, the value of this macro is always DATA_REGS as long as class includes
the data registers. Requiring a data register guarantees that a ‘moveq’ will be
used.

If x is a const_double, by returning NO_REGS you can force x into a memory
constant. This is useful on certain machines where immediate floating values
cannot be loaded into certain kinds of registers.

PREFERRED_OUTPUT_RELOAD_CLASS (x, class)
Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads.
If you don’t define this macro, the default is to use class, unchanged.

LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register class to use
when it is necessary to be able to hold a value of mode mode in a reload register
for which class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are
certain modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require
the macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (class, mode, x)
SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

Many machines have some registers that cannot be copied directly to or from
memory or even from other types of registers. An example is the ‘MQ’ register,
which on most machines, can only be copied to or from general registers, but
not memory. Some machines allow copying all registers to and from memory,
but require a scratch register for stores to some memory locations (e.g., those
with symbolic address on the RT, and those with certain symbolic address on
the Sparc when compiling PIC). In some cases, both an intermediate and a
scratch register are required.

You should define these macros to indicate to the reload phase that it may
need to allocate at least one register for a reload in addition to the register to
contain the data. Specifically, if copying x to a register class in mode requires
an intermediate register, you should define SECONDARY_INPUT_RELOAD_CLASS to

Chapter 21: Target Description Macros and Functions 449

return the largest register class all of whose registers can be used as intermediate
registers or scratch registers.
If copying a register class in mode to x requires an intermediate or scratch reg-
ister, SECONDARY_OUTPUT_RELOAD_CLASS should be defined to return the largest
register class required. If the requirements for input and output reloads are the
same, the macro SECONDARY_RELOAD_CLASS should be used instead of defining
both macros identically.
The values returned by these macros are often GENERAL_REGS. Return NO_REGS
if no spare register is needed; i.e., if x can be directly copied to or from a register
of class in mode without requiring a scratch register. Do not define this macro
if it would always return NO_REGS.
If a scratch register is required (either with or without an intermediate register),
you should define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see
Section 20.8 [Standard Names], page 374. These patterns, which will normally
be implemented with a define_expand, should be similar to the ‘movm’ pat-
terns, except that operand 2 is the scratch register.
Define constraints for the reload register and scratch register that contain a
single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros
is used for the class of the scratch register. Otherwise, two additional reload
registers are required. Their classes are obtained from the constraints in the
insn pattern.
x might be a pseudo-register or a subreg of a pseudo-register, which could
either be in a hard register or in memory. Use true_regnum to find out; it will
return −1 if the pseudo is in memory and the hard register number if it is in a
register.
These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a
stack location must be used to perform the copy and the movm pattern should
use memory as a intermediate storage. This case often occurs between floating-
point and general registers.

SECONDARY_MEMORY_NEEDED (class1, class2, m)
Certain machines have the property that some registers cannot be copied to
some other registers without using memory. Define this macro on those ma-
chines to be a C expression that is non-zero if objects of mode m in registers
of class1 can only be copied to registers of class class2 by storing a register of
class1 into memory and loading that memory location into a register of class2.
Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates
a stack slot for a memory location needed for register copies. If this macro is
defined, the compiler instead uses the memory location defined by this macro.
Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED.

450 Using and Porting the GNU Compiler Collection (GCC)

SECONDARY_MEMORY_NEEDED_MODE (mode)
When the compiler needs a secondary memory location to copy between two
registers of mode mode, it normally allocates sufficient memory to hold a quan-
tity of BITS_PER_WORD bits and performs the store and load operations in a
mode that many bits wide and whose class is the same as that of mode.
This is right thing to do on most machines because it ensures that all bits of the
register are copied and prevents accesses to the registers in a narrower mode,
which some machines prohibit for floating-point registers.
However, this default behavior is not correct on some machines, such as the
DEC Alpha, that store short integers in floating-point registers differently than
in integer registers. On those machines, the default widening will not work
correctly and you must define this macro to suppress that widening in some
cases. See the file ‘alpha.h’ for details.
Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if
widening mode to a mode that is BITS_PER_WORD bits wide is correct for your
machine.

SMALL_REGISTER_CLASSES
On some machines, it is risky to let hard registers live across arbitrary insns.
Typically, these machines have instructions that require values to be in specific
registers (like an accumulator), and reload will fail if the required hard register
is used for another purpose across such an insn.
Define SMALL_REGISTER_CLASSES to be an expression with a non-zero value on
these machines. When this macro has a non-zero value, the compiler will try
to minimize the lifetime of hard registers.
It is always safe to define this macro with a non-zero value, but if you un-
necessarily define it, you will reduce the amount of optimizations that can be
performed in some cases. If you do not define this macro with a non-zero value
when it is required, the compiler will run out of spill registers and print a fatal
error message. For most machines, you should not define this macro at all.

CLASS_LIKELY_SPILLED_P (class)
A C expression whose value is nonzero if pseudos that have been assigned to
registers of class class would likely be spilled because registers of class are needed
for spill registers.
The default value of this macro returns 1 if class has exactly one register and
zero otherwise. On most machines, this default should be used. Only define this
macro to some other expression if pseudos allocated by ‘local-alloc.c’ end
up in memory because their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only be allocated
by ‘global.c’, which knows how to reallocate the pseudo to another register.
If there would not be another register available for reallocation, you should not
change the definition of this macro since the only effect of such a definition
would be to slow down register allocation.

CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of class class
needed to hold a value of mode mode.

Chapter 21: Target Description Macros and Functions 451

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of
the macro CLASS_MAX_NREGS (class, mode) should be the maximum value of
HARD_REGNO_NREGS (regno, mode) for all regno values in the class class.
This macro helps control the handling of multiple-word values in the reload
pass.

CLASS_CANNOT_CHANGE_MODE
If defined, a C expression for a class that contains registers for which the com-
piler may not change modes arbitrarily.

CLASS_CANNOT_CHANGE_MODE_P(from, to)
A C expression that is true if, for a register in CLASS_CANNOT_CHANGE_MODE,
the requested mode punning is illegal.
For the example, loading 32-bit integer or floating-point objects into floating-
point registers on the Alpha extends them to 64-bits. Therefore loading a 64-bit
object and then storing it as a 32-bit object does not store the low-order 32-bits,
as would be the case for a normal register. Therefore, ‘alpha.h’ defines CLASS_
CANNOT_CHANGE_MODE as FLOAT_REGS and CLASS_CANNOT_CHANGE_MODE_P re-
stricts mode changes to same-size modes.
Compare this to IA-64, which extends floating-point values to 82-bits, and stores
64-bit integers in a different format than 64-bit doubles. Therefore CLASS_
CANNOT_CHANGE_MODE_P is always true.

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
(‘I’, ‘J’, ‘K’, . . . ‘P’) that specify particular ranges of integer values. If c is
one of those letters, the expression should check that value, an integer, is in
the appropriate range and return 1 if so, 0 otherwise. If c is not one of those
letters, the value should be 0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
that specify particular ranges of const_double values (‘G’ or ‘H’).
If c is one of those letters, the expression should check that value, an RTX of
code const_double, is in the appropriate range and return 1 if so, 0 otherwise.
If c is not one of those letters, the value should be 0 regardless of value.
const_double is used for all floating-point constants and for DImode fixed-point
constants. A given letter can accept either or both kinds of values. It can use
GET_MODE to distinguish between these kinds.

EXTRA_CONSTRAINT (value, c)
A C expression that defines the optional machine-dependent constraint letters
that can be used to segregate specific types of operands, usually memory refer-
ences, for the target machine. Any letter that is not elsewhere defined and not
matched by REG_CLASS_FROM_LETTER may be used. Normally this macro will
not be defined.

452 Using and Porting the GNU Compiler Collection (GCC)

If it is required for a particular target machine, it should return 1 if value
corresponds to the operand type represented by the constraint letter c. If c is
not defined as an extra constraint, the value returned should be 0 regardless of
value.
For example, on the ROMP, load instructions cannot have their output in r0
if the memory reference contains a symbolic address. Constraint letter ‘Q’ is
defined as representing a memory address that does not contain a symbolic
address. An alternative is specified with a ‘Q’ constraint on the input and ‘r’
on the output. The next alternative specifies ‘m’ on the input and a register
class that does not include r0 on the output.

21.10 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

21.10.1 Basic Stack Layout

Here is the basic stack layout.

STACK_GROWS_DOWNWARD
Define this macro if pushing a word onto the stack moves the stack pointer to
a smaller address.
When we say, “define this macro if . . . ,” it means that the compiler checks this
macro only with #ifdef so the precise definition used does not matter.

STACK_PUSH_CODE
This macro defines the operation used when something is pushed on the stack.
In RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp)))
...)

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is
correct depends on the stack direction and on whether the stack pointer points
to the last item on the stack or whether it points to the space for the next item
on the stack.
The default is PRE_DEC when STACK_GROWS_DOWNWARD is defined, which is almost
always right, and PRE_INC otherwise, which is often wrong.

FRAME_GROWS_DOWNWARD
Define this macro if the addresses of local variable slots are at negative offsets
from the frame pointer.

ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy decreasing ad-
dresses on the stack.

STARTING_FRAME_OFFSET
Offset from the frame pointer to the first local variable slot to be allocated.
If FRAME_GROWS_DOWNWARD, find the next slot’s offset by subtracting the first
slot’s length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding
the length of the first slot to the value STARTING_FRAME_OFFSET.

Chapter 21: Target Description Macros and Functions 453

STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at which outgoing
arguments are placed. If not specified, the default value of zero is used. This
is the proper value for most machines.
If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location
at which outgoing arguments are placed.

FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s address. On
some machines it may depend on the data type of the function.
If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argu-
ment’s address.

STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically allocated on the
stack, e.g., by alloca.
The default value for this macro is STACK_POINTER_OFFSET plus the length
of the outgoing arguments. The default is correct for most machines. See
‘function.c’ for details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller’s frame is stored. Assume that frameaddr is an
RTL expression for the address of the stack frame itself.
If you don’t define this macro, the default is to return the value of frameaddr—
that is, the stack frame address is also the address of the stack word that points
to the previous frame.

SETUP_FRAME_ADDRESSES
If defined, a C expression that produces the machine-specific code to setup the
stack so that arbitrary frames can be accessed. For example, on the Sparc, we
must flush all of the register windows to the stack before we can access arbitrary
stack frames. You will seldom need to define this macro.

BUILTIN_SETJMP_FRAME_VALUE
If defined, a C expression that contains an rtx that is used to store the address of
the current frame into the built in setjmp buffer. The default value, virtual_
stack_vars_rtx, is correct for most machines. One reason you may need to
define this macro is if hard_frame_pointer_rtx is the appropriate value on
your machine.

RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return ad-
dress for the frame count steps up from the current frame, after the prologue.
frameaddr is the frame pointer of the count frame, or the frame pointer of the
count − 1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.
The value of the expression must always be the correct address when count is
zero, but may be NULL_RTX if there is not way to determine the return address
of other frames.

454 Using and Porting the GNU Compiler Collection (GCC)

RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is accessed from the
frame pointer of the previous stack frame.

INCOMING_RETURN_ADDR_RTX
A C expression whose value is RTL representing the location of the incoming
return address at the beginning of any function, before the prologue. This RTL
is either a REG, indicating that the return value is saved in ‘REG’, or a MEM
representing a location in the stack.
You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.
If this RTL is a REG, you should also define DWARF_FRAME_RETURN_COLUMN to
DWARF_FRAME_REGNUM (REGNO).

INCOMING_FRAME_SP_OFFSET
A C expression whose value is an integer giving the offset, in bytes, from the
value of the stack pointer register to the top of the stack frame at the beginning
of any function, before the prologue. The top of the frame is defined to be the
value of the stack pointer in the previous frame, just before the call instruction.
You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

ARG_POINTER_CFA_OFFSET (fundecl)
A C expression whose value is an integer giving the offset, in bytes, from the
argument pointer to the canonical frame address (cfa). The final value should
coincide with that calculated by INCOMING_FRAME_SP_OFFSET. Which is unfor-
tunately not usable during virtual register instantiation.
The default value for this macro is FIRST_PARM_OFFSET (fundecl), which is
correct for most machines; in general, the arguments are found immediately
before the stack frame. Note that this is not the case on some targets that save
registers into the caller’s frame, such as SPARC and rs6000, and so such targets
need to define this macro.
You only need to define this macro if the default is incorrect, and you want to
support call frame debugging information like that provided by DWARF 2.

SMALL_STACK
Define this macro if the stack size for the target is very small. This has the
effect of disabling gcc’s built-in ‘alloca’, though ‘__builtin_alloca’ is not
affected.

21.10.2 Exception Handling Support

EH_RETURN_DATA_REGNO (N)
A C expression whose value is the Nth register number used for data by excep-
tion handlers, or INVALID_REGNUM if fewer than N registers are usable.
The exception handling library routines communicate with the exception han-
dlers via a set of agreed upon registers. Ideally these registers should be call-
clobbered; it is possible to use call-saved registers, but may negatively impact

Chapter 21: Target Description Macros and Functions 455

code size. The target must support at least 2 data registers, but should define
4 if there are enough free registers.
You must define this macro if you want to support call frame exception handling
like that provided by DWARF 2.

EH_RETURN_STACKADJ_RTX
A C expression whose value is RTL representing a location in which to store a
stack adjustment to be applied before function return. This is used to unwind
the stack to an exception handler’s call frame. It will be assigned zero on code
paths that return normally.
Typically this is a call-clobbered hard register that is otherwise untouched by
the epilogue, but could also be a stack slot.
You must define this macro if you want to support call frame exception handling
like that provided by DWARF 2.

EH_RETURN_HANDLER_RTX
A C expression whose value is RTL representing a location in which to store
the address of an exception handler to which we should return. It will not be
assigned on code paths that return normally.
Typically this is the location in the call frame at which the normal return
address is stored. For targets that return by popping an address off the stack,
this might be a memory address just below the target call frame rather than
inside the current call frame. EH_RETURN_STACKADJ_RTX will have already been
assigned, so it may be used to calculate the location of the target call frame.
Some targets have more complex requirements than storing to an address cal-
culable during initial code generation. In that case the eh_return instruction
pattern should be used instead.
If you want to support call frame exception handling, you must define either
this macro or the eh_return instruction pattern.

ASM_PREFERRED_EH_DATA_FORMAT(code, global)
This macro chooses the encoding of pointers embedded in the exception han-
dling sections. If at all possible, this should be defined such that the exception
handling section will not require dynamic relocations, and so may be read-only.
code is 0 for data, 1 for code labels, 2 for function pointers. global is true if
the symbol may be affected by dynamic relocations. The macro should return
a combination of the DW_EH_PE_* defines as found in ‘dwarf2.h’.
If this macro is not defined, pointers will not be encoded but represented di-
rectly.

ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(file, encoding, size, addr, done)
This macro allows the target to emit whatever special magic is required to
represent the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic
code takes care of pc-relative and indirect encodings; this must be defined if
the target uses text-relative or data-relative encodings.
This is a C statement that branches to done if the format was handled. encoding
is the format chosen, size is the number of bytes that the format occupies, addr
is the SYMBOL_REF to be emitted.

456 Using and Porting the GNU Compiler Collection (GCC)

MD_FALLBACK_FRAME_STATE_FOR(context, fs, success)
This macro allows the target to add cpu and operating system specific code
to the call-frame unwinder for use when there is no unwind data available.
The most common reason to implement this macro is to unwind through signal
frames.
This macro is called from uw_frame_state_for in ‘unwind-dw2.c’ and
‘unwind-ia64.c’. context is an _Unwind_Context; fs is an _Unwind_
FrameState. Examine context->ra for the address of the code being executed
and context->cfa for the stack pointer value. If the frame can be decoded,
the register save addresses should be updated in fs and the macro should
branch to success. If the frame cannot be decoded, the macro should do
nothing.

21.10.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the
‘-fstack-check’ is specified, in one of three ways:
1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that

you have arranged for stack checking to be done at appropriate places in the configu-
ration files, e.g., in TARGET_ASM_FUNCTION_PROLOGUE. GCC will do not other special
processing.

2. If STACK_CHECK_BUILTIN is zero and you defined a named pattern called check_stack
in your ‘md’ file, GCC will call that pattern with one argument which is the address to
compare the stack value against. You must arrange for this pattern to report an error
if the stack pointer is out of range.

3. If neither of the above are true, GCC will generate code to periodically “probe” the
stack pointer using the values of the macros defined below.

Normally, you will use the default values of these macros, so GCC will use the third
approach.

STACK_CHECK_BUILTIN
A nonzero value if stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if stack checking is require
by the ABI of your machine or if you would like to have to stack checking in
some more efficient way than GCC’s portable approach. The default value of
this macro is zero.

STACK_CHECK_PROBE_INTERVAL
An integer representing the interval at which GCC must generate stack probe
instructions. You will normally define this macro to be no larger than the size
of the “guard pages” at the end of a stack area. The default value of 4096 is
suitable for most systems.

STACK_CHECK_PROBE_LOAD
A integer which is nonzero if GCC should perform the stack probe as a load
instruction and zero if GCC should use a store instruction. The default is zero,
which is the most efficient choice on most systems.

Chapter 21: Target Description Macros and Functions 457

STACK_CHECK_PROTECT
The number of bytes of stack needed to recover from a stack overflow, for
languages where such a recovery is supported. The default value of 75 words
should be adequate for most machines.

STACK_CHECK_MAX_FRAME_SIZE
The maximum size of a stack frame, in bytes. GCC will generate probe in-
structions in non-leaf functions to ensure at least this many bytes of stack are
available. If a stack frame is larger than this size, stack checking will not be
reliable and GCC will issue a warning. The default is chosen so that GCC only
generates one instruction on most systems. You should normally not change
the default value of this macro.

STACK_CHECK_FIXED_FRAME_SIZE
GCC uses this value to generate the above warning message. It represents the
amount of fixed frame used by a function, not including space for any callee-
saved registers, temporaries and user variables. You need only specify an upper
bound for this amount and will normally use the default of four words.

STACK_CHECK_MAX_VAR_SIZE
The maximum size, in bytes, of an object that GCC will place in the fixed area
of the stack frame when the user specifies ‘-fstack-check’. GCC computed
the default from the values of the above macros and you will normally not need
to override that default.

21.10.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a fixed
register according to FIXED_REGISTERS. On most machines, the hardware de-
termines which register this is.

FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access auto-
matic variables in the stack frame. On some machines, the hardware determines
which register this is. On other machines, you can choose any register you wish
for this purpose.

HARD_FRAME_POINTER_REGNUM
On some machines the offset between the frame pointer and starting offset of the
automatic variables is not known until after register allocation has been done
(for example, because the saved registers are between these two locations). On
those machines, define FRAME_POINTER_REGNUM the number of a special, fixed
register to be used internally until the offset is known, and define HARD_FRAME_
POINTER_REGNUM to be the actual hard register number used for the frame
pointer.
You should define this macro only in the very rare circumstances when it is not
possible to calculate the offset between the frame pointer and the automatic

458 Using and Porting the GNU Compiler Collection (GCC)

variables until after register allocation has been completed. When this macro
is defined, you must also indicate in your definition of ELIMINABLE_REGS how
to eliminate FRAME_POINTER_REGNUM into either HARD_FRAME_POINTER_REGNUM
or STACK_POINTER_REGNUM.
Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to access the
function’s argument list. On some machines, this is the same as the frame
pointer register. On some machines, the hardware determines which register
this is. On other machines, you can choose any register you wish for this
purpose. If this is not the same register as the frame pointer register, then you
must mark it as a fixed register according to FIXED_REGISTERS, or arrange to
be able to eliminate it (see Section 21.10.5 [Elimination], page 459).

RETURN_ADDRESS_POINTER_REGNUM
The register number of the return address pointer register, which is used to
access the current function’s return address from the stack. On some machines,
the return address is not at a fixed offset from the frame pointer or stack pointer
or argument pointer. This register can be defined to point to the return address
on the stack, and then be converted by ELIMINABLE_REGS into either the frame
pointer or stack pointer.
Do not define this macro unless there is no other way to get the return address
from the stack.

STATIC_CHAIN_REGNUM
STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain pointer. If reg-
ister windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the call-
ing function is STATIC_CHAIN_REGNUM. If these registers are the same, STATIC_
CHAIN_INCOMING_REGNUM need not be defined.
The static chain register need not be a fixed register.
If the static chain is passed in memory, these macros should not be defined;
instead, the next two macros should be defined.

STATIC_CHAIN
STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem
expressions that denote where they are stored. STATIC_CHAIN and STATIC_
CHAIN_INCOMING give the locations as seen by the calling and called functions,
respectively. Often the former will be at an offset from the stack pointer and
the latter at an offset from the frame pointer.
The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_
rtx will have been initialized prior to the use of these macros and should be
used to refer to those items.
If the static chain is passed in a register, the two previous macros should be
defined instead.

Chapter 21: Target Description Macros and Functions 459

21.10.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

FRAME_POINTER_REQUIRED
A C expression which is nonzero if a function must have and use a frame pointer.
This expression is evaluated in the reload pass. If its value is nonzero the
function will have a frame pointer.
The expression can in principle examine the current function and decide ac-
cording to the facts, but on most machines the constant 0 or the constant 1
suffices. Use 0 when the machine allows code to be generated with no frame
pointer, and doing so saves some time or space. Use 1 when there is no possible
advantage to avoiding a frame pointer.
In certain cases, the compiler does not know how to produce valid code without
a frame pointer. The compiler recognizes those cases and automatically gives
the function a frame pointer regardless of what FRAME_POINTER_REQUIRED says.
You don’t need to worry about them.
In a function that does not require a frame pointer, the frame pointer register
can be allocated for ordinary usage, unless you mark it as a fixed register. See
FIXED_REGISTERS for more information.

INITIAL_FRAME_POINTER_OFFSET (depth-var)
A C statement to store in the variable depth-var the difference between the
frame pointer and the stack pointer values immediately after the function pro-
logue. The value would be computed from information such as the result of
get_frame_size () and the tables of registers regs_ever_live and call_
used_regs.
If ELIMINABLE_REGS is defined, this macro will be not be used and need not
be defined. Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is
defined to always be true; in that case, you may set depth-var to anything.

ELIMINABLE_REGS
If defined, this macro specifies a table of register pairs used to eliminate un-
needed registers that point into the stack frame. If it is not defined, the only
elimination attempted by the compiler is to replace references to the frame
pointer with references to the stack pointer.
The definition of this macro is a list of structure initializations, each of which
specifies an original and replacement register.
On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used
for the argument pointer. This register can be eliminated by replacing it with
either the frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:

#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \

460 Using and Porting the GNU Compiler Collection (GCC)

{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is
specified first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns non-zero if the compiler is allowed to try to replace
register number from-reg with register number to-reg. This macro need only be
defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since
most of the cases preventing register elimination are things that the compiler
already knows about.

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the ini-
tial difference between the specified pair of registers. This macro must be
defined if ELIMINABLE_REGS is defined.

LONGJMP_RESTORE_FROM_STACK
Define this macro if the longjmp function restores registers from the stack
frames, rather than from those saved specifically by setjmp. Certain quantities
must not be kept in registers across a call to setjmp on such machines.

21.10.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the
following section for other macros that control passing certain arguments in registers.

PROMOTE_PROTOTYPES
A C expression whose value is nonzero if an argument declared in a prototype
as an integral type smaller than int should actually be passed as an int. In
addition to avoiding errors in certain cases of mismatch, it also makes for better
code on certain machines. If the macro is not defined in target header files, it
defaults to 0.

PUSH_ARGS
A C expression. If nonzero, push insns will be used to pass outgoing arguments.
If the target machine does not have a push instruction, set it to zero. That
directs GCC to use an alternate strategy: to allocate the entire argument block
and then store the arguments into it. When PUSH_ARGS is nonzero, PUSH_
ROUNDING must be defined too. On some machines, the definition

PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when
an instruction attempts to push npushed bytes.
On some machines, the definition

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte
actually push two bytes in an attempt to maintain alignment. Then the defini-
tion should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

Chapter 21: Target Description Macros and Functions 461

ACCUMULATE_OUTGOING_ARGS
A C expression. If nonzero, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable current_function_
outgoing_args_size. No space will be pushed onto the stack for each call; in-
stead, the function prologue should increase the stack frame size by this amount.
Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has been allocated
for arguments even when their values are passed in registers.
The value of this macro is the size, in bytes, of the area reserved for arguments
passed in registers for the function represented by fndecl, which can be zero if
GCC is calling a library function.
This space can be allocated by the caller, or be a part of the machine-dependent
stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE
FINAL_REG_PARM_STACK_SPACE (const size, var size)

Define these macros in addition to the one above if functions might allocate
stack space for arguments even when their values are passed in registers. These
should be used when the stack space allocated for arguments in registers is not
a simple constant independent of the function declaration.
The value of the first macro is the size, in bytes, of the area that we should
initially assume would be reserved for arguments passed in registers.
The value of the second macro is the actual size, in bytes, of the area that will
be reserved for arguments passed in registers. This takes two arguments: an
integer representing the number of bytes of fixed sized arguments on the stack,
and a tree representing the number of bytes of variable sized arguments on the
stack.
When these macros are defined, REG_PARM_STACK_SPACE will only be called for
libcall functions, the current function, or for a function being called when it is
known that such stack space must be allocated. In each case this value can be
easily computed.
When deciding whether a called function needs such stack space, and how
much space to reserve, GCC uses these two macros instead of REG_PARM_STACK_
SPACE.

OUTGOING_REG_PARM_STACK_SPACE
Define this if it is the responsibility of the caller to allocate the area reserved
for arguments passed in registers.
If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space
for these arguments counts in the value of current_function_outgoing_args_
size.

STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parame-
ters don’t skip the area specified by it.

462 Using and Porting the GNU Compiler Collection (GCC)

Normally, when a parameter is not passed in registers, it is placed on the stack
beyond the REG_PARM_STACK_SPACE area. Defining this macro suppresses this
behavior and causes the parameter to be passed on the stack in its natural
location.

RETURN_POPS_ARGS (fundecl, funtype, stack-size)
A C expression that should indicate the number of bytes of its own arguments
that a function pops on returning, or 0 if the function pops no arguments and
the caller must therefore pop them all after the function returns.
fundecl is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_DECL that describes the decla-
ration of the function. From this you can obtain the DECL_MACHINE_ATTRIBUTES
of the function.
funtype is a C variable whose value is a tree node that describes the function
in question. Normally it is a node of type FUNCTION_TYPE that describes the
data type of the function. From this it is possible to obtain the data types of
the value and arguments (if known).
When a call to a library function is being considered, fundecl will contain an
identifier node for the library function. Thus, if you need to distinguish among
various library functions, you can do so by their names. Note that “library
function” in this context means a function used to perform arithmetic, whose
name is known specially in the compiler and was not mentioned in the C code
being compiled.
stack-size is the number of bytes of arguments passed on the stack. If a variable
number of bytes is passed, it is zero, and argument popping will always be the
responsibility of the calling function.
On the VAX, all functions always pop their arguments, so the definition of this
macro is stack-size. On the 68000, using the standard calling convention, no
functions pop their arguments, so the value of the macro is always 0 in this case.
But an alternative calling convention is available in which functions that take
a fixed number of arguments pop them but other functions (such as printf)
pop nothing (the caller pops all). When this convention is in use, funtype is
examined to determine whether a function takes a fixed number of arguments.

21.10.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments
are passed in registers or how they are arranged in the stack.

FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed in a register,
and which register.
The arguments are cum, which summarizes all the previous arguments; mode,
the machine mode of the argument; type, the data type of the argument as
a tree node or 0 if that is not known (which happens for C support library
functions); and named, which is 1 for an ordinary argument and 0 for nameless

Chapter 21: Target Description Macros and Functions 463

arguments that correspond to ‘...’ in the called function’s prototype. type can
be an incomplete type if a syntax error has previously occurred.

The value of the expression is usually either a reg RTX for the hard register in
which to pass the argument, or zero to pass the argument on the stack.

For machines like the VAX and 68000, where normally all arguments are pushed,
zero suffices as a definition.

The value of the expression can also be a parallel RTX. This is used when
an argument is passed in multiple locations. The mode of the of the parallel
should be the mode of the entire argument. The parallel holds any number
of expr_list pairs; each one describes where part of the argument is passed.
In each expr_list the first operand must be a reg RTX for the hard register
in which to pass this part of the argument, and the mode of the register RTX
indicates how large this part of the argument is. The second operand of the
expr_list is a const_int which gives the offset in bytes into the entire argu-
ment of where this part starts. As a special exception the first expr_list in
the parallel RTX may have a first operand of zero. This indicates that the
entire argument is also stored on the stack.

The last time this macro is called, it is called with MODE == VOIDmode, and
its result is passed to the call or call_value pattern as operands 2 and 3
respectively.

The usual way to make the ISO library ‘stdarg.h’ work on a machine where
some arguments are usually passed in registers, is to cause nameless arguments
to be passed on the stack instead. This is done by making FUNCTION_ARG return
0 whenever named is 0.

You may use the macro MUST_PASS_IN_STACK (mode, type) in the definition
of this macro to determine if this argument is of a type that must be passed in
the stack. If REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns
non-zero for such an argument, the compiler will abort. If REG_PARM_STACK_
SPACE is defined, the argument will be computed in the stack and then loaded
into a register.

MUST_PASS_IN_STACK (mode, type)
Define as a C expression that evaluates to nonzero if we do not know how to
pass TYPE solely in registers. The file ‘expr.h’ defines a definition that is
usually appropriate, refer to ‘expr.h’ for additional documentation.

FUNCTION_INCOMING_ARG (cum, mode, type, named)
Define this macro if the target machine has “register windows”, so that the
register in which a function sees an arguments is not necessarily the same as
the one in which the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller
passes the value, and FUNCTION_INCOMING_ARG should be defined in a similar
fashion to tell the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

464 Using and Porting the GNU Compiler Collection (GCC)

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)
A C expression for the number of words, at the beginning of an argument, that
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.
On some machines, certain arguments must be passed partially in registers
and partially in memory. On these machines, typically the first n words of
arguments are passed in registers, and the rest on the stack. If a multi-word
argument (a double or a structure) crosses that boundary, its first few words
must be passed in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many of the words should go in registers.
FUNCTION_ARG for these arguments should return the first register to be used by
the caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called
function.

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)
A C expression that indicates when an argument must be passed by reference.
If nonzero for an argument, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself. The pointer
is passed in whatever way is appropriate for passing a pointer to that type.
On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition
of this macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)
If defined, a C expression that indicates when it is the called function’s respon-
sibility to make a copy of arguments passed by invisible reference. Normally,
the caller makes a copy and passes the address of the copy to the routine be-
ing called. When FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the
caller does not make a copy. Instead, it passes a pointer to the “live” value.
The called function must not modify this value. If it can be determined that
the value won’t be modified, it need not make a copy; otherwise a copy must
be made.

CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first argument of FUNCTION_
ARG and other related values. For some target machines, the type int suffices
and can hold the number of bytes of argument so far.
There is no need to record in CUMULATIVE_ARGS anything about the arguments
that have been passed on the stack. The compiler has other variables to keep
track of that. For target machines on which all arguments are passed on the
stack, there is no need to store anything in CUMULATIVE_ARGS; however, the
data structure must exist and should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname, indirect)
A C statement (sans semicolon) for initializing the variable cum for the state at
the beginning of the argument list. The variable has type CUMULATIVE_ARGS.

Chapter 21: Target Description Macros and Functions 465

The value of fntype is the tree node for the data type of the function which
will receive the args, or 0 if the args are to a compiler support library function.
The value of indirect is nonzero when processing an indirect call, for example
a call through a function pointer. The value of indirect is zero for a call to an
explicitly named function, a library function call, or when INIT_CUMULATIVE_
ARGS is used to find arguments for the function being compiled.

When processing a call to a compiler support library function, libname identifies
which one. It is a symbol_ref rtx which contains the name of the function,
as a string. libname is 0 when an ordinary C function call is being processed.
Thus, each time this macro is called, either libname or fntype is nonzero, but
never both of them at once.

INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)
Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE
argument instead of fntype, that would be NULL. indirect would always be zero,
too. If this macro is not defined, INIT_CUMULATIVE_ARGS (cum, NULL_RTX,
libname, 0) is used instead.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the
arguments for the function being compiled. If this macro is undefined, INIT_
CUMULATIVE_ARGS is used instead.

The value passed for libname is always 0, since library routines with special
calling conventions are never compiled with GCC. The argument libname exists
for symmetry with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable cum to
advance past an argument in the argument list. The values mode, type and
named describe that argument. Once this is done, the variable cum is suitable
for analyzing the following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on
the stack. The compiler knows how to track the amount of stack space used for
arguments without any special help.

FUNCTION_ARG_PADDING (mode, type)
If defined, a C expression which determines whether, and in which direction,
to pad out an argument with extra space. The value should be of type enum
direction: either upward to pad above the argument, downward to pad below,
or none to inhibit padding.

The amount of padding is always just enough to reach the next multiple of
FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-
endian machines, the default is to pad upward. For big-endian machines, the
default is to pad downward for an argument of constant size shorter than an
int, and upward otherwise.

466 Using and Porting the GNU Compiler Collection (GCC)

PAD_VARARGS_DOWN
If defined, a C expression which determines whether the default implementation
of va arg will attempt to pad down before reading the next argument, if that
argument is smaller than its aligned space as controlled by PARM_BOUNDARY. If
this macro is not defined, all such arguments are padded down if BYTES_BIG_
ENDIAN is true.

FUNCTION_ARG_BOUNDARY (mode, type)
If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined, PARM_BOUNDARY
is used for all arguments.

FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in
which function arguments are sometimes passed. This does not include implicit
arguments such as the static chain and the structure-value address. On many
machines, no registers can be used for this purpose since all function arguments
are pushed on the stack.

LOAD_ARGS_REVERSED
If defined, the order in which arguments are loaded into their respective argu-
ment registers is reversed so that the last argument is loaded first. This macro
only affects arguments passed in registers.

21.10.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that
can fit in registers.

TRADITIONAL_RETURN_FLOAT
Define this macro if ‘-traditional’ should not cause functions declared to
return float to convert the value to double.

FUNCTION_VALUE (valtype, func)
A C expression to create an RTX representing the place where a function re-
turns a value of data type valtype. valtype is a tree node representing a data
type. Write TYPE_MODE (valtype) to get the machine mode used to represent
that type. On many machines, only the mode is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode).
The value of the expression is usually a reg RTX for the hard register where
the return value is stored. The value can also be a parallel RTX, if the
return value is in multiple places. See FUNCTION_ARG for an explanation of the
parallel form.
If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion
rules specified in PROMOTE_MODE if valtype is a scalar type.
If the precise function being called is known, func is a tree node (FUNCTION_
DECL) for it; otherwise, func is a null pointer. This makes it possible to use
a different value-returning convention for specific functions when all their calls
are known.

Chapter 21: Target Description Macros and Functions 467

FUNCTION_VALUE is not used for return vales with aggregate data types, because
these are returned in another way. See STRUCT_VALUE_REGNUM and related
macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)
Define this macro if the target machine has “register windows” so that the
register in which a function returns its value is not the same as the one in
which the caller sees the value.
For such machines, FUNCTION_VALUE computes the register in which the caller
will see the value. FUNCTION_OUTGOING_VALUE should be defined in a similar
fashion to tell the function where to put the value.
If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both pur-
poses.
FUNCTION_OUTGOING_VALUE is not used for return vales with aggregate data
types, because these are returned in another way. See STRUCT_VALUE_REGNUM
and related macros, below.

LIBCALL_VALUE (mode)
A C expression to create an RTX representing the place where a library function
returns a value of mode mode. If the precise function being called is known,
func is a tree node (FUNCTION_DECL) for it; otherwise, func is a null pointer.
This makes it possible to use a different value-returning convention for specific
functions when all their calls are known.
Note that “library function” in this context means a compiler support routine,
used to perform arithmetic, whose name is known specially by the compiler and
was not mentioned in the C code being compiled.
The definition of LIBRARY_VALUE need not be concerned aggregate data types,
because none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which
the values of called function may come back.
A register whose use for returning values is limited to serving as the second of
a pair (for a value of type double, say) need not be recognized by this macro.
So for most machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function
use different registers for the return value, this macro should recognize only the
caller’s register numbers.

APPLY_RESULT_SIZE
Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space
than is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbi-
trary return value.

21.10.9 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not
returned according to FUNCTION_VALUE (see Section 21.10.8 [Scalar Return], page 466).

468 Using and Porting the GNU Compiler Collection (GCC)

Instead, the caller passes the address of a block of memory in which the value should be
stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

RETURN_IN_MEMORY (type)
A C expression which can inhibit the returning of certain function values in
registers, based on the type of value. A nonzero value says to return the function
value in memory, just as large structures are always returned. Here type will
be a C expression of type tree, representing the data type of the value.
Note that values of mode BLKmode must be explicitly handled by this macro.
Also, the option ‘-fpcc-struct-return’ takes effect regardless of this macro.
On most systems, it is possible to leave the macro undefined; this causes a
default definition to be used, whose value is the constant 1 for BLKmode values,
and 0 otherwise.
Do not use this macro to indicate that structures and unions should always be
returned in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to
indicate this.

DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values must be in
memory. Since this results in slower code, this should be defined only if needed
for compatibility with other compilers or with an ABI. If you define this macro
to be 0, then the conventions used for structure and union return values are
decided by the RETURN_IN_MEMORY macro.
If not defined, this defaults to the value 1.

STRUCT_VALUE_REGNUM
If the structure value address is passed in a register, then STRUCT_VALUE_REGNUM
should be the number of that register.

STRUCT_VALUE
If the structure value address is not passed in a register, define STRUCT_VALUE
as an expression returning an RTX for the place where the address is passed.
If it returns 0, the address is passed as an “invisible” first argument.

STRUCT_VALUE_INCOMING_REGNUM
On some architectures the place where the structure value address is found by
the called function is not the same place that the caller put it. This can be due
to register windows, or it could be because the function prologue moves it to a
different place.
If the incoming location of the structure value address is in a register, define
this macro as the register number.

STRUCT_VALUE_INCOMING
If the incoming location is not a register, then you should define STRUCT_VALUE_
INCOMING as an expression for an RTX for where the called function should find
the value. If it should find the value on the stack, define this to create a mem
which refers to the frame pointer. A definition of 0 means that the address is
passed as an “invisible” first argument.

Chapter 21: Target Description Macros and Functions 469

PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target machine for
returning structures and unions is for the called function to return the address
of a static variable containing the value.
Do not define this if the usual system convention is for the caller to pass an
address to the subroutine.
This macro has effect in ‘-fpcc-struct-return’ mode, but it does nothing
when you use ‘-freg-struct-return’ mode.

21.10.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES
Define this macro if function calls on the target machine do not preserve
any registers; in other words, if CALL_USED_REGISTERS has 1 for all registers.
When defined, this macro enables ‘-fcaller-saves’ by default for all opti-
mization levels. It has no effect for optimization levels 2 and higher, where
‘-fcaller-saves’ is the default.

CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider placing a
pseudo-register in a call-clobbered hard register and saving and restoring it
around each function call. The expression should be 1 when this is worth
doing, and 0 otherwise.
If you don’t define this macro, a default is used which is good on most machines:
4 * calls < refs.

HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)
A C expression specifying which mode is required for saving nregs of a pseudo-
register in call-clobbered hard register regno. If regno is unsuitable for caller
save, VOIDmode should be returned. For most machines this macro need not be
defined since GCC will select the smallest suitable mode.

21.10.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epi-
logue) code.

Target Hookvoid TARGET_ASM_FUNCTION_PROLOGUE (FILE *file,
HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for entry to a function. The
prologue is responsible for setting up the stack frame, initializing the frame pointer
register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. size is an integer. file is a stdio stream to which the
assembler code should be output.

470 Using and Porting the GNU Compiler Collection (GCC)

The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_
live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_
live.)

On machines that have “register windows”, the function entry code does not save
on the stack the registers that are in the windows, even if they are supposed to be
preserved by function calls; instead it takes appropriate steps to “push” the register
stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer
to the variable frame_pointer_needed. The variable’s value will be 1 at run time in
a function that needs a frame pointer. See Section 21.10.5 [Elimination], page 459.

The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these
regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest
address if it is not defined). You can use a different order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

Target Hookvoid TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file)
If defined, a function that outputs assembler code at the end of a prologue. This
should be used when the function prologue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [prologue instruction pattern],
page 387.

Target Hookvoid TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file)
If defined, a function that outputs assembler code at the start of an epilogue. This
should be used when the function epilogue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [epilogue instruction pattern],
page 387.

Target Hookvoid TARGET_ASM_FUNCTION_EPILOGUE (FILE *file,
HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for exit from a function. The
epilogue is responsible for restoring the saved registers and stack pointer to their
values when the function was called, and returning control to the caller. This macro
takes the same arguments as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the
registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS
in the same way.

Chapter 21: Target Description Macros and Functions 471

On some machines, there is a single instruction that does all the work of returning
from the function. On these machines, give that instruction the name ‘return’ and
do not define the macro TARGET_ASM_FUNCTION_EPILOGUE at all.
Do not define a pattern named ‘return’ if you want the TARGET_ASM_FUNCTION_
EPILOGUE to be used. If you want the target switches to control whether return
instructions or epilogues are used, define a ‘return’ pattern with a validity condi-
tion that tests the target switches appropriately. If the ‘return’ pattern’s validity
condition is false, epilogues will be used.
On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
different. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 when compiling
a function that needs a frame pointer.
Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE
must treat leaf functions specially. The C variable current_function_is_leaf is
nonzero for such a function. See Section 21.8.4 [Leaf Functions], page 444.
On some machines, some functions pop their arguments on exit while others leave
that for the caller to do. For example, the 68020 when given ‘-mrtd’ pops arguments
in functions that take a fixed number of arguments.
Your definition of the macro RETURN_POPS_ARGS decides which functions pop their
own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided.
The variable that is called current_function_pops_args is the number of bytes
of its arguments that a function should pop. See Section 21.10.8 [Scalar Return],
page 466.

• A region of current_function_pretend_args_size bytes of uninitialized
space just underneath the first argument arriving on the stack. (This may
not be at the very start of the allocated stack region if the calling sequence
has pushed anything else since pushing the stack arguments. But usually,
on such machines, nothing else has been pushed yet, because the function
prologue itself does all the pushing.) This region is used on machines where
an argument may be passed partly in registers and partly in memory, and,
in some cases to support the features in <varargs.h> and <stdarg.h>.

• An area of memory used to save certain registers used by the function.
The size of this area, which may also include space for such things as the
return address and pointers to previous stack frames, is machine-specific
and usually depends on which registers have been used in the function.
Machines with register windows often do not require a save area.

• A region of at least size bytes, possibly rounded up to an allocation bound-
ary, to contain the local variables of the function. On some machines, this
region and the save area may occur in the opposite order, with the save
area closer to the top of the stack.

• Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of
current_function_outgoing_args_size bytes to be used for outgoing
argument lists of the function. See Section 21.10.6 [Stack Arguments],
page 460.

472 Using and Porting the GNU Compiler Collection (GCC)

Normally, it is necessary for the macros TARGET_ASM_FUNCTION_PROLOGUE and
TARGET_ASM_FUNCTION_EPILOGUE to treat leaf functions specially. The C vari-
able current_function_is_leaf is nonzero for such a function.

EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return instruction or
the function epilogue ignores the value of the stack pointer; in other words, if it
is safe to delete an instruction to adjust the stack pointer before a return from
the function.
Note that this macro’s value is relevant only for functions for which frame
pointers are maintained. It is never safe to delete a final stack adjustment in a
function that has no frame pointer, and the compiler knows this regardless of
EXIT_IGNORE_STACK.

EPILOGUE_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used
by the epilogue or the ‘return’ pattern. The stack and frame pointer registers
are already be assumed to be used as needed.

DELAY_SLOTS_FOR_EPILOGUE
Define this macro if the function epilogue contains delay slots to which instruc-
tions from the rest of the function can be “moved”. The definition should be a
C expression whose value is an integer representing the number of delay slots
there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)
A C expression that returns 1 if insn can be placed in delay slot number n of
the epilogue.
The argument n is an integer which identifies the delay slot now being considered
(since different slots may have different rules of eligibility). It is never negative
and is always less than the number of epilogue delay slots (what DELAY_SLOTS_
FOR_EPILOGUE returns). If you reject a particular insn for a given delay slot, in
principle, it may be reconsidered for a subsequent delay slot. Also, other insns
may (at least in principle) be considered for the so far unfilled delay slot.
The insns accepted to fill the epilogue delay slots are put in an RTL list made
with insn_list objects, stored in the variable current_function_epilogue_
delay_list. The insn for the first delay slot comes first in the list. Your
definition of the macro TARGET_ASM_FUNCTION_EPILOGUE should fill the delay
slots by outputting the insns in this list, usually by calling final_scan_insn.
You need not define this macro if you did not define DELAY_SLOTS_FOR_
EPILOGUE.

ASM_OUTPUT_MI_THUNK (file, thunk fndecl, delta, function)
A C compound statement that outputs the assembler code for a thunk function,
used to implement C++ virtual function calls with multiple inheritance. The
thunk acts as a wrapper around a virtual function, adjusting the implicit object
parameter before handing control off to the real function.
First, emit code to add the integer delta to the location that contains the
incoming first argument. Assume that this argument contains a pointer, and is

Chapter 21: Target Description Macros and Functions 473

the one used to pass the this pointer in C++. This is the incoming argument
before the function prologue, e.g. ‘%o0’ on a sparc. The addition must preserve
the values of all other incoming arguments.

After the addition, emit code to jump to function, which is a FUNCTION_DECL.
This is a direct pure jump, not a call, and does not touch the return address.
Hence returning from FUNCTION will return to whoever called the current
‘thunk’.

The effect must be as if function had been called directly with the adjusted
first argument. This macro is responsible for emitting all of the code for a
thunk function; TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_
EPILOGUE are not invoked.

The thunk fndecl is redundant. (delta and function have already been extracted
from it.) It might possibly be useful on some targets, but probably not.

If you do not define this macro, the target-independent code in the C++ front
end will generate a less efficient heavyweight thunk that calls function instead
of jumping to it. The generic approach does not support varargs.

21.10.12 Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code
to call the profiling subroutine mcount.

The details of how mcount expects to be called are determined by your operating
system environment, not by GCC. To figure them out, compile a small program
for profiling using the system’s installed C compiler and look at the assembler
code that results.

Older implementations of mcount expect the address of a counter variable to
be loaded into some register. The name of this variable is ‘LP’ followed by the
number labelno, so you would generate the name using ‘LP%d’ in a fprintf.

PROFILE_HOOK
A C statement or compound statement to output to file some assembly code to
call the profiling subroutine mcount even the target does not support profiling.

NO_PROFILE_COUNTERS
Define this macro if the mcount subroutine on your system does not need a
counter variable allocated for each function. This is true for almost all mod-
ern implementations. If you define this macro, you must not use the labelno
argument to FUNCTION_PROFILER.

PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come before the
function prologue. Normally, the profiling code comes after.

474 Using and Porting the GNU Compiler Collection (GCC)

FUNCTION_BLOCK_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code
to initialize basic-block profiling for the current object module. The global
compile flag profile_block_flag distinguishes two profile modes.

profile_block_flag != 2
Output code to call the subroutine __bb_init_func once per ob-
ject module, passing it as its sole argument the address of a block
allocated in the object module.
The name of the block is a local symbol made with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Of course, since you are writing the definition of ASM_GENERATE_
INTERNAL_LABEL as well as that of this macro, you can take a short
cut in the definition of this macro and use the name that you know
will result.
The first word of this block is a flag which will be nonzero if the
object module has already been initialized. So test this word first,
and do not call __bb_init_func if the flag is nonzero. labelno
contains a unique number which may be used to generate a label
as a branch destination when __bb_init_func will not be called.
Described in assembler language, the code to be output looks like:

cmp (LPBX0),0
bne local_label
parameter1 <- LPBX0
call __bb_init_func

local_label:

profile_block_flag == 2
Output code to call the subroutine __bb_init_trace_func and
pass two parameters to it. The first parameter is the same as for
__bb_init_func. The second parameter is the number of the first
basic block of the function as given by labelno. Note that __bb_
init_trace_func has to be called, even if the object module has
been initialized already.
Described in assembler language, the code to be output looks like:

parameter1 <- LPBX0
parameter2 <- labelno
call __bb_init_trace_func

BLOCK_PROFILER (file, blockno)
A C statement or compound statement to output to file some assembler code
to increment the count associated with the basic block number blockno. The
global compile flag profile_block_flag distinguishes two profile modes.

profile_block_flag != 2
Output code to increment the counter directly. Basic blocks are
numbered separately from zero within each compilation. The count

Chapter 21: Target Description Macros and Functions 475

associated with block number blockno is at index blockno in a
vector of words; the name of this array is a local symbol made with
this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 2);

Of course, since you are writing the definition of ASM_GENERATE_
INTERNAL_LABEL as well as that of this macro, you can take a short
cut in the definition of this macro and use the name that you know
will result.
Described in assembler language, the code to be output looks like:

inc (LPBX2+4*blockno)

profile_block_flag == 2
Output code to initialize the global structure __bb and call the
function __bb_trace_func, which will increment the counter.
__bb consists of two words. In the first word, the current basic
block number, as given by blockno, has to be stored. In the second
word, the address of a block allocated in the object module has
to be stored. The address is given by the label created with this
statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Described in assembler language, the code to be output looks like:
move blockno -> (__bb)
move LPBX0 -> (__bb+4)
call __bb_trace_func

FUNCTION_BLOCK_PROFILER_EXIT (file)
A C statement or compound statement to output to file assembler code to
call function __bb_trace_ret. The assembler code should only be output if
the global compile flag profile_block_flag == 2. This macro has to be
used at every place where code for returning from a function is generated (e.g.
TARGET_ASM_FUNCTION_EPILOGUE). Although you have to write the definition
of TARGET_ASM_FUNCTION_EPILOGUE as well, you have to define this macro to
tell the compiler, that the proper call to __bb_trace_ret is produced.

MACHINE_STATE_SAVE (id)
A C statement or compound statement to save all registers, which may be
clobbered by a function call, including condition codes. The asm statement will
be mostly likely needed to handle this task. Local labels in the assembler code
can be concatenated with the string id, to obtain a unique label name.
Registers or condition codes clobbered by TARGET_ASM_FUNCTION_PROLOGUE
or TARGET_ASM_FUNCTION_EPILOGUE must be saved in the macros FUNCTION_
BLOCK_PROFILER, FUNCTION_BLOCK_PROFILER_EXIT and BLOCK_PROFILER prior
calling __bb_init_trace_func, __bb_trace_ret and __bb_trace_func re-
spectively.

MACHINE_STATE_RESTORE (id)
A C statement or compound statement to restore all registers, including condi-
tion codes, saved by MACHINE_STATE_SAVE.

476 Using and Porting the GNU Compiler Collection (GCC)

Registers or condition codes clobbered by TARGET_ASM_FUNCTION_PROLOGUE or
TARGET_ASM_FUNCTION_EPILOGUE must be restored in the macros FUNCTION_
BLOCK_PROFILER, FUNCTION_BLOCK_PROFILER_EXIT and BLOCK_PROFILER af-
ter calling __bb_init_trace_func, __bb_trace_ret and __bb_trace_func re-
spectively.

BLOCK_PROFILER_CODE
A C function or functions which are needed in the library to support block
profiling.

TARGET_ALLOWS_PROFILING_WITHOUT_FRAME_POINTER
On some targets, it is impossible to use profiling when the frame pointer has
been omitted. For example, on x86 GNU/Linux systems, the mcount routine
provided by the GNU C Library finds the address of the routine that called the
routine that called mcount by looking in the immediate caller’s stack frame. If
the immediate caller has no frame pointer, this lookup will fail.
By default, GCC assumes that the target does allow profiling when the frame
pointer is omitted. This macro should be defined to a C expression that eval-
uates to false if the target does not allow profiling when the frame pointer is
omitted.

21.10.13 Permitting inlining of functions with attributes

By default if a function has a target specific attribute attached to it, it
will not be inlined. This behaviour can be overridden if the target defines the
‘FUNCTION_ATTRIBUTE_INLINABLE_P’ macro. This macro takes one argument, a ‘DECL’
describing the function. It should return non-zero if the function can be inlined, otherwise
it should return 0.

21.10.14 Permitting tail calls to functions

FUNCTION_OK_FOR_SIBCALL (decl)
A C expression that evaluates to true if it is ok to perform a sibling call to decl.
It is not uncommon for limitations of calling conventions to prevent tail calls
to functions outside the current unit of translation, or during PIC compilation.
Use this macro to enforce these restrictions, as the sibcall md pattern can
not fail, or fall over to a “normal” call.

21.11 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work with-
out change on machines that pass arguments on the stack. Other machines require their
own implementations of varargs, and the two machine independent header files must have
conditionals to include it.

ISO <stdarg.h> differs from traditional <varargs.h> mainly in the calling convention
for va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ISO implementation of va_start takes an

Chapter 21: Target Description Macros and Functions 477

additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that
the varargs mechanism can access them. Both ISO and traditional versions
of va_start must use __builtin_saveregs, unless you use SETUP_INCOMING_
VARARGS (see below) instead.
On some machines, __builtin_saveregs is open-coded under the control of
the macro EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in ‘libgcc2.c’.
Code generated for the call to __builtin_saveregs appears at the beginning of
the function, as opposed to where the call to __builtin_saveregs is written,
regardless of what the code is. This is because the registers must be saved
before the function starts to use them for its own purposes.

__builtin_args_info (category)
Use this built-in function to find the first anonymous arguments in registers.
In general, a machine may have several categories of registers used for argu-
ments, each for a particular category of data types. (For example, on some
machines, floating-point registers are used for floating-point arguments while
other arguments are passed in the general registers.) To make non-varargs
functions use the proper calling convention, you have defined the CUMULATIVE_
ARGS data type to record how many registers in each category have been used
so far
__builtin_args_info accesses the same data structure of type CUMULATIVE_
ARGS after the ordinary argument layout is finished with it, with category spec-
ifying which word to access. Thus, the value indicates the first unused register
in a given category.
Normally, you would use __builtin_args_info in the implementation of va_
start, accessing each category just once and storing the value in the va_list
object. This is because va_list will have to update the values, and there is no
way to alter the values accessed by __builtin_args_info.

__builtin_next_arg (lastarg)
This is the equivalent of __builtin_args_info, for stack arguments. It re-
turns the address of the first anonymous stack argument, as type void *. If
ARGS_GROW_DOWNWARD, it returns the address of the location above the first
anonymous stack argument. Use it in va_start to initialize the pointer for
fetching arguments from the stack. Also use it in va_start to verify that the
second parameter lastarg is the last named argument of the current function.

__builtin_classify_type (object)
Since each machine has its own conventions for which data types are passed
in which kind of register, your implementation of va_arg has to embody these

478 Using and Porting the GNU Compiler Collection (GCC)

conventions. The easiest way to categorize the specified data type is to use
__builtin_classify_type together with sizeof and __alignof__.
__builtin_classify_type ignores the value of object, considering only its
data type. It returns an integer describing what kind of type that is—integer,
floating, pointer, structure, and so on.
The file ‘typeclass.h’ defines an enumeration that you can use to interpret
the values of __builtin_classify_type.

These machine description macros help implement varargs:

EXPAND_BUILTIN_SAVEREGS ()
If defined, is a C expression that produces the machine-specific code for a call
to __builtin_saveregs. This code will be moved to the very beginning of
the function, before any parameter access are made. The return value of this
function should be an RTX that contains the value to use as the return of
__builtin_saveregs.

SETUP_INCOMING_VARARGS (args so far, mode, type, pretend args size, second time)
This macro offers an alternative to using __builtin_saveregs and defining
the macro EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been passed
consecutively on the stack. Once this is done, you can use the standard imple-
mentation of varargs that works for machines that pass all their arguments on
the stack.
The argument args so far is the CUMULATIVE_ARGS data structure, containing
the values that are obtained after processing the named arguments. The ar-
guments mode and type describe the last named argument—its machine mode
and its data type as a tree node.
The macro implementation should do two things: first, push onto the stack all
the argument registers not used for the named arguments, and second, store
the size of the data thus pushed into the int-valued variable whose name is
supplied as the argument pretend args size. The value that you store here will
serve as additional offset for setting up the stack frame.
Because you must generate code to push the anonymous arguments at compile
time without knowing their data types, SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it
uniformly for all data types.
If the argument second time is nonzero, it means that the arguments of the
function are being analyzed for the second time. This happens for an inline
function, which is not actually compiled until the end of the source file. The
macro SETUP_INCOMING_VARARGS should not generate any instructions in this
case.

STRICT_ARGUMENT_NAMING
Define this macro to be a nonzero value if the location where a function argu-
ment is passed depends on whether or not it is a named argument.
This macro controls how the named argument to FUNCTION_ARG is set for
varargs and stdarg functions. If this macro returns a nonzero value, the named

Chapter 21: Target Description Macros and Functions 479

argument is always true for named arguments, and false for unnamed argu-
ments. If it returns a value of zero, but SETUP_INCOMING_VARARGS is defined,
then all arguments are treated as named. Otherwise, all named arguments
except the last are treated as named.
You need not define this macro if it always returns zero.

PRETEND_OUTGOING_VARARGS_NAMED
If you need to conditionally change ABIs so that one works with SETUP_
INCOMING_VARARGS, but the other works like neither SETUP_INCOMING_VARARGS
nor STRICT_ARGUMENT_NAMING was defined, then define this macro to return
nonzero if SETUP_INCOMING_VARARGS is used, zero otherwise. Otherwise, you
should not define this macro.

21.12 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address
of a nested function is taken. It normally resides on the stack, in the stack frame of the
containing function. These macros tell GCC how to generate code to allocate and initialize
a trampoline.

The instructions in the trampoline must do two things: load a constant address into
the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static
chain value and the function address—into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper offset from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream file, assembler code for a block of data
that contains the constant parts of a trampoline. This code should not include
a label—the label is taken care of automatically.
If you do not define this macro, it means no template is needed for the target.
Do not define this macro on systems where the block move code to copy the
trampoline into place would be larger than the code to generate it on the spot.

TRAMPOLINE_SECTION
The name of a subroutine to switch to the section in which the trampoline
template is to be placed (see Section 21.17 [Sections], page 494). The default
is a value of ‘readonly_data_section’, which places the trampoline in the
section containing read-only data.

TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

480 Using and Porting the GNU Compiler Collection (GCC)

TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.

If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for
aligning trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static chain)
A C statement to initialize the variable parts of a trampoline. addr is an RTX
for the address of the trampoline; fnaddr is an RTX for the address of the
nested function; static chain is an RTX for the static chain value that should
be passed to the function when it is called.

TRAMPOLINE_ADJUST_ADDRESS (addr)
A C statement that should perform any machine-specific adjustment in the
address of the trampoline. Its argument contains the address that was passed
to INITIALIZE_TRAMPOLINE. In case the address to be used for a function call
should be different from the address in which the template was stored, the
different address should be assigned to addr. If this macro is not defined, addr
will be used for function calls.

ALLOCATE_TRAMPOLINE (fp)
A C expression to allocate run-time space for a trampoline. The expression
value should be an RTX representing a memory reference to the space for the
trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it
is impossible to execute instructions in the stack area. On such machines, you
may have to implement a separate stack, using this macro in conjunction with
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compi-
lation status of the immediate containing function of the function which the
trampoline is for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the
stack slot for the trampoline is in the stack frame of this containing function.
Other allocation strategies probably must do something analogous with this
information.

Implementing trampolines is difficult on many machines because they have separate
instruction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following
macros which describe the shape of the cache.

INSN_CACHE_SIZE
The total size in bytes of the cache.

Chapter 21: Target Description Macros and Functions 481

INSN_CACHE_LINE_WIDTH
The length in bytes of each cache line. The cache is divided into cache lines
which are disjoint slots, each holding a contiguous chunk of data fetched from
memory. Each time data is brought into the cache, an entire line is read at
once. The data loaded into a cache line is always aligned on a boundary equal
to the line size.

INSN_CACHE_DEPTH
The number of alternative cache lines that can hold any particular memory
location.

Alternatively, if the machine has system calls or instructions to clear the instruction
cache directly, you can define the following macro.

CLEAR_INSN_CACHE (beg, end)
If defined, expands to a C expression clearing the instruction cache in the spec-
ified interval. If it is not defined, and the macro INSN_CACHE_SIZE is defined,
some generic code is generated to clear the cache. The definition of this macro
would typically be a series of asm statements. Both beg and end are both
pointer expressions.

To use a standard subroutine, define the following macro. In addition, you must make
sure that the instructions in a trampoline fill an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in ‘m68k.h’ as a guide.

TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with
GCC. They go in a library function named __transfer_from_trampoline.
If you need to avoid executing the ordinary prologue code of a compiled C
function when you jump to the subroutine, you can do so by placing a special
label of your own in the assembler code. Use one asm statement to generate an
assembler label, and another to make the label global. Then trampolines can
use that label to jump directly to your special assembler code.

21.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

MULSI3_LIBCALL
A C string constant giving the name of the function to call for multiplication
of one signed full-word by another. If you do not define this macro, the default
name is used, which is __mulsi3, a function defined in ‘libgcc.a’.

DIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed full-word by another. If you do not define this macro, the default name
is used, which is __divsi3, a function defined in ‘libgcc.a’.

482 Using and Porting the GNU Compiler Collection (GCC)

UDIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivsi3, a function defined in ‘libgcc.a’.

MODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder
in division of one signed full-word by another. If you do not define this macro,
the default name is used, which is __modsi3, a function defined in ‘libgcc.a’.

UMODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umodsi3, a function defined in ‘libgcc.a’.

MULDI3_LIBCALL
A C string constant giving the name of the function to call for multiplication of
one signed double-word by another. If you do not define this macro, the default
name is used, which is __muldi3, a function defined in ‘libgcc.a’.

DIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed double-word by another. If you do not define this macro, the default
name is used, which is __divdi3, a function defined in ‘libgcc.a’.

UDIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivdi3, a function defined in ‘libgcc.a’.

MODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one signed double-word by another. If you do not define this macro,
the default name is used, which is __moddi3, a function defined in ‘libgcc.a’.

UMODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umoddi3, a function defined in ‘libgcc.a’.

INIT_TARGET_OPTABS
Define this macro as a C statement that declares additional library routines
renames existing ones. init_optabs calls this macro after initializing all the
normal library routines.

FLOAT_LIB_COMPARE_RETURNS_BOOL
Define this macro as a C statement that returns nonzero if a call to the floating
point comparison library function will return a boolean value that indicates
the result of the comparison. It should return zero if one of gcc’s own libgcc
functions is called.
Most ports don’t need to define this macro.

Chapter 21: Target Description Macros and Functions 483

TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant expression.
If you don’t define this macro, GCC does not attempt to deposit the value of
EDOM into errno directly. Look in ‘/usr/include/errno.h’ to find the value
of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors
by calling the library function and letting it report the error. If mathematical
functions on your system use matherr when there is an error, then you should
leave TARGET_EDOM undefined so that matherr is used normally.

GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression that refers to
the global “variable” errno. (On certain systems, errno may not actually be
a variable.) If you don’t define this macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS
Define this macro if GCC should generate calls to the ISO C (and System V)
library functions memcpy, memmove and memset rather than the BSD functions
bcopy and bzero.

LIBGCC_NEEDS_DOUBLE
Define this macro if float arguments cannot be passed to library routines
(so they must be converted to double). This macro affects both how library
calls are generated and how the library routines in ‘libgcc.a’ accept their
arguments. It is useful on machines where floating and fixed point arguments
are passed differently, such as the i860.

NEXT_OBJC_RUNTIME
Define this macro to generate code for Objective-C message sending using the
calling convention of the NeXT system. This calling convention involves passing
the object, the selector and the method arguments all at once to the method-
lookup library function.

The default calling convention passes just the object and the selector to the
lookup function, which returns a pointer to the method.

21.14 Addressing Modes

This is about addressing modes.

HAVE_PRE_INCREMENT
HAVE_PRE_DECREMENT
HAVE_POST_INCREMENT
HAVE_POST_DECREMENT

A C expression that is non-zero if the machine supports pre-increment, pre-
decrement, post-increment, or post-decrement addressing respectively.

484 Using and Porting the GNU Compiler Collection (GCC)

HAVE_PRE_MODIFY_DISP
HAVE_POST_MODIFY_DISP

A C expression that is non-zero if the machine supports pre- or post-address
side-effect generation involving constants other than the size of the memory
operand.

HAVE_PRE_MODIFY_REG
HAVE_POST_MODIFY_REG

A C expression that is non-zero if the machine supports pre- or post-address
side-effect generation involving a register displacement.

CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address.
On most machines, this can be defined as CONSTANT_P (x), but a few machines
are more restrictive in which constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not explicitly
known, such as symbol_ref, label_ref, and high expressions and const arith-
metic expressions, in addition to const_int and const_double expressions.

MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum
number that GO_IF_LEGITIMATE_ADDRESS would ever accept.

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if x (an
RTX) is a legitimate memory address on the target machine for a memory
operand of mode mode.

It usually pays to define several simpler macros to serve as subroutines for this
one. Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The
strict variant is used in the reload pass. It must be defined so that any pseudo-
register that has not been allocated a hard register is considered a memory
reference. In contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected.

The non-strict variant is used in other passes. It must be defined to accept all
pseudo-registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the
macro REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional
to define the strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base
registers, one for index registers, and so on) are typically among the subroutines
used to define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros
need have two variants; the higher levels of macros may be the same whether
strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer
are stored inside a const RTX to mark them as constant. Therefore, there is

Chapter 21: Target Description Macros and Functions 485

no need to recognize such sums specifically as legitimate addresses. Normally
you would simply recognize any const as legitimate.
Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that
are not marked with const. It assumes that a naked plus indicates indexing.
If so, then you must reject such naked constant sums as illegitimate addresses,
so that none of them will be given to PRINT_OPERAND_ADDRESS.
On some machines, whether a symbolic address is legitimate depends on the
section that the address refers to. On these machines, define the macro ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check
for it here. When you see a const, you will have to look inside it to find the
symbol_ref in order to determine the section. See Section 21.19 [Assembler
Format], page 497.
The best way to modify the name string is by adding text to the beginning,
with suitable punctuation to prevent any ambiguity. Allocate the new name in
saveable_obstack. You will have to modify ASM_OUTPUT_LABELREF to remove
and decode the added text and output the name accordingly, and define STRIP_
NAME_ENCODING to access the original name string.
You can check the information stored here into the symbol_ref in the definitions
of the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as a base register. For hard registers, it should always accept those which the
hardware permits and reject the others. Whether the macro accepts or rejects
pseudo registers must be controlled by REG_OK_STRICT as described above. This
usually requires two variant definitions, of which REG_OK_STRICT controls the
one actually used.

REG_MODE_OK_FOR_BASE_P (x, mode)
A C expression that is just like REG_OK_FOR_BASE_P, except that that expression
may examine the mode of the memory reference in mode. You should define
this macro if the mode of the memory reference affects whether a register may
be used as a base register. If you define this macro, the compiler will use it
instead of REG_OK_FOR_BASE_P.

REG_OK_FOR_INDEX_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as an index register.
The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,
looking for one that is valid, and will reload one or both registers only if neither
labeling works.

FIND_BASE_TERM (x)
A C expression to determine the base term of address x. This macro is used in
only one place: ‘find base term’ in alias.c.

486 Using and Porting the GNU Compiler Collection (GCC)

It is always safe for this macro to not be defined. It exists so that alias analysis
can understand machine-dependent addresses.
The typical use of this macro is to handle addresses containing a label ref or
symbol ref within an UNSPEC.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)
A C compound statement that attempts to replace x with a valid memory
address for an operand of mode mode. win will be a C statement label elsewhere
in the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.
x will always be the result of a call to break_out_memory_refs, and oldx will
be the operand that was given to that function to produce x.
The code generated by this macro should not alter the substructure of x. If it
transforms x into a more legitimate form, it should assign x (which will always
be a C variable) a new value.
It is not necessary for this macro to come up with a legitimate address. The
compiler has standard ways of doing so in all cases. In fact, it is safe for this
macro to do nothing. But often a machine-dependent strategy can generate
better code.

LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind levels, win)
A C compound statement that attempts to replace x, which is an address that
needs reloading, with a valid memory address for an operand of mode mode.
win will be a C statement label elsewhere in the code. It is not necessary to
define this macro, but it might be useful for performance reasons.
For example, on the i386, it is sometimes possible to use a single reload register
instead of two by reloading a sum of two pseudo registers into a register. On
the other hand, for number of RISC processors offsets are limited so that often
an intermediate address needs to be generated in order to address a stack slot.
By defining LEGITIMIZE_RELOAD_ADDRESS appropriately, the intermediate ad-
dresses generated for adjacent some stack slots can be made identical, and thus
be shared.
Note: This macro should be used with caution. It is necessary to know some-
thing of how reload works in order to effectively use this, and it is quite easy
to produce macros that build in too much knowledge of reload internals.
Note: This macro must be able to reload an address created by a previous
invocation of this macro. If it fails to handle such addresses then the compiler
may generate incorrect code or abort.
The macro definition should use push_reload to indicate parts that need
reloading; opnum, type and ind levels are usually suitable to be passed un-
altered to push_reload.
The code generated by this macro must not alter the substructure of x. If
it transforms x into a more legitimate form, it should assign x (which will
always be a C variable) a new value. This also applies to parts that you change
indirectly by calling push_reload.

Chapter 21: Target Description Macros and Functions 487

The macro definition may use strict_memory_address_p to test if the address
has become legitimate.

If you want to change only a part of x, one standard way of doing this is to use
copy_rtx. Note, however, that is unshares only a single level of rtl. Thus, if
the part to be changed is not at the top level, you’ll need to replace first the top
level. It is not necessary for this macro to come up with a legitimate address;
but often a machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label; executed
if memory address x (an RTX) can have different meanings depending on the
machine mode of the memory reference it is used for or if the address is valid
for some modes but not others.

Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size of the
operand being addressed. Some machines have other mode-dependent ad-
dresses. Many RISC machines have no mode-dependent addresses.
You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for an immediate
operand on the target machine. You can assume that x satisfies CONSTANT_P,
so you need not check this. In fact, ‘1’ is a suitable definition for this macro on
machines where anything CONSTANT_P is valid.

21.15 Condition Code Status

This describes the condition code status.

The file ‘conditions.h’ defines a variable cc_status to describe how the condition code
was computed (in case the interpretation of the condition code depends on the instruction
that it was set by). This variable contains the RTL expressions on which the condition code
is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description
header file. It can also add additional machine-specific information by defining CC_STATUS_
MDEP.

CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep component of
cc_status. It defaults to int.

This macro is not used on machines that do not use cc0.

CC_STATUS_MDEP_INIT
A C expression to initialize the mdep field to “empty”. The default definition
does nothing, since most machines don’t use the field anyway. If you want to
use the field, you should probably define this macro to initialize it.
This macro is not used on machines that do not use cc0.

488 Using and Porting the GNU Compiler Collection (GCC)

NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status appropriately
for an insn insn whose body is exp. It is this macro’s responsibility to recognize
insns that set the condition code as a byproduct of other activity as well as
those that explicitly set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine
registers, this macro must check to see whether they invalidate the expressions
that the condition code is recorded as reflecting. For example, on the 68000,
insns that store in address registers do not set the condition code, which means
that usually NOTICE_UPDATE_CC can leave cc_status unaltered for such insns.
But suppose that the previous insn set the condition code based on location
‘a4@(102)’ and the current insn stores a new value in ‘a4’. Although the con-
dition code is not changed by this, it will no longer be true that it reflects the
contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter cc_status
in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results
of peephole optimization: insns whose patterns are parallel RTXs containing
various reg, mem or constants which are just the operands. The RTL structure
of these insns is not sufficient to indicate what the insns actually do. What
NOTICE_UPDATE_CC should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an
attribute (see Section 20.17 [Insn Attributes], page 404) named, for example,
‘cc’. This avoids having detailed information about patterns in two places, the
‘md’ file and in NOTICE_UPDATE_CC.

EXTRA_CC_MODES
A list of additional modes for condition code values in registers (see Sec-
tion 20.11 [Jump Patterns], page 390). This macro should expand to a sequence
of calls of the macro CC separated by white space. CC takes two arguments. The
first is the enumeration name of the mode, which should begin with ‘CC’ and
end with ‘mode’. The second is a C string giving the printable name of the
mode; it should be the same as the first argument, but with the trailing ‘mode’
removed.

You should only define this macro if additional modes are required.

A sample definition of EXTRA_CC_MODES is:
#define EXTRA_CC_MODES \

CC(CC_NOOVmode, "CC_NOOV") \
CC(CCFPmode, "CCFP") \
CC(CCFPEmode, "CCFPE")

SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison operation code
op is applied to rtx x and y. For example, on the Sparc, SELECT_CC_MODE is
defined as (see see Section 20.11 [Jump Patterns], page 390 for a description of
the reason for this definition)

Chapter 21: Target Description Macros and Functions 489

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

You need not define this macro if EXTRA_CC_MODES is not defined.

CANONICALIZE_COMPARISON (code, op0, op1)
On some machines not all possible comparisons are defined, but you can convert
an invalid comparison into a valid one. For example, the Alpha does not have a
GT comparison, but you can use an LT comparison instead and swap the order
of the operands.
On such machines, define this macro to be a C statement to do any required
conversions. code is the initial comparison code and op0 and op1 are the left
and right operands of the comparison, respectively. You should modify code,
op0, and op1 as required.
GCC will not assume that the comparison resulting from this macro is valid
but will see if the resulting insn matches a pattern in the ‘md’ file.
You need not define this macro if it would never change the comparison code
or operands.

REVERSIBLE_CC_MODE (mode)
A C expression whose value is one if it is always safe to reverse a comparison
whose mode is mode. If SELECT_CC_MODE can ever return mode for a floating-
point inequality comparison, then REVERSIBLE_CC_MODE (mode) must be zero.
You need not define this macro if it would always returns zero or if the floating-
point format is anything other than IEEE_FLOAT_FORMAT. For example, here is
the definition used on the Sparc, where floating-point inequality comparisons
are always given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

A C expression whose value is reversed condition code of the code for compar-
ison done in CC MODE mode. The macro is used only in case REVERSIBLE_
CC_MODE (mode) is nonzero. Define this macro in case machine has some non-
standard way how to reverse certain conditionals. For instance in case all float-
ing point conditions are non-trapping, compiler may freely convert unordered
compares to ordered one. Then definition may look like:

#define REVERSE_CONDITION(CODE, MODE) \
((MODE) != CCFPmode ? reverse_condition (CODE) \
: reverse_condition_maybe_unordered (CODE))

REVERSE_CONDEXEC_PREDICATES_P (code1, code2)
A C expression that returns true if the conditional execution predicate code1
is the inverse of code2 and vice versa. Define this to return 0 if the target has
conditional execution predicates that cannot be reversed safely. If no expansion
is specified, this macro is defined as follows:

#define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
((x) == reverse_condition (y))

490 Using and Porting the GNU Compiler Collection (GCC)

21.16 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target
machine.

CONST_COSTS (x, code, outer code)
A part of a C switch statement that describes the relative costs of constant
RTL expressions. It must contain case labels for expression codes const_int,
const, symbol_ref, label_ref and const_double. Each case must ultimately
reach a return statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the precise value of
the constant, which is available for examination in x, and the rtx code of the
expression in which it is contained, found in outer code.

code is the expression code—redundant, since it can be obtained with GET_CODE
(x).

RTX_COSTS (x, code, outer code)
Like CONST_COSTS but applies to nonconstant RTL expressions. This can be
used, for example, to indicate how costly a multiply instruction is. In writing
this macro, you can use the construct COSTS_N_INSNS (n) to specify a cost
equal to n fast instructions. outer code is the code of the expression in which
x is contained.

This macro is optional; do not define it if the default cost assumptions are
adequate for the target machine.

DEFAULT_RTX_COSTS (x, code, outer code)
This macro, if defined, is called for any case not handled by the RTX_COSTS
or CONST_COSTS macros. This eliminates the need to put case labels into the
macro, but the code, or any functions it calls, must assume that the RTL in x
could be of any type that has not already been handled. The arguments are
the same as for RTX_COSTS, and the macro should execute a return statement
giving the cost of any RTL expressions that it can handle. The default cost
calculation is used for any RTL for which this macro does not return a value.

This macro is optional; do not define it if the default cost assumptions are
adequate for the target machine.

ADDRESS_COST (address)
An expression giving the cost of an addressing mode that contains address. If
not defined, the cost is computed from the address expression and the CONST_
COSTS values.

For most CISC machines, the default cost is a good approximation of the true
cost of the addressing mode. However, on RISC machines, all instructions
normally have the same length and execution time. Hence all addresses will
have equal costs.

In cases where more than one form of an address is known, the form with the
lowest cost will be used. If multiple forms have the same, lowest, cost, the one
that is the most complex will be used.

Chapter 21: Target Description Macros and Functions 491

For example, suppose an address that is equal to the sum of a register and
a constant is used twice in the same basic block. When this macro is not
defined, the address will be computed in a register and memory references will
be indirect through that register. On machines where the cost of the addressing
mode containing the sum is no higher than that of a simple indirect reference,
this will produce an additional instruction and possibly require an additional
register. Proper specification of this macro eliminates this overhead for such
machines.
Similar use of this macro is made in strength reduction of loops.
address need not be valid as an address. In such a case, the cost is not relevant
and can be any value; invalid addresses need not be assigned a different cost.
On machines where an address involving more than one register is as cheap as
an address computation involving only one register, defining ADDRESS_COST to
reflect this can cause two registers to be live over a region of code where only
one would have been if ADDRESS_COST were not defined in that manner. This
effect should be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers of registers
on machines with lots of registers.
This macro will normally either not be defined or be defined as a constant.

REGISTER_MOVE_COST (mode, from, to)
A C expression for the cost of moving data of mode mode from a register in
class from to one in class to. The classes are expressed using the enumeration
values such as GENERAL_REGS. A value of 2 is the default; other values are
interpreted relative to that.
It is not required that the cost always equal 2 when from is the same as to; on
some machines it is expensive to move between registers if they are not general
registers.
If reload sees an insn consisting of a single set between two hard registers, and
if REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does
not check to ensure that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are met. You should
do this if the ‘movm’ pattern’s constraints do not allow such copying.

MEMORY_MOVE_COST (mode, class, in)
A C expression for the cost of moving data of mode mode between a register of
class class and memory; in is zero if the value is to be written to memory, non-
zero if it is to be read in. This cost is relative to those in REGISTER_MOVE_COST.
If moving between registers and memory is more expensive than between two
registers, you should define this macro to express the relative cost.
If you do not define this macro, GCC uses a default cost of 4 plus the cost
of copying via a secondary reload register, if one is needed. If your machine
requires a secondary reload register to copy between memory and a register of
class but the reload mechanism is more complex than copying via an interme-
diate, define this macro to reflect the actual cost of the move.
GCC defines the function memory_move_secondary_cost if secondary reloads
are needed. It computes the costs due to copying via a secondary register. If

492 Using and Porting the GNU Compiler Collection (GCC)

your machine copies from memory using a secondary register in the conventional
way but the default base value of 4 is not correct for your machine, define this
macro to add some other value to the result of that function. The arguments
to that function are the same as to this macro.

BRANCH_COST
A C expression for the cost of a branch instruction. A value of 1 is the default;
other values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GCC would ordinarily expect.

SLOW_BYTE_ACCESS
Define this macro as a C expression which is nonzero if accessing less than a
word of memory (i.e. a char or a short) is no faster than accessing a word of
memory, i.e., if such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the
smallest containing object; when it is defined, a fullword load will be used if
alignment permits. Unless bytes accesses are faster than word accesses, using
word accesses is preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the structure, but
to different bytes.

SLOW_ZERO_EXTEND
Define this macro if zero-extension (of a char or short to an int) can be done
faster if the destination is a register that is known to be zero.

If you define this macro, you must have instruction patterns that recognize RTL
structures like this:

(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)

and likewise for HImode.

SLOW_UNALIGNED_ACCESS (mode, alignment)
Define this macro to be the value 1 if memory accesses described by the mode
and alignment parameters have a cost many times greater than aligned accesses,
for example if they are emulated in a trap handler.

When this macro is non-zero, the compiler will act as if STRICT_ALIGNMENT were
non-zero when generating code for block moves. This can cause significantly
more instructions to be produced. Therefore, do not set this macro non-zero if
unaligned accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined. If this macro
is defined, it should produce a non-zero value when STRICT_ALIGNMENT is non-
zero.

DONT_REDUCE_ADDR
Define this macro to inhibit strength reduction of memory addresses. (On some
machines, such strength reduction seems to do harm rather than good.)

Chapter 21: Target Description Macros and Functions 493

MOVE_RATIO
The threshold of number of scalar memory-to-memory move insns, below which
a sequence of insns should be generated instead of a string move insn or a library
call. Increasing the value will always make code faster, but eventually incurs
high cost in increased code size.
Note that on machines where the corresponding move insn is a define_expand
that emits a sequence of insns, this macro counts the number of such sequences.
If you don’t define this, a reasonable default is used.

MOVE_BY_PIECES_P (size, alignment)
A C expression used to determine whether move_by_pieces will be used to
copy a chunk of memory, or whether some other block move mechanism will be
used. Defaults to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

MOVE_MAX_PIECES
A C expression used by move_by_pieces to determine the largest unit a load
or store used to copy memory is. Defaults to MOVE_MAX.

USE_LOAD_POST_INCREMENT (mode)
A C expression used to determine whether a load postincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

USE_LOAD_POST_DECREMENT (mode)
A C expression used to determine whether a load postdecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

USE_LOAD_PRE_INCREMENT (mode)
A C expression used to determine whether a load preincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

USE_LOAD_PRE_DECREMENT (mode)
A C expression used to determine whether a load predecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

USE_STORE_POST_INCREMENT (mode)
A C expression used to determine whether a store postincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

USE_STORE_POST_DECREMENT (mode)
A C expression used to determine whether a store postdecrement is a good
thing to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

USE_STORE_PRE_INCREMENT (mode)
This macro is used to determine whether a store preincrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

USE_STORE_PRE_DECREMENT (mode)
This macro is used to determine whether a store predecrement is a good thing
to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

NO_FUNCTION_CSE
Define this macro if it is as good or better to call a constant function address
than to call an address kept in a register.

494 Using and Porting the GNU Compiler Collection (GCC)

NO_RECURSIVE_FUNCTION_CSE
Define this macro if it is as good or better for a function to call itself with an
explicit address than to call an address kept in a register.

ADJUST_COST (insn, link, dep insn, cost)
A C statement (sans semicolon) to update the integer variable cost based on the
relationship between insn that is dependent on dep insn through the dependence
link. The default is to make no adjustment to cost. This can be used for example
to specify to the scheduler that an output- or anti-dependence does not incur
the same cost as a data-dependence.

ADJUST_PRIORITY (insn)
A C statement (sans semicolon) to update the integer scheduling priority INSN_
PRIORITY(insn). Reduce the priority to execute the insn earlier, increase the
priority to execute insn later. Do not define this macro if you do not need to
adjust the scheduling priorities of insns.

21.17 Dividing the Output into Sections (Texts, Data, . . .)

An object file is divided into sections containing different types of data. In the most
common case, there are three sections: the text section, which holds instructions and read-
only data; the data section, which holds initialized writable data; and the bss section, which
holds uninitialized data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what
commands to output to tell the assembler this. You can also define additional sections.

TEXT_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assem-
bler operation that should precede instructions and read-only data. Normally
"\t.text" is right.

DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the as-
sembler operation to identify the following data as writable initialized data.
Normally "\t.data" is right.

SHARED_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as shared data. If not
defined, DATA_SECTION_ASM_OP will be used.

BSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as uninitialized global
data. If not defined, and neither ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_
BSS are defined, uninitialized global data will be output in the data section if
‘-fno-common’ is passed, otherwise ASM_OUTPUT_COMMON will be used.

SHARED_BSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as uninitialized global

Chapter 21: Target Description Macros and Functions 495

shared data. If not defined, and BSS_SECTION_ASM_OP is, the latter will be
used.

INIT_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as initialization code. If
not defined, GCC will assume such a section does not exist.

FINI_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing
the assembler operation to identify the following data as finalization code. If
not defined, GCC will assume such a section does not exist.

CRT_CALL_STATIC_FUNCTION
If defined, a C statement that calls the function named as the sole argument
of this macro. This is used in ‘crtstuff.c’ if INIT_SECTION_ASM_OP or FINI_
SECTION_ASM_OP to calls to initialization and finalization functions from the init
and fini sections. By default, this macro is a simple function call. Some ports
need hand-crafted assembly code to avoid dependencies on registers initialized
in the function prologue or to ensure that constant pools don’t end up too far
way in the text section.

EXTRA_SECTIONS
A list of names for sections other than the standard two, which are in_text and
in_data. You need not define this macro on a system with no other sections
(that GCC needs to use).

EXTRA_SECTION_FUNCTIONS
One or more functions to be defined in ‘varasm.c’. These functions should do
jobs analogous to those of text_section and data_section, for your additional
sections. Do not define this macro if you do not define EXTRA_SECTIONS.

READONLY_DATA_SECTION
On most machines, read-only variables, constants, and jump tables are placed
in the text section. If this is not the case on your machine, this macro should be
defined to be the name of a function (either data_section or a function defined
in EXTRA_SECTIONS) that switches to the section to be used for read-only items.
If these items should be placed in the text section, this macro should not be
defined.

SELECT_SECTION (exp, reloc)
A C statement or statements to switch to the appropriate section for output
of exp. You can assume that exp is either a VAR_DECL node or a constant
of some sort. reloc indicates whether the initial value of exp requires link-
time relocations. Select the section by calling text_section or one of the
alternatives for other sections.
Do not define this macro if you put all read-only variables and constants in the
read-only data section (usually the text section).

SELECT_RTX_SECTION (mode, rtx)
A C statement or statements to switch to the appropriate section for output
of rtx in mode mode. You can assume that rtx is some kind of constant in

496 Using and Porting the GNU Compiler Collection (GCC)

RTL. The argument mode is redundant except in the case of a const_int rtx.
Select the section by calling text_section or one of the alternatives for other
sections.
Do not define this macro if you put all constants in the read-only data section.

JUMP_TABLES_IN_TEXT_SECTION
Define this macro to be an expression with a non-zero value if jump tables (for
tablejump insns) should be output in the text section, along with the assembler
instructions. Otherwise, the readonly data section is used.
This macro is irrelevant if there is no separate readonly data section.

ENCODE_SECTION_INFO (decl)
Define this macro if references to a symbol must be treated differently depending
on something about the variable or function named by the symbol (such as what
section it is in).
The macro definition, if any, is executed immediately after the rtl for decl has
been created and stored in DECL_RTL (decl). The value of the rtl will be a mem
whose address is a symbol_ref.
The usual thing for this macro to do is to record a flag in the symbol_ref (such
as SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if
one bit is not enough information).

STRIP_NAME_ENCODING (var, sym name)
Decode sym name and store the real name part in var, sans the characters
that encode section info. Define this macro if ENCODE_SECTION_INFO alters the
symbol’s name string.

UNIQUE_SECTION (decl, reloc)
A C statement to build up a unique section name, expressed as a STRING_CST
node, and assign it to ‘DECL_SECTION_NAME (decl)’. reloc indicates whether
the initial value of exp requires link-time relocations. If you do not define this
macro, GCC will use the symbol name prefixed by ‘.’ as the section name. Note
- this macro can now be called for uninitialised data items as well as initialised
data and functions.

21.18 Position Independent Code

This section describes macros that help implement generation of position independent
code. Simply defining these macros is not enough to generate valid PIC; you must also
add support to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as
well as LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something
appropriate when the source operand contains a symbolic address. You may also need to
alter the handling of switch statements so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data ad-
dresses in memory. In some cases this register is defined by a processor’s “appli-
cation binary interface” (ABI). When this macro is defined, RTL is generated

Chapter 21: Target Description Macros and Functions 497

for this register once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files to allocate
such a register (if necessary).

PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clob-
bered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM is not
defined.

FINALIZE_PIC
By generating position-independent code, when two different programs (A and
B) share a common library (libC.a), the text of the library can be shared
whether or not the library is linked at the same address for both programs.
In some of these environments, position-independent code requires not only the
use of different addressing modes, but also special code to enable the use of
these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special codes once the
function is being compiled into assembly code, but not before. (It is not done
before, because in the case of compiling an inline function, it would lead to
multiple PIC prologues being included in functions which used inline functions
and were compiled to assembly language.)

LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the
target machine when generating position independent code. You can assume
that x satisfies CONSTANT_P, so you need not check this. You can also assume
flag pic is true, so you need not check it either. You need not define this
macro if all constants (including SYMBOL_REF) can be immediate operands when
generating position independent code.

21.19 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write in-
structions in assembler language—rather than what the instructions do.

21.19.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembler file.

ASM_FILE_START (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the start of an assembler file.

Normally this macro is defined to output a line containing ‘#NO_APP’, which is
a comment that has no effect on most assemblers but tells the GNU assembler
that it can save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

498 Using and Porting the GNU Compiler Collection (GCC)

ASM_FILE_END (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the end of an assembler file.

If this macro is not defined, the default is to output nothing special at the end
of the file. Most systems don’t require any definition.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the
line.

ASM_APP_ON
A C string constant for text to be output before each asm statement or group
of consecutive ones. Normally this is "#APP", which is a comment that has no
effect on most assemblers but tells the GNU assembler that it must check the
lines that follow for all valid assembler constructs.

ASM_APP_OFF
A C string constant for text to be output after each asm statement or group of
consecutive ones. Normally this is "#NO_APP", which tells the GNU assembler to
resume making the time-saving assumptions that are valid for ordinary compiler
output.

ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information
which indicates that filename name is the current source file to the stdio stream
stream.

This macro need not be defined if the standard form of output for the file format
in use is appropriate.

OUTPUT_QUOTED_STRING (stream, string)
A C statement to output the string string to the stdio stream stream. If you
do not call the function output_quoted_string in your config files, GCC will
only call it to output filenames to the assembler source. So you can use it to
canonicalize the format of the filename using this macro.

ASM_OUTPUT_SOURCE_LINE (stream, line)
A C statement to output DBX or SDB debugging information before code for
line number line of the current source file to the stdio stream stream.

This macro need not be defined if the standard form of debugging information
for the debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler file to handle a ‘#ident’
directive containing the text string. If this macro is not defined, nothing is
output for a ‘#ident’ directive.

Chapter 21: Target Description Macros and Functions 499

OBJC_PROLOGUE
A C statement to output any assembler statements which are required to pre-
cede any Objective-C object definitions or message sending. The statement is
executed only when compiling an Objective-C program.

Target Hookvoid TARGET_ASM_NAMED_SECTION (const char *name, unsigned
int flags, unsigned int align)

Output assembly directives to switch to section name. The section should have at-
tributes as specified by flags, which is a bit mask of the SECTION_* flags defined in
‘output.h’. If align is non-zero, it contains an alignment in bytes to be used for the
section, otherwise some target default should be used. Only targets that must specify
an alignment within the section directive need pay attention to align – we will still
use ASM_OUTPUT_ALIGN.

Target Hookbool TARGET_HAVE_NAMED_SECTIONS
This flag is true if the target supports TARGET_ASM_NAMED_SECTION.

Target Hookunsigned int TARGET_SECTION_TYPE_FLAGS (tree decl, const
char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on
a variable or function decl, a section name, and whether or not the declaration’s
initializer may contain runtime relocations. decl may be null, in which case read-
write data should be assumed.

The default version if this function handles choosing code vs data, read-only vs read-
write data, and flag_pic. You should only need to override this if your target has
special flags that might be set via __attribute__.

21.19.2 Output of Data

This describes data output.

ASM_OUTPUT_LONG_DOUBLE (stream, value)
ASM_OUTPUT_DOUBLE (stream, value)
ASM_OUTPUT_FLOAT (stream, value)
ASM_OUTPUT_THREE_QUARTER_FLOAT (stream, value)
ASM_OUTPUT_SHORT_FLOAT (stream, value)
ASM_OUTPUT_BYTE_FLOAT (stream, value)

A C statement to output to the stdio stream stream an assembler instruction
to assemble a floating-point constant of TFmode, DFmode, SFmode, TQFmode,
HFmode, or QFmode, respectively, whose value is value. value will be a C ex-
pression of type REAL_VALUE_TYPE. Macros such as REAL_VALUE_TO_TARGET_
DOUBLE are useful for writing these definitions.

500 Using and Porting the GNU Compiler Collection (GCC)

ASM_OUTPUT_QUADRUPLE_INT (stream, exp)
ASM_OUTPUT_DOUBLE_INT (stream, exp)
ASM_OUTPUT_INT (stream, exp)
ASM_OUTPUT_SHORT (stream, exp)
ASM_OUTPUT_CHAR (stream, exp)

A C statement to output to the stdio stream stream an assembler instruction to
assemble an integer of 16, 8, 4, 2 or 1 bytes, respectively, whose value is value.
The argument exp will be an RTL expression which represents a constant value.
Use ‘output_addr_const (stream, exp)’ to output this value as an assembler
expression.
For sizes larger than UNITS_PER_WORD, if the action of a macro would be identi-
cal to repeatedly calling the macro corresponding to a size of UNITS_PER_WORD,
once for each word, you need not define the macro.

OUTPUT_ADDR_CONST_EXTRA (stream, x, fail)
A C statement to recognize rtx patterns that output_addr_const can’t deal
with, and output assembly code to stream corresponding to the pattern x. This
may be used to allow machine-dependent UNSPECs to appear within constants.
If OUTPUT_ADDR_CONST_EXTRA fails to recognize a pattern, it must goto fail, so
that a standard error message is printed. If it prints an error message itself, by
calling, for example, output_operand_lossage, it may just complete normally.

ASM_OUTPUT_BYTE (stream, value)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a single byte containing the number value.

ASM_BYTE_OP
A C string constant, including spacing, giving the pseudo-op to use for a se-
quence of single-byte constants. If this macro is not defined, the default is
"\t.byte\t".

UNALIGNED_SHORT_ASM_OP
UNALIGNED_INT_ASM_OP
UNALIGNED_DOUBLE_INT_ASM_OP

A C string constant, including spacing, giving the pseudo-op to use to assemble
16-, 32-, and 64-bit integers respectively without adding implicit padding or
alignment. These macros are required if DWARF 2 frame unwind is used. On
ELF systems, these will default to .2byte, .4byte, and .8byte.

ASM_OUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a string constant containing the len bytes at ptr. ptr will be a C
expression of type char * and len a C expression of type int.
If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assem-
bler, do not define the macro ASM_OUTPUT_ASCII.

CONSTANT_POOL_BEFORE_FUNCTION
You may define this macro as a C expression. You should define the expression
to have a non-zero value if GCC should output the constant pool for a function
before the code for the function, or a zero value if GCC should output the

Chapter 21: Target Description Macros and Functions 501

constant pool after the function. If you do not define this macro, the usual
case, GCC will output the constant pool before the function.

ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)
A C statement to output assembler commands to define the start of the constant
pool for a function. funname is a string giving the name of the function. Should
the return type of the function be required, it can be obtained via fundecl. size
is the size, in bytes, of the constant pool that will be written immediately after
this call.
If no constant-pool prefix is required, the usual case, this macro need not be
defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)
A C statement (with or without semicolon) to output a constant in the constant
pool, if it needs special treatment. (This macro need not do anything for RTL
expressions that can be output normally.)
The argument file is the standard I/O stream to output the assembler code on.
x is the RTL expression for the constant to output, and mode is the machine
mode (in case x is a ‘const_int’). align is the required alignment for the value
x; you should output an assembler directive to force this much alignment.
The argument labelno is a number to use in an internal label for the address of
this pool entry. The definition of this macro is responsible for outputting the
label definition at the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time
in the usual manner.
You need not define this macro if it would do nothing.

CONSTANT_AFTER_FUNCTION_P (exp)
Define this macro as a C expression which is nonzero if the constant exp, of
type tree, should be output after the code for a function. The compiler will
normally output all constants before the function; you need not define this
macro if this is OK.

ASM_OUTPUT_POOL_EPILOGUE (file funname fundecl size)
A C statement to output assembler commands to at the end of the constant
pool for a function. funname is a string giving the name of the function. Should
the return type of the function be required, you can obtain it via fundecl. size
is the size, in bytes, of the constant pool that GCC wrote immediately before
this call.
If no constant-pool epilogue is required, the usual case, you need not define this
macro.

IS_ASM_LOGICAL_LINE_SEPARATOR (C)
Define this macro as a C expression which is nonzero if C is used as a logical
line separator by the assembler.
If you do not define this macro, the default is that only the character ‘;’ is
treated as a logical line separator.

502 Using and Porting the GNU Compiler Collection (GCC)

Target Hookconst char * TARGET_ASM_OPEN_PAREN
Target Hookconst char * TARGET_ASM_CLOSE_PAREN

These target hooks are C string constants, describing the syntax in the assembler for
grouping arithmetic expressions. If not overridden, they default to normal parenthe-
ses, which is correct for most assemblers.

These macros are provided by ‘real.h’ for writing the definitions of ASM_OUTPUT_DOUBLE
and the like:

REAL_VALUE_TO_TARGET_SINGLE (x, l)
REAL_VALUE_TO_TARGET_DOUBLE (x, l)
REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target’s floating point rep-
resentation, and store its bit pattern in the array of long int whose address
is l. The number of elements in the output array is determined by the size of
the desired target floating point data type: 32 bits of it go in each long int
array element. Each array element holds 32 bits of the result, even if long int
is wider than 32 bits on the host machine.
The array element values are designed so that you can print them out using
fprintf in the order they should appear in the target machine’s memory.

REAL_VALUE_TO_DECIMAL (x, format, string)
This macro converts x, of type REAL_VALUE_TYPE, to a decimal number and
stores it as a string into string. You must pass, as string, the address of a long
enough block of space to hold the result.
The argument format is a printf-specification that serves as a suggestion for
how to format the output string.

21.19.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a common-label named name whose size is size bytes. The
variable rounded is the size rounded up to whatever alignment the caller wants.
Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.
This macro controls how the assembler definitions of uninitialized common
global variables are output.

ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_
COMMON, and gives you more flexibility in handling the required alignment of
the variable. The alignment is specified as the number of bits.

Chapter 21: Target Description Macros and Functions 503

ASM_OUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size, alignment)
Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be out-
put, if there is one, or NULL_TREE if there is no corresponding variable. If you
define this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and
ASM_OUTPUT_ALIGNED_COMMON. Define this macro when you need to see the
variable’s decl in order to chose what to output.

ASM_OUTPUT_SHARED_COMMON (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_COMMON, except that it is used when name
is shared. If not defined, ASM_OUTPUT_COMMON will be used.

ASM_OUTPUT_BSS (stream, decl, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of uninitialized global decl named name whose size is size
bytes. The variable rounded is the size rounded up to whatever alignment the
caller wants.
Try to use function asm_output_bss defined in ‘varasm.c’ when defining this
macro. If unable, use the expression assemble_name (stream, name) to output
the name itself; before and after that, output the additional assembler syntax
for defining the name, and a newline.
This macro controls how the assembler definitions of uninitialized global
variables are output. This macro exists to properly support languages like
C++ which do not have common data. However, this macro currently is not
defined for all targets. If this macro and ASM_OUTPUT_ALIGNED_BSS are
not defined then ASM_OUTPUT_COMMON or ASM_OUTPUT_ALIGNED_COMMON or
ASM_OUTPUT_ALIGNED_DECL_COMMON is used.

ASM_OUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)
Like ASM_OUTPUT_BSS except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_BSS, and
gives you more flexibility in handling the required alignment of the variable.
The alignment is specified as the number of bits.
Try to use function asm_output_aligned_bss defined in file ‘varasm.c’ when
defining this macro.

ASM_OUTPUT_SHARED_BSS (stream, decl, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_BSS, except that it is used when name
is shared. If not defined, ASM_OUTPUT_BSS will be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a local-common-label named name whose size is size bytes.
The variable rounded is the size rounded up to whatever alignment the caller
wants.
Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.
This macro controls how the assembler definitions of uninitialized static vari-
ables are output.

504 Using and Porting the GNU Compiler Collection (GCC)

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_
LOCAL, and gives you more flexibility in handling the required alignment of the
variable. The alignment is specified as the number of bits.

ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size, alignment)
Like ASM_OUTPUT_ALIGNED_DECL except that decl of the variable to be output,
if there is one, or NULL_TREE if there is no corresponding variable. If you define
this macro, GCC will use it in place of both ASM_OUTPUT_DECL and ASM_OUTPUT_
ALIGNED_DECL. Define this macro when you need to see the variable’s decl in
order to chose what to output.

ASM_OUTPUT_SHARED_LOCAL (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when name
is shared. If not defined, ASM_OUTPUT_LOCAL will be used.

21.19.4 Output and Generation of Labels

This is about outputting labels.

ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a label named name. Use the expression assemble_name
(stream, name) to output the name itself; before and after that, output the
additional assembler syntax for defining the name, and a newline.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of a function which is being defined.
This macro is responsible for outputting the label definition (perhaps using
ASM_OUTPUT_LABEL). The argument decl is the FUNCTION_DECL tree node rep-
resenting the function.
If this macro is not defined, then the function name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the size of a function which is being defined. The argu-
ment name is the name of the function. The argument decl is the FUNCTION_
DECL tree node representing the function.
If this macro is not defined, then the function size is not defined.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of an initialized variable which is being
defined. This macro must output the label definition (perhaps using ASM_
OUTPUT_LABEL). The argument decl is the VAR_DECL tree node representing the
variable.

Chapter 21: Target Description Macros and Functions 505

If this macro is not defined, then the variable name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for claiming a register regno for a global variable decl with name
name.
If you don’t define this macro, that is equivalent to defining it to do nothing.

ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to finish up declaring a variable name once
the compiler has processed its initializer fully and thus has had a chance to
determine the size of an array when controlled by an initializer. This is used on
systems where it’s necessary to declare something about the size of the object.
If you don’t define this macro, that is equivalent to defining it to do nothing.

ASM_GLOBALIZE_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream some
commands that will make the label name global; that is, available for reference
from other files. Use the expression assemble_name (stream, name) to output
the name itself; before and after that, output the additional assembler syntax
for making that name global, and a newline.

ASM_WEAKEN_LABEL
A C statement (sans semicolon) to output to the stdio stream stream some
commands that will make the label name weak; that is, available for reference
from other files but only used if no other definition is available. Use the ex-
pression assemble_name (stream, name) to output the name itself; before and
after that, output the additional assembler syntax for making that name weak,
and a newline.
If you don’t define this macro, GCC will not support weak symbols and you
should not define the SUPPORTS_WEAK macro.

SUPPORTS_WEAK
A C expression which evaluates to true if the target supports weak symbols.
If you don’t define this macro, ‘defaults.h’ provides a default definition. If
ASM_WEAKEN_LABEL is defined, the default definition is ‘1’; otherwise, it is ‘0’.
Define this macro if you want to control weak symbol support with a compiler
flag such as ‘-melf’.

MAKE_DECL_ONE_ONLY
A C statement (sans semicolon) to mark decl to be emitted as a public symbol
such that extra copies in multiple translation units will be discarded by the
linker. Define this macro if your object file format provides support for this
concept, such as the ‘COMDAT’ section flags in the Microsoft Windows PE/COFF
format, and this support requires changes to decl, such as putting it in a separate
section.

SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only seman-
tics.

506 Using and Porting the GNU Compiler Collection (GCC)

If you don’t define this macro, ‘varasm.c’ provides a default definition. If MAKE_
DECL_ONE_ONLY is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define
this macro if you want to control one-only symbol support with a compiler flag,
or if setting the DECL_ONE_ONLY flag is enough to mark a declaration to be
emitted as one-only.

ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name of an external symbol named name which is
referenced in this compilation but not defined. The value of decl is the tree
node for the declaration.
This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (stream, symref)
A C statement (sans semicolon) to output on stream an assembler pseudo-op
to declare a library function name external. The name of the library function
is given by symref, which has type rtx and is a symbol_ref.
This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference
in assembler syntax to a label named name. This should add ‘_’ to the front
of the name, if that is customary on your operating system, as it is in most
Berkeley Unix systems. This macro is used in assemble_name.

ASM_OUTPUT_SYMBOL_REF (stream, sym)
A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If
not defined, assemble_output will be used to output the name of the symbol.
This macro may be used to modify the way a symbol is referenced depending
on information encoded by ENCODE_SECTION_INFO.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a label whose name is
made from the string prefix and the number num.
It is absolutely essential that these labels be distinct from the labels used for
user-level functions and variables. Otherwise, certain programs will have name
conflicts with internal labels.
It is desirable to exclude internal labels from the symbol table of the object file.
Most assemblers have a naming convention for labels that should be excluded;
on many systems, the letter ‘L’ at the beginning of a label has this effect. You
should find out what convention your system uses, and follow it.
The usual definition of this macro is as follows:

fprintf (stream, "L%s%d:\n", prefix, num)

ASM_OUTPUT_DEBUG_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a debug info label whose
name is made from the string prefix and the number num. This is useful for

Chapter 21: Target Description Macros and Functions 507

VLIW targets, where debug info labels may need to be treated differently than
branch target labels. On some systems, branch target labels must be at the
beginning of instruction bundles, but debug info labels can occur in the middle
of instruction bundles.
If this macro is not defined, then ASM_OUTPUT_INTERNAL_LABEL will be used.

ASM_OUTPUT_ALTERNATE_LABEL_NAME (stream, string)
A C statement to output to the stdio stream stream the string string.
The default definition of this macro is as follows:

fprintf (stream, "%s:\n", LABEL_ALTERNATE_NAME (INSN))

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from
the string prefix and the number num.
This string, when output subsequently by assemble_name, should produce the
output that ASM_OUTPUT_INTERNAL_LABEL would produce with the same prefix
and num.
If the string begins with ‘*’, then assemble_name will output the rest of the
string unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL
to use ‘*’ in this way. If the string doesn’t start with ‘*’, then ASM_OUTPUT_
LABELREF gets to output the string, and may change it. (Of course, ASM_
OUTPUT_LABELREF is also part of your machine description, so you should know
what it does on your machine.)

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.
The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore,
the string must be such as to result in valid assembler code. The argument num-
ber is different each time this macro is executed; it prevents conflicts between
similarly-named internal static variables in different scopes.
Ideally this string should not be a valid C identifier, to prevent any conflict
with the user’s own symbols. Most assemblers allow periods or percent signs
in assembler symbols; putting at least one of these between the name and the
number will suffice.

ASM_OUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol name to have the value value.
If SET_ASM_OP is defined, a default definition is provided which is correct for
most systems.

ASM_OUTPUT_DEF_FROM_DECLS (stream, decl of name, decl of value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol whose tree node is decl of name to have the
value of the tree node decl of value. This macro will be used in preference
to ‘ASM_OUTPUT_DEF’ if it is defined and if the tree nodes are available.

508 Using and Porting the GNU Compiler Collection (GCC)

ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL (stream, symbol, high, low)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol symbol to have a value equal to the difference of
the two symbols high and low, i.e. high minus low. GCC guarantees that the
symbols high and low are already known by the assembler so that the difference
resolves into a constant.

If SET_ASM_OP is defined, a default definition is provided which is correct for
most systems.

ASM_OUTPUT_WEAK_ALIAS (stream, name, value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the weak symbol name to have the value value. If value is
NULL, it defines name as an undefined weak symbol.

Define this macro if the target only supports weak aliases; define ASM_OUTPUT_
DEF instead if possible.

OBJC_GEN_METHOD_LABEL (buf, is inst, class name, cat name, sel name)
Define this macro to override the default assembler names used for Objective-C
methods.

The default name is a unique method number followed by the name of the class
(e.g. ‘_1_Foo’). For methods in categories, the name of the category is also
included in the assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the
method’s selector is not present in the name. Therefore, particular systems
define other ways of computing names.

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class name, cat name and sel name put together,
plus 50 characters extra.

The argument is inst specifies whether the method is an instance method or
a class method; class name is the name of the class; cat name is the name of
the category (or NULL if the method is not in a category); and sel name is the
name of the selector.

On systems where the assembler can handle quoted names, you can use this
macro to provide more human-readable names.

ASM_DECLARE_CLASS_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands
to declare that the label name is an Objective-C class reference. This is only
needed for targets whose linkers have special support for NeXT-style runtimes.

ASM_DECLARE_UNRESOLVED_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands
to declare that the label name is an unresolved Objective-C class reference. This
is only needed for targets whose linkers have special support for NeXT-style
runtimes.

Chapter 21: Target Description Macros and Functions 509

21.19.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)—functions to initialize data in the program when the program is started. These
functions need to be called before the program is “started”—that is to say, before main is
called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

Depending on the operating system and its executable file format, either ‘crtstuff.c’
or ‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called
in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which
provide arbitrarily-named sections. A section is set aside for a list of constructors, and
another for a list of destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each
object file that defines an initialization function also puts a word in the constructor section
to point to that function. The linker accumulates all these words into one contiguous
‘.ctors’ section. Termination functions are handled similarly.

To use this method, you need appropriate definitions of the macros ASM_OUTPUT_
CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR. Usually you can get them by including
‘svr4.h’.

When arbitrary sections are available, there are two variants, depending upon how the
code in ‘crtstuff.c’ is called. On systems that support an init section which is executed
at program startup, parts of ‘crtstuff.c’ are compiled into that section. The program is
linked by the gcc driver like this:

ld -o output file crtbegin.o ... crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init section of ‘crtbegin.o’;
the remainder of the function appears in the init section of ‘crtend.o’. The linker will pull
these two parts of the section together, making a whole function. If any of the user’s object
files linked into the middle of it contribute code, then that code will be executed as part of
the body of __do_global_ctors.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.
If no init section is available, do not define INIT_SECTION_ASM_OP. Then __do_global_

ctors is built into the text section like all other functions, and resides in ‘libgcc.a’.

510 Using and Porting the GNU Compiler Collection (GCC)

When GCC compiles any function called main, it inserts a procedure call to __main as
the first executable code after the function prologue. The __main function, also defined in
‘libgcc2.c’, simply calls ‘__do_global_ctors’.

In file formats that don’t support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU ld) and an ‘a.out’ format must be used. In
this case, ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’,
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a “set”; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. ASM_OUTPUT_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using file formats which the GNU linker does
not support, such as ‘ECOFF’. In this case, ASM_OUTPUT_CONSTRUCTOR does not produce
an N_SETT symbol; initialization and termination functions are recognized simply by their
names. This requires an extra program in the linkage step, called collect2. This program
pretends to be the linker, for use with GCC; it does its job by running the ordinary linker,
but also arranges to include the vectors of initialization and termination functions. These
functions are called via __main as described above.

Choosing among these configuration options has been simplified by a set of operating-
system-dependent files in the ‘config’ subdirectory. These files define all of the relevant
parameters. Usually it is sufficient to include one into your specific machine-dependent
configuration file. These files are:

‘aoutos.h’
For operating systems using the ‘a.out’ format.

‘next.h’ For operating systems using the ‘MachO’ format.

‘svr3.h’ For System V Release 3 and similar systems using ‘COFF’ format.

‘svr4.h’ For System V Release 4 and similar systems using ‘ELF’ format.

‘vms.h’ For the VMS operating system.

21.19.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

INIT_SECTION_ASM_OP
If defined, a C string constant, including spacing, for the assembler opera-
tion to identify the following data as initialization code. If not defined, GCC
will assume such a section does not exist. When you are using special sec-
tions for initialization and termination functions, this macro also controls how
‘crtstuff.c’ and ‘libgcc2.c’ arrange to run the initialization functions.

Chapter 21: Target Description Macros and Functions 511

HAS_INIT_SECTION
If defined, main will not call __main as described above. This macro should be
defined for systems that control the contents of the init section on a symbol-by-
symbol basis, such as OSF/1, and should not be defined explicitly for systems
that support INIT_SECTION_ASM_OP.

LD_INIT_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

LD_FINI_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is a finalization routine.

INVOKE__main
If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP.
This macro should be defined for systems where the init section is not actually
run automatically, but is still useful for collecting the lists of constructors and
destructors.

SUPPORTS_INIT_PRIORITY
If nonzero, the C++ init_priority attribute is supported and the compiler
should emit instructions to control the order of initialization of objects. If zero,
the compiler will issue an error message upon encountering an init_priority
attribute.

ASM_OUTPUT_CONSTRUCTOR (stream, name)
Define this macro as a C statement to output on the stream stream the assem-
bler code to arrange to call the function named name at initialization time.
Assume that name is the name of a C function generated automatically by
the compiler. This function takes no arguments. Use the function assemble_
name to output the name name; this performs any system-specific syntactic
transformations such as adding an underscore.
If you don’t define this macro, nothing special is output to arrange to call
the function. This is correct when the function will be called in some other
manner—for example, by means of the collect2 program, which looks through
the symbol table to find these functions by their names.

ASM_OUTPUT_DESTRUCTOR (stream, name)
This is like ASM_OUTPUT_CONSTRUCTOR but used for termination functions rather
than initialization functions.
When ASM_OUTPUT_CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR are defined, the
initialization routine generated for the generated object file will have static
linkage.

If your system uses collect2 as the means of processing constructors, then that program
normally uses nm to scan an object file for constructor functions to be called. On such
systems you must not define ASM_OUTPUT_CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR as
the object file’s initialization routine must have global scope.

On certain kinds of systems, you can define these macros to make collect2 work faster
(and, in some cases, make it work at all):

512 Using and Porting the GNU Compiler Collection (GCC)

OBJECT_FORMAT_COFF
Define this macro if the system uses COFF (Common Object File Format)
object files, so that collect2 can assume this format and scan object files
directly for dynamic constructor/destructor functions.

OBJECT_FORMAT_ROSE
Define this macro if the system uses ROSE format object files, so that collect2
can assume this format and scan object files directly for dynamic construc-
tor/destructor functions.

These macros are effective only in a native compiler; collect2 as part of a
cross compiler always uses nm for the target machine.

REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name to use to
execute nm. The default is to search the path normally for nm.

If your system supports shared libraries and has a program to list the dynamic
dependencies of a given library or executable, you can define these macros to
enable support for running initialization and termination functions in shared
libraries:

LDD_SUFFIX
Define this macro to a C string constant containing the name of the program
which lists dynamic dependencies, like "ldd" under SunOS 4.

PARSE_LDD_OUTPUT (ptr)
Define this macro to be C code that extracts filenames from the output of the
program denoted by LDD_SUFFIX. ptr is a variable of type char * that points to
the beginning of a line of output from LDD_SUFFIX. If the line lists a dynamic
dependency, the code must advance ptr to the beginning of the filename on
that line. Otherwise, it must set ptr to NULL.

21.19.7 Output of Assembler Instructions

This describes assembler instruction output.

REGISTER_NAMES
A C initializer containing the assembler’s names for the machine registers, each
one as a C string constant. This is what translates register numbers in the
compiler into assembler language.

ADDITIONAL_REGISTER_NAMES
If defined, a C initializer for an array of structures containing a name and a
register number. This macro defines additional names for hard registers, thus
allowing the asm option in declarations to refer to registers using alternate
names.

ASM_OUTPUT_OPCODE (stream, ptr)
Define this macro if you are using an unusual assembler that requires different
names for the machine instructions.

Chapter 21: Target Description Macros and Functions 513

The definition is a C statement or statements which output an assembler in-
struction opcode to the stdio stream stream. The macro-operand ptr is a vari-
able of type char * which points to the opcode name in its “internal” form—the
form that is written in the machine description. The definition should output
the opcode name to stream, performing any translation you desire, and incre-
ment the variable ptr to point at the end of the opcode so that it will not be
output twice.

In fact, your macro definition may process less than the entire opcode name,
or more than the opcode name; but if you want to process text that includes
‘%’-sequences to substitute operands, you must take care of the substitution
yourself. Just be sure to increment ptr over whatever text should not be output
normally.

If you need to look at the operand values, they can be found as the elements of
recog_operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)
If defined, a C statement to be executed just prior to the output of assem-
bler code for insn, to modify the extracted operands so they will be output
differently.

Here the argument opvec is the vector containing the operands extracted from
insn, and noperands is the number of elements of the vector which contain
meaningful data for this insn. The contents of this vector are what will be
used to convert the insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single file of in-
struction patterns; by defining this macro differently, you can cause a large class
of instructions to be output differently (such as with rearranged operands). Nat-
urally, variations in assembler syntax affecting individual insn patterns ought
to be handled by writing conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

FINAL_PRESCAN_LABEL
If defined, FINAL_PRESCAN_INSN will be called on each CODE_LABEL. In that
case, opvec will be a null pointer and noperands will be zero.

PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing
the operand. It is used when identical operands must be printed differently
depending on the context. code comes from the ‘%’ specification that was used
to request printing of the operand. If the specification was just ‘%digit’ then
code is 0; if the specification was ‘%ltr digit’ then code is the ASCII code for
ltr.

514 Using and Porting the GNU Compiler Collection (GCC)

If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized
from REGISTER_NAMES.
When the machine description has a specification ‘%punct’ (a ‘%’ followed by a
punctuation character), this macro is called with a null pointer for x and the
punctuation character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character
for use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not
defined, it means that no punctuation characters (except for the standard one,
‘%’) are used in this way.

PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand that is a memory reference whose address is x. x is
an RTL expression.
On some machines, the syntax for a symbolic address depends on the sec-
tion that the address refers to. On these machines, define the macro ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check
for it here. See Section 21.19 [Assembler Format], page 497.

DBR_OUTPUT_SEQEND(file)
A C statement, to be executed after all slot-filler instructions have been output.
If necessary, call dbr_sequence_length to determine the number of slots filled
in a sequence (zero if not currently outputting a sequence), to decide how many
no-ops to output, or whatever.
Don’t define this macro if it has nothing to do, but it is helpful in reading
assembly output if the extent of the delay sequence is made explicit (e.g. with
white space).
Note that output routines for instructions with delay slots must be prepared to
deal with not being output as part of a sequence (i.e. when the scheduling pass is
not run, or when no slot fillers could be found.) The variable final_sequence
is null when not processing a sequence, otherwise it contains the sequence rtx
being output.

REGISTER_PREFIX
LOCAL_LABEL_PREFIX
USER_LABEL_PREFIX
IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options
of asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must
support multiple assembler formats. In that case, the various ‘tm.h’ files can
define these macros differently.

ASM_FPRINTF_EXTENSIONS(file, argptr, format)
If defined this macro should expand to a series of case statements which will
be parsed inside the switch statement of the asm_fprintf function. This
allows targets to define extra printf formats which may useful when generating

Chapter 21: Target Description Macros and Functions 515

their assembler statements. Note that upper case letters are reserved for future
generic extensions to asm fprintf, and so are not available to target specific
code. The output file is given by the parameter file. The varargs input pointer
is argptr and the rest of the format string, starting the character after the one
that is being switched upon, is pointed to by format.

ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language (such as different
opcodes), define this macro as a C expression that gives the numeric index of
the assembler language dialect to use, with zero as the first variant.
If this macro is defined, you may use constructs of the form
‘{option0|option1|option2...}’ in the output templates of pat-
terns (see Section 20.5 [Output Template], page 357) or in the first argument
of asm_fprintf. This construct outputs ‘option0’, ‘option1’ or ‘option2’,
etc., if the value of ASSEMBLER_DIALECT is zero, one or two, etc. Any special
characters within these strings retain their usual meaning.
If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any
special meaning when used in templates or operands to asm_fprintf.
Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_
PREFIX and IMMEDIATE_PREFIX if you can express the variations in assembler
language syntax with that mechanism. Define ASSEMBLER_DIALECT and use
the ‘{option0|option1}’ syntax if the syntax variant are larger and involve
such things as different opcodes or operand order.

ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard
register number regno onto the stack. The code need not be optimal, since this
macro is used only when profiling.

ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard
register number regno off of the stack. The code need not be optimal, since
this macro is used only when profiling.

21.19.8 Output of Dispatch Tables

This concerns dispatch tables.

ASM_OUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)
A C statement to output to the stdio stream stream an assembler pseudo-
instruction to generate a difference between two labels. value and rel are the
numbers of two internal labels. The definitions of these labels are output using
ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the same way here.
For example,

fprintf (stream, "\t.word L%d-L%d\n",
value, rel)

You must provide this macro on machines where the addresses in a dispatch
table are relative to the table’s own address. If defined, GCC will also use

516 Using and Porting the GNU Compiler Collection (GCC)

this macro on all machines when producing PIC. body is the body of the
ADDR_DIFF_VEC; it is provided so that the mode and flags can be read.

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch
table are absolute.
The definition should be a C statement to output to the stdio stream stream
an assembler pseudo-instruction to generate a reference to a label. value is
the number of an internal label whose definition is output using ASM_OUTPUT_
INTERNAL_LABEL. For example,

fprintf (stream, "\t.word L%d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output specially. The
first three arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the
fourth argument is the jump-table which follows (a jump_insn containing an
addr_vec or addr_diff_vec).
This feature is used on system V to output a swbeg statement for the table.
If this macro is not defined, these labels are output with ASM_OUTPUT_
INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)
Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for
the table is written. It should write the appropriate code to stdio stream stream.
The argument table is the jump-table insn, and num is the label-number of the
preceding label.
If this macro is not defined, nothing special is output at the end of the jump-
table.

21.19.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

ASM_OUTPUT_EH_REGION_BEG ()
A C expression to output text to mark the start of an exception region.
This macro need not be defined on most platforms.

ASM_OUTPUT_EH_REGION_END ()
A C expression to output text to mark the end of an exception region.
This macro need not be defined on most platforms.

EXCEPTION_SECTION ()
A C expression to switch to the section in which the main exception table is to be
placed (see Section 21.17 [Sections], page 494). The default is a section named
.gcc_except_table on machines that support named sections via TARGET_ASM_
NAMED_SECTION, otherwise if ‘-fpic’ or ‘-fPIC’ is in effect, the data_section,
otherwise the readonly_data_section.

Chapter 21: Target Description Macros and Functions 517

EH_FRAME_SECTION_NAME
If defined, a C string constant for the name of the section containing exception
handling frame unwind information. If not defined, GCC will provide a default
definition if the target supports named sections. ‘crtstuff.c’ uses this macro
to switch to the appropriate section.
You should define this symbol if your target supports DWARF 2 frame unwind
information and the default definition does not work.

OMIT_EH_TABLE ()
A C expression that is nonzero if the normal exception table output should be
omitted.
This macro need not be defined on most platforms.

EH_TABLE_LOOKUP ()
Alternate runtime support for looking up an exception at runtime and finding
the associated handler, if the default method won’t work.
This macro need not be defined on most platforms.

DOESNT_NEED_UNWINDER
A C expression that decides whether or not the current function needs to have
a function unwinder generated for it. See the file ‘except.c’ for details on when
to define this, and how.

MASK_RETURN_ADDR
An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it
does not contain any extraneous set bits in it.

DWARF2_UNWIND_INFO
Define this macro to 0 if your target supports DWARF 2 frame unwind infor-
mation, but it does not yet work with exception handling. Otherwise, if your
target supports this information (if it defines ‘INCOMING_RETURN_ADDR_RTX’ and
either ‘UNALIGNED_INT_ASM_OP’ or ‘OBJECT_FORMAT_ELF’), GCC will provide a
default definition of 1.
If this macro is defined to 1, the DWARF 2 unwinder will be the default excep-
tion handling mechanism; otherwise, setjmp/longjmp will be used by default.
If this macro is defined to anything, the DWARF 2 unwinder will be used
instead of inline unwinders and __unwind_function in the non-setjmp case.

DWARF_CIE_DATA_ALIGNMENT
This macro need only be defined if the target might save registers in the function
prologue at an offset to the stack pointer that is not aligned to UNITS_PER_
WORD. The definition should be the negative minimum alignment if STACK_
GROWS_DOWNWARD is defined, and the positive minimum alignment otherwise.
See Section 21.20.5 [SDB and DWARF], page 524. Only applicable if the target
supports DWARF 2 frame unwind information.

21.19.10 Assembler Commands for Alignment

This describes commands for alignment.

518 Using and Porting the GNU Compiler Collection (GCC)

LABEL_ALIGN_AFTER_BARRIER (label)
The alignment (log base 2) to put in front of label, which follows a BARRIER.
This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.
Unless it’s necessary to inspect the label parameter, it is better to set the
variable align jumps in the target’s OVERRIDE_OPTIONS. Otherwise, you should
try to honour the user’s selection in align jumps in a LABEL_ALIGN_AFTER_
BARRIER implementation.

LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN_AFTER_
BARRIER. This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

LOOP_ALIGN (label)
The alignment (log base 2) to put in front of label, which follows a NOTE_INSN_
LOOP_BEG note.
This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.
Unless it’s necessary to inspect the label parameter, it is better to set the vari-
able align_loops in the target’s OVERRIDE_OPTIONS. Otherwise, you should
try to honour the user’s selection in align_loops in a LOOP_ALIGN implemen-
tation.

LOOP_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LOOP_ALIGN. This works
only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

LABEL_ALIGN (label)
The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_
BARRIER / LOOP_ALIGN specify a different alignment, the maximum of the spec-
ified values is used.
Unless it’s necessary to inspect the label parameter, it is better to set the vari-
able align_labels in the target’s OVERRIDE_OPTIONS. Otherwise, you should
try to honour the user’s selection in align_labels in a LABEL_ALIGN imple-
mentation.

LABEL_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN. This
works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

ASM_OUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction
to advance the location counter by nbytes bytes. Those bytes should be zero
when loaded. nbytes will be a C expression of type int.

ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
because it fails to put zeros in the bytes that are skipped. This is true on many

Chapter 21: Target Description Macros and Functions 519

Unix systems, where the pseudo–op to skip bytes produces no-op instructions
rather than zeros when used in the text section.

ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to
advance the location counter to a multiple of 2 to the power bytes. power will
be a C expression of type int.

ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max skip)
A C statement to output to the stdio stream stream an assembler command to
advance the location counter to a multiple of 2 to the power bytes, but only
if max skip or fewer bytes are needed to satisfy the alignment request. power
and max skip will be a C expression of type int.

21.20 Controlling Debugging Information Format

This describes how to specify debugging information.

21.20.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the compiler register
number regno. In simple cases, the value of this expression may be regno itself.
But sometimes there are some registers that the compiler knows about and
DBX does not, or vice versa. In such cases, some register may need to have one
number in the compiler and another for DBX.
If two registers have consecutive numbers inside GCC, and they can be used as a
pair to hold a multiword value, then they must have consecutive numbers after
renumbering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable
to access such a pair, because they expect register pairs to be consecutive in
their own numbering scheme.
If you find yourself defining DBX_REGISTER_NUMBER in way that does not pre-
serve register pairs, then what you must do instead is redefine the actual register
numbering scheme.

DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an automatic variable
having address x (an RTL expression). The default computation assumes that x
is based on the frame-pointer and gives the offset from the frame-pointer. This
is required for targets that produce debugging output for DBX or COFF-style
debugging output for SDB and allow the frame-pointer to be eliminated when
the ‘-g’ options is used.

DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an argument having
address x (an RTL expression). The nominal offset is offset.

520 Using and Porting the GNU Compiler Collection (GCC)

PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GCC should produce
when the user specifies just ‘-g’. Define this if you have arranged for GCC to
support more than one format of debugging output. Currently, the allowable
values are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, DWARF2_DEBUG, and XCOFF_
DEBUG.

When the user specifies ‘-ggdb’, GCC normally also uses the value of this macro
to select the debugging output format, but with two exceptions. If DWARF2_
DEBUGGING_INFO is defined and LINKER_DOES_NOT_WORK_WITH_DWARF2 is not
defined, GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DEBUGGING_
INFO is defined, GCC uses DBX_DEBUG.

The value of this macro only affects the default debugging output; the user can
always get a specific type of output by using ‘-gstabs’, ‘-gcoff’, ‘-gdwarf-1’,
‘-gdwarf-2’, or ‘-gxcoff’.

21.20.2 Specific Options for DBX Output

These are specific options for DBX output.

DBX_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for DBX in response
to the ‘-g’ option.

XCOFF_DEBUGGING_INFO
Define this macro if GCC should produce XCOFF format debugging output in
response to the ‘-g’ option. This is a variant of DBX format.

DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GCC should by default generate GDB’s
extended version of DBX debugging information (assuming DBX-format debug-
ging information is enabled at all). If you don’t define the macro, the default
is 1: always generate the extended information if there is any occasion to.

DEBUG_SYMS_TEXT
Define this macro if all .stabs commands should be output while in the text
section.

ASM_STABS_OP
A C string constant, including spacing, naming the assembler pseudo op to use
instead of "\t.stabs\t" to define an ordinary debugging symbol. If you don’t
define this macro, "\t.stabs\t" is used. This macro applies only to DBX
debugging information format.

ASM_STABD_OP
A C string constant, including spacing, naming the assembler pseudo op to
use instead of "\t.stabd\t" to define a debugging symbol whose value is the
current location. If you don’t define this macro, "\t.stabd\t" is used. This
macro applies only to DBX debugging information format.

Chapter 21: Target Description Macros and Functions 521

ASM_STABN_OP
A C string constant, including spacing, naming the assembler pseudo op to use
instead of "\t.stabn\t" to define a debugging symbol with no name. If you
don’t define this macro, "\t.stabn\t" is used. This macro applies only to
DBX debugging information format.

DBX_NO_XREFS
Define this macro if DBX on your system does not support the construct
‘xstagname’. On some systems, this construct is used to describe a forward
reference to a structure named tagname. On other systems, this construct is
not supported at all.

DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally continued
(split into two separate .stabs directives) when it exceeds a certain length
(by default, 80 characters). On some operating systems, DBX requires this
splitting; on others, splitting must not be done. You can inhibit splitting by
defining this macro with the value zero. You can override the default splitting-
length by defining this macro as an expression for the length you desire.

DBX_CONTIN_CHAR
Normally continuation is indicated by adding a ‘\’ character to the end of a
.stabs string when a continuation follows. To use a different character instead,
define this macro as a character constant for the character you want to use. Do
not define this macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION
Define this macro if it is necessary to go to the data section before outputting
the ‘.stabs’ pseudo-op for a non-global static variable.

DBX_TYPE_DECL_STABS_CODE
The value to use in the “code” field of the .stabs directive for a typedef. The
default is N_LSYM.

DBX_STATIC_CONST_VAR_CODE
The value to use in the “code” field of the .stabs directive for a static variable
located in the text section. DBX format does not provide any “right” way to
do this. The default is N_FUN.

DBX_REGPARM_STABS_CODE
The value to use in the “code” field of the .stabs directive for a parameter
passed in registers. DBX format does not provide any “right” way to do this.
The default is N_RSYM.

DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a parameter
passed in registers. DBX format does not customarily provide any way to do
this. The default is ’P’.

DBX_MEMPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a stack parameter.
The default is ’p’.

522 Using and Porting the GNU Compiler Collection (GCC)

DBX_FUNCTION_FIRST
Define this macro if the DBX information for a function and its arguments
should precede the assembler code for the function. Normally, in DBX format,
the debugging information entirely follows the assembler code.

DBX_LBRAC_FIRST
Define this macro if the N_LBRAC symbol for a block should precede the debug-
ging information for variables and functions defined in that block. Normally, in
DBX format, the N_LBRAC symbol comes first.

DBX_BLOCKS_FUNCTION_RELATIVE
Define this macro if the value of a symbol describing the scope of a block (N_
LBRAC or N_RBRAC) should be relative to the start of the enclosing function.
Normally, GCC uses an absolute address.

DBX_USE_BINCL
Define this macro if GCC should generate N_BINCL and N_EINCL stabs for in-
cluded header files, as on Sun systems. This macro also directs GCC to output
a type number as a pair of a file number and a type number within the file.
Normally, GCC does not generate N_BINCL or N_EINCL stabs, and it outputs a
single number for a type number.

21.20.3 Open-Ended Hooks for DBX Format

These are hooks for DBX format.

DBX_OUTPUT_LBRAC (stream, name)
Define this macro to say how to output to stream the debugging information
for the start of a scope level for variable names. The argument name is the
name of an assembler symbol (for use with assemble_name) whose value is the
address where the scope begins.

DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_ENUM (stream, type)
Define this macro if the target machine requires special handling to output an
enumeration type. The definition should be a C statement (sans semicolon) to
output the appropriate information to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)
Define this macro if the target machine requires special output at the end of the
debugging information for a function. The definition should be a C statement
(sans semicolon) to output the appropriate information to stream. function is
the FUNCTION_DECL node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)
Define this macro if you need to control the order of output of the standard data
types at the beginning of compilation. The argument syms is a tree which is
a chain of all the predefined global symbols, including names of data types.

Chapter 21: Target Description Macros and Functions 523

Normally, DBX output starts with definitions of the types for integers and
characters, followed by all the other predefined types of the particular language
in no particular order.

On some machines, it is necessary to output different particular types first. To
do this, define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the
necessary order. Any predefined types that you don’t explicitly output will be
output afterward in no particular order.

Be careful not to define this macro so that it works only for C. There are no
global variables to access most of the built-in types, because another language
may have another set of types. The way to output a particular type is to look
through syms to see if you can find it. Here is an example:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
"long int"))

dbxout_symbol (decl);
...

}

This does nothing if the expected type does not exist.

See the function init_decl_processing in ‘c-decl.c’ to find the names to
use for all the built-in C types.

Here is another way of finding a particular type:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (TREE_CODE (decl) == TYPE_DECL
&& (TREE_CODE (TREE_TYPE (decl))

== INTEGER_CST)
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&& TYPE_UNSIGNED (TREE_TYPE (decl)))

/* This must be unsigned short. */
dbxout_symbol (decl);

...
}

NO_DBX_FUNCTION_END
Some stabs encapsulation formats (in particular ECOFF), cannot handle the
.stabs "",N_FUN,,0,0,Lscope-function-1 gdb dbx extension construct. On
those machines, define this macro to turn this feature off without disturbing
the rest of the gdb extensions.

21.20.4 File Names in DBX Format

This describes file names in DBX format.

524 Using and Porting the GNU Compiler Collection (GCC)

DBX_WORKING_DIRECTORY
Define this if DBX wants to have the current directory recorded in each object
file.
Note that the working directory is always recorded if GDB extensions are en-
abled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the main source file—the file speci-
fied as the input file for compilation. This macro is called only once, at the
beginning of compilation.
This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that the current directory during compilation is named
name.
This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of compilation
of the main source file name.
If you don’t define this macro, nothing special is output at the end of compila-
tion, which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the current source file. This out-
put is generated each time input shifts to a different source file as a result of
‘#include’, the end of an included file, or a ‘#line’ command.
This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

21.20.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

SDB_DEBUGGING_INFO
Define this macro if GCC should produce COFF-style debugging output for
SDB in response to the ‘-g’ option.

DWARF_DEBUGGING_INFO
Define this macro if GCC should produce dwarf format debugging output in
response to the ‘-g’ option.

DWARF2_DEBUGGING_INFO
Define this macro if GCC should produce dwarf version 2 format debugging
output in response to the ‘-g’ option.

Chapter 21: Target Description Macros and Functions 525

To support optional call frame debugging information, you must also define
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the pro-
logue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and
dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if
you don’t.

DWARF2_FRAME_INFO
Define this macro to a nonzero value if GCC should always output Dwarf 2
frame information. If DWARF2_UNWIND_INFO (see Section 21.19.9 [Exception
Region Output], page 516 is nonzero, GCC will output this information not
matter how you define DWARF2_FRAME_INFO.

LINKER_DOES_NOT_WORK_WITH_DWARF2
Define this macro if the linker does not work with Dwarf version 2. Normally,
if the user specifies only ‘-ggdb’ GCC will use Dwarf version 2 if available; this
macro disables this. See the description of the PREFERRED_DEBUGGING_TYPE
macro for more details.

DWARF2_GENERATE_TEXT_SECTION_LABEL
By default, the Dwarf 2 debugging information generator will generate a label
to mark the beginning of the text section. If it is better simply to use the name
of the text section itself, rather than an explicit label, to indicate the beginning
of the text section, define this macro to zero.

DWARF2_ASM_LINE_DEBUG_INFO
Define this macro to be a nonzero value if the assembler can generate Dwarf 2
line debug info sections. This will result in much more compact line number
tables, and hence is desirable if it works.

PUT_SDB_...
Define these macros to override the assembler syntax for the special SDB assem-
bler directives. See ‘sdbout.c’ for a list of these macros and their arguments.
If the standard syntax is used, you need not define them yourself.

SDB_DELIM
Some assemblers do not support a semicolon as a delimiter, even between SDB
assembler directives. In that case, define this macro to be the delimiter to use
(usually ‘\n’). It is not necessary to define a new set of PUT_SDB_op macros if
this is the only change required.

SDB_GENERATE_FAKE
Define this macro to override the usual method of constructing a dummy name
for anonymous structure and union types. See ‘sdbout.c’ for more information.

SDB_ALLOW_UNKNOWN_REFERENCES
Define this macro to allow references to unknown structure, union, or enumer-
ation tags to be emitted. Standard COFF does not allow handling of unknown
references, MIPS ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES
Define this macro to allow references to structure, union, or enumeration tags
that have not yet been seen to be handled. Some assemblers choke if forward
tags are used, while some require it.

526 Using and Porting the GNU Compiler Collection (GCC)

21.21 Cross Compilation and Floating Point

While all modern machines use 2’s complement representation for integers, there are a
variety of representations for floating point numbers. This means that in a cross-compiler
the representation of floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and pre-
cision, the cross compiler cannot safely use the host machine’s floating point arithmetic.
Therefore, floating point constants must be represented in the target machine’s format.
This means that the cross compiler cannot use atof to parse a floating point constant; it
must have its own special routine to use instead. Also, constant folding must emulate the
target machine’s arithmetic (or must not be done at all).

The macros in the following table should be defined only if you are cross compiling
between different floating point formats.

Otherwise, don’t define them. Then default definitions will be set up which use double
as the data type, == to test for equality, etc.

You don’t need to worry about how many times you use an operand of any of these
macros. The compiler never uses operands which have side effects.

REAL_VALUE_TYPE
A macro for the C data type to be used to hold a floating point value in the
target machine’s format. Typically this would be a struct containing an array
of int.

REAL_VALUES_EQUAL (x, y)
A macro for a C expression which compares for equality the two values, x and
y, both of type REAL_VALUE_TYPE.

REAL_VALUES_LESS (x, y)
A macro for a C expression which tests whether x is less than y, both values
being of type REAL_VALUE_TYPE and interpreted as floating point numbers in
the target machine’s representation.

REAL_VALUE_LDEXP (x, scale)
A macro for a C expression which performs the standard library function ldexp,
but using the target machine’s floating point representation. Both x and the
value of the expression have type REAL_VALUE_TYPE. The second argument,
scale, is an integer.

REAL_VALUE_FIX (x)
A macro whose definition is a C expression to convert the target-machine float-
ing point value x to a signed integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (x)
A macro whose definition is a C expression to convert the target-machine float-
ing point value x to an unsigned integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_RNDZINT (x)
A macro whose definition is a C expression to round the target-machine floating
point value x towards zero to an integer value (but still as a floating point
number). x has type REAL_VALUE_TYPE, and so does the value.

Chapter 21: Target Description Macros and Functions 527

REAL_VALUE_UNSIGNED_RNDZINT (x)
A macro whose definition is a C expression to round the target-machine floating
point value x towards zero to an unsigned integer value (but still represented as
a floating point number). x has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_ATOF (string, mode)
A macro for a C expression which converts string, an expression of type char
*, into a floating point number in the target machine’s representation for mode
mode. The value has type REAL_VALUE_TYPE.

REAL_INFINITY
Define this macro if infinity is a possible floating point value, and therefore
division by 0 is legitimate.

REAL_VALUE_ISINF (x)
A macro for a C expression which determines whether x, a floating point value,
is infinity. The value has type int. By default, this is defined to call isinf.

REAL_VALUE_ISNAN (x)
A macro for a C expression which determines whether x, a floating point value,
is a “nan” (not-a-number). The value has type int. By default, this is defined
to call isnan.

Define the following additional macros if you want to make floating point constant folding
work while cross compiling. If you don’t define them, cross compilation is still possible, but
constant folding will not happen for floating point values.

REAL_ARITHMETIC (output, code, x, y)
A macro for a C statement which calculates an arithmetic operation of the two
floating point values x and y, both of type REAL_VALUE_TYPE in the target ma-
chine’s representation, to produce a result of the same type and representation
which is stored in output (which will be a variable).

The operation to be performed is specified by code, a tree code which will always
be one of the following: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_
EXPR, MIN_EXPR.

The expansion of this macro is responsible for checking for overflow. If overflow
happens, the macro expansion should execute the statement return 0;, which
indicates the inability to perform the arithmetic operation requested.

REAL_VALUE_NEGATE (x)
A macro for a C expression which returns the negative of the floating point
value x. Both x and the value of the expression have type REAL_VALUE_TYPE
and are in the target machine’s floating point representation.

There is no way for this macro to report overflow, since overflow can’t happen
in the negation operation.

REAL_VALUE_TRUNCATE (mode, x)
A macro for a C expression which converts the floating point value x to mode
mode.

528 Using and Porting the GNU Compiler Collection (GCC)

Both x and the value of the expression are in the target machine’s floating point
representation and have type REAL_VALUE_TYPE. However, the value should
have an appropriate bit pattern to be output properly as a floating constant
whose precision accords with mode mode.
There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (low, high, x)
A macro for a C expression which converts a floating point value x into a
double-precision integer which is then stored into low and high, two variables
of type int.

REAL_VALUE_FROM_INT (x, low, high, mode)
A macro for a C expression which converts a double-precision integer found in
low and high, two variables of type int, into a floating point value which is then
stored into x. The value is in the target machine’s representation for mode
mode and has the type REAL_VALUE_TYPE.

21.22 Mode Switching Instructions

The following macros control mode switching optimizations:

OPTIMIZE_MODE_SWITCHING (entity)
Define this macro if the port needs extra instructions inserted for mode switch-
ing in an optimizing compilation.
For an example, the SH4 can perform both single and double precision floating
point operations, but to perform a single precision operation, the FPSCR PR
bit has to be cleared, while for a double precision operation, this bit has to
be set. Changing the PR bit requires a general purpose register as a scratch
register, hence these FPSCR sets have to be inserted before reload, i.e. you
can’t put this into instruction emitting or MACHINE_DEPENDENT_REORG.
You can have multiple entities that are mode-switched, and select at run time
which entities actually need it. OPTIMIZE_MODE_SWITCHING should return non-
zero for any entity that that needs mode-switching. If you define this macro,
you also have to define NUM_MODES_FOR_MODE_SWITCHING, MODE_NEEDED, MODE_
PRIORITY_TO_MODE and EMIT_MODE_SET. NORMAL_MODE is optional.

NUM_MODES_FOR_MODE_SWITCHING
If you define OPTIMIZE_MODE_SWITCHING, you have to define this as initializer
for an array of integers. Each initializer element N refers to an entity that
needs mode switching, and specifies the number of different modes that might
need to be set for this entity. The position of the initializer in the initializer -
starting counting at zero - determines the integer that is used to refer to the
mode-switched entity in question. In macros that take mode arguments / yield
a mode result, modes are represented as numbers 0 . . . N − 1. N is used to
specify that no mode switch is needed / supplied.

MODE_NEEDED (entity, insn)
entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_
SWITCHING is defined, you must define this macro to return an integer value not

Chapter 21: Target Description Macros and Functions 529

larger than the corresponding element in NUM_MODES_FOR_MODE_SWITCHING, to
denote the mode that entity must be switched into prior to the execution of
insn.

NORMAL_MODE (entity)
If this macro is defined, it is evaluated for every entity that needs mode switch-
ing. It should evaluate to an integer, which is a mode that entity is assumed
to be switched to at function entry and exit.

MODE_PRIORITY_TO_MODE (entity, n)
This macro specifies the order in which modes for entity are processed. 0 is the
highest priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest. The
value of the macro should be an integer designating a mode for entity. For any
fixed entity, mode_priority_to_mode (entity, n) shall be a bijection in 0 . . .
num_modes_for_mode_switching[entity] - 1.

EMIT_MODE_SET (entity, mode, hard regs live)
Generate one or more insns to set entity to mode. hard reg live is the set of
hard registers live at the point where the insn(s) are to be inserted.

21.23 Miscellaneous Parameters

Here are several miscellaneous parameters.

PREDICATE_CODES
Define this if you have defined special-purpose predicates in the file ‘machine.c’.
This macro is called within an initializer of an array of structures. The first
field in the structure is the name of a predicate and the second field is an array
of rtl codes. For each predicate, list all rtl codes that can be in expressions
matched by the predicate. The list should have a trailing comma. Here is an
example of two entries in the list for a typical RISC machine:

#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

Defining this macro does not affect the generated code (however, incorrect def-
initions that omit an rtl code that may be matched by the predicate can cause
the compiler to malfunction). Instead, it allows the table built by ‘genrecog’
to be more compact and efficient, thus speeding up the compiler. The most
important predicates to include in the list specified by this macro are those
used in the most insn patterns.

For each predicate function named in PREDICATE_CODES, a declaration will be
generated in ‘insn-codes.h’.

SPECIAL_MODE_PREDICATES
Define this if you have special predicates that know special things about modes.
Genrecog will warn about certain forms of match_operand without a mode; if
the operand predicate is listed in SPECIAL_MODE_PREDICATES, the warning will
be suppressed.

530 Using and Porting the GNU Compiler Collection (GCC)

Here is an example from the IA-32 port (ext_register_operand specially
checks for HImode or SImode in preparation for a byte extraction from %ah
etc.).

#define SPECIAL_MODE_PREDICATES \
"ext_register_operand",

CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of
a jump-table should have.

CASE_VECTOR_SHORTEN_MODE (min offset, max offset, body)
Optional: return the preferred mode for an addr_diff_vec when the minimum
and maximum offset are known. If you define this, it enables extra code in
branch shortening to deal with addr_diff_vec. To make this work, you also
have to define INSN ALIGN and make the alignment for addr_diff_vec ex-
plicit. The body argument is provided so that the offset unsigned and scale
flags can be updated.

CASE_VECTOR_PC_RELATIVE
Define this macro to be a C expression to indicate when jump-tables should
contain relative addresses. If jump-tables never contain relative addresses, then
you need not define this macro.

CASE_DROPS_THROUGH
Define this if control falls through a case insn when the index value is out of
range. This means the specified default-label is actually ignored by the case
insn proper.

CASE_VALUES_THRESHOLD
Define this to be the smallest number of different values for which it is best
to use a jump-table instead of a tree of conditional branches. The default is
four for machines with a casesi instruction and five otherwise. This is best for
most machines.

WORD_REGISTER_OPERATIONS
Define this macro if operations between registers with integral mode smaller
than a word are always performed on the entire register. Most RISC machines
have this property and most CISC machines do not.

LOAD_EXTEND_OP (mode)
Define this macro to be a C expression indicating when insns that read memory
in mode, an integral mode narrower than a word, set the bits outside of mode
to be either the sign-extension or the zero-extension of the data read. Return
SIGN_EXTEND for values of mode for which the insn sign-extends, ZERO_EXTEND
for which it zero-extends, and NIL for other modes.
This macro is not called with mode non-integral or with a width greater than
or equal to BITS_PER_WORD, so you may return any value in this case. Do
not define this macro if it would always return NIL. On machines where this
macro is defined, you will normally define it as the constant SIGN_EXTEND or
ZERO_EXTEND.

Chapter 21: Target Description Macros and Functions 531

SHORT_IMMEDIATES_SIGN_EXTEND
Define this macro if loading short immediate values into registers sign extends.

IMPLICIT_FIX_EXPR
An alias for a tree code that should be used by default for conversion of floating
point values to fixed point. Normally, FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC
Define this macro if the same instructions that convert a floating point number
to a signed fixed point number also convert validly to an unsigned one.

EASY_DIV_EXPR
An alias for a tree code that is the easiest kind of division to compile code
for in the general case. It may be TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_
DIV_EXPR or ROUND_DIV_EXPR. These four division operators differ in how they
round the result to an integer. EASY_DIV_EXPR is used when it is permissible to
use any of those kinds of division and the choice should be made on the basis
of efficiency.

MOVE_MAX The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations.

MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. If this is
undefined, the default is MOVE_MAX. Otherwise, it is the constant value that is
the largest value that MOVE_MAX can have at run-time.

SHIFT_COUNT_TRUNCATED
A C expression that is nonzero if on this machine the number of bits actually
used for the count of a shift operation is equal to the number of bits needed
to represent the size of the object being shifted. When this macro is non-zero,
the compiler will assume that it is safe to omit a sign-extend, zero-extend, and
certain bitwise ‘and’ instructions that truncates the count of a shift operation.
On machines that have instructions that act on bit-fields at variable positions,
which may include ‘bit test’ instructions, a nonzero SHIFT_COUNT_TRUNCATED
also enables deletion of truncations of the values that serve as arguments to
bit-field instructions.

If both types of instructions truncate the count (for shifts) and position (for
bit-field operations), or if no variable-position bit-field instructions exist, you
should define this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only
applies to shift operations and not the (real or pretended) bit-field operations.
Define SHIFT_COUNT_TRUNCATED to be zero on such machines. Instead, add
patterns to the ‘md’ file that include the implied truncation of the shift instruc-
tions.

You need not define this macro if it would always have the value of zero.

532 Using and Porting the GNU Compiler Collection (GCC)

TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to “convert” an
integer of inprec bits to one of outprec bits (where outprec is smaller than
inprec) by merely operating on it as if it had only outprec bits.
On many machines, this expression can be 1.
When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which
MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making
TRULY_NOOP_TRUNCATION return 0 in such cases may improve things.

STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with
an integral mode and stored by a store-flag instruction (‘scond’) when the
condition is true. This description must apply to all the ‘scond’ patterns and
all the comparison operators whose results have a MODE_INT mode.
A value of 1 or −1 means that the instruction implementing the comparison
operator returns exactly 1 or −1 when the comparison is true and 0 when the
comparison is false. Otherwise, the value indicates which bits of the result are
guaranteed to be 1 when the comparison is true. This value is interpreted in
the mode of the comparison operation, which is given by the mode of the first
operand in the ‘scond’ pattern. Either the low bit or the sign bit of STORE_
FLAG_VALUE be on. Presently, only those bits are used by the compiler.
If STORE_FLAG_VALUE is neither 1 or −1, the compiler will generate code that
depends only on the specified bits. It can also replace comparison operators
with equivalent operations if they cause the required bits to be set, even if the
remaining bits are undefined. For example, on a machine whose comparison
operators return an SImode value and where STORE_FLAG_VALUE is defined as
‘0x80000000’, saying that just the sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign
bit.
There is no way to describe a machine that always sets the low-order bit for a
true value, but does not guarantee the value of any other bits, but we do not
know of any machine that has such an instruction. If you are trying to port
GCC to such a machine, include an instruction to perform a logical-and of the
result with 1 in the pattern for the comparison operators and let us know (see
Section 10.3 [How to Report Bugs], page 244).
Often, a machine will have multiple instructions that obtain a value from a
comparison (or the condition codes). Here are rules to guide the choice of value
for STORE_FLAG_VALUE, and hence the instructions to be used:
• Use the shortest sequence that yields a valid definition for STORE_FLAG_

VALUE. It is more efficient for the compiler to “normalize” the value (con-
vert it to, e.g., 1 or 0) than for the comparison operators to do so because
there may be opportunities to combine the normalization with other oper-
ations.

Chapter 21: Target Description Macros and Functions 533

• For equal-length sequences, use a value of 1 or −1, with −1 being slightly
preferred on machines with expensive jumps and 1 preferred on other ma-
chines.

• As a second choice, choose a value of ‘0x80000001’ if instructions exist that
set both the sign and low-order bits but do not define the others.

• Otherwise, use a value of ‘0x80000000’.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and
its negation in the same number of instructions. On those machines, you should
also define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code
values with less instructions than the corresponding ‘scond’ insn followed by
and or plus. On those machines, define the appropriate patterns. Use the
names incscc and decscc, respectively, for the patterns which perform plus or
minus operations on condition code values. See ‘rs6000.md’ for some examples.
The GNU Superoptizer can be used to find such instruction sequences on other
machines.
You need not define STORE_FLAG_VALUE if the machine has no store-flag in-
structions.

FLOAT_STORE_FLAG_VALUE (mode)
A C expression that gives a non-zero REAL_VALUE_TYPE value that is returned
when comparison operators with floating-point results are true. Define this
macro on machine that have comparison operations that return floating-point
values. If there are no such operations, do not define this macro.

Pmode An alias for the machine mode for pointers. On most machines, define this to
be the integer mode corresponding to the width of a hardware pointer; SImode
on 32-bit machine or DImode on 64-bit machines. On some machines you must
define this to be one of the partial integer modes, such as PSImode.
The width of Pmode must be at least as large as the value of POINTER_SIZE.
If it is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to
specify how pointers are extended to Pmode.

FUNCTION_MODE
An alias for the machine mode used for memory references to functions being
called, in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (decl)
A C expression for the maximum number of instructions above which the func-
tion decl should not be inlined. decl is a FUNCTION_DECL node.
The default definition of this macro is 64 plus 8 times the number of arguments
that the function accepts. Some people think a larger threshold should be used
on RISC machines.

STDC_0_IN_SYSTEM_HEADERS
In normal operation, the preprocessor expands __STDC__ to the constant 1, to
signify that GCC conforms to ISO Standard C. On some hosts, like Solaris,

534 Using and Porting the GNU Compiler Collection (GCC)

the system compiler uses a different convention, where __STDC__ is normally 0,
but is 1 if the user specifies strict conformance to the C Standard.
Defining STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host con-
vention when processing system header files, but when processing user files
__STDC__ will always expand to 1.

SCCS_DIRECTIVE
Define this if the preprocessor should ignore #sccs directives and print no error
message.

NO_IMPLICIT_EXTERN_C
Define this macro if the system header files support C++ as well as C. This
macro inhibits the usual method of using system header files in C++, which is
to pretend that the file’s contents are enclosed in ‘extern "C" {...}’.

HANDLE_PRAGMA (getc, ungetc, name)
This macro is no longer supported. You must use REGISTER_TARGET_PRAGMAS
instead.

REGISTER_TARGET_PRAGMAS (pfile)
Define this macro if you want to implement any target-specific pragmas. If
defined, it is a C expression which makes a series of calls to the cpp_register_
pragma and/or cpp_register_pragma_space functions. The pfile argument is
the first argument to supply to these functions. The macro may also do setup
required for the pragmas.
The primary reason to define this macro is to provide compatibility with other
compilers for the same target. In general, we discourage definition of target-
specific pragmas for GCC.
If the pragma can be implemented by attributes then the macro
‘INSERT_ATTRIBUTES’ might be a useful one to define as well.
Preprocessor macros that appear on pragma lines are not expanded. All
‘#pragma’ directives that do not match any registered pragma are silently
ignored, unless the user specifies ‘-Wunknown-pragmas’.

Functionvoid cpp_register_pragma (cpp_reader *pfile, const
char *space, const char *name, void (*callback) (cpp_reader
*))

Each call to cpp_register_pragma establishes one pragma. The callback
routine will be called when the preprocessor encounters a pragma of the
form

#pragma [space] name ...

space must have been the subject of a previous call to cpp_register_
pragma_space, or else be a null pointer. The callback routine receives
pfile as its first argument, but must not use it for anything (this may
change in the future). It may read any text after the name by making
calls to c_lex. Text which is not read by the callback will be silently
ignored.
Note that both space and name are case sensitive.

Chapter 21: Target Description Macros and Functions 535

For an example use of this routine, see ‘c4x.h’ and the callback routines
defined in ‘c4x.c’.
Note that the use of c_lex is specific to the C and C++ compilers. It
will not work in the Java or Fortran compilers, or any other language
compilers for that matter. Thus if c_lex is going to be called from
target-specific code, it must only be done so when building the C and
C++ compilers. This can be done by defining the variables c_target_
objs and cxx_target_objs in the target entry in the ‘config.gcc’ file.
These variables should name the target-specific, language-specific object
file which contains the code that uses c_lex. Note it will also be necessary
to add a rule to the makefile fragment pointed to by tmake_file that
shows how to build this object file.

Functionvoid cpp_register_pragma_space (cpp_reader *pfile,
const char *space)

This routine establishes a namespace for pragmas, which will be registered
by subsequent calls to cpp_register_pragma. For example, pragmas
defined by the C standard are in the ‘STDC’ namespace, and pragmas
specific to GCC are in the ‘GCC’ namespace.
For an example use of this routine in a target header, see ‘v850.h’.

HANDLE_SYSV_PRAGMA
Define this macro (to a value of 1) if you want the System V style pragmas
‘#pragma pack(<n>)’ and ‘#pragma weak <name> [=<value>]’ to be supported
by gcc.
The pack pragma specifies the maximum alignment (in bytes) of fields within
a structure, in much the same way as the ‘__aligned__’ and ‘__packed__’
__attribute__s do. A pack value of zero resets the behaviour to the default.
The weak pragma only works if SUPPORTS_WEAK and ASM_WEAKEN_LABEL are
defined. If enabled it allows the creation of specifically named weak labels,
optionally with a value.

HANDLE_PRAGMA_PACK_PUSH_POP
Define this macro (to a value of 1) if you want to support the Win32 style prag-
mas ‘#pragma pack(push,n)’ and ‘#pragma pack(pop)’. The ‘pack(push,n)’
pragma specifies the maximum alignment (in bytes) of fields within a structure,
in much the same way as the ‘__aligned__’ and ‘__packed__’ __attribute__s
do. A pack value of zero resets the behaviour to the default. Successive invoca-
tions of this pragma cause the previous values to be stacked, so that invocations
of ‘#pragma pack(pop)’ will return to the previous value.

Target Hookint TARGET_VALID_DECL_ATTRIBUTE (tree decl, tree attributes,
tree identifier, tree args)

If defined, this target hook is a function which returns nonzero if identifier with argu-
ments args is a valid machine specific attribute for decl. The attributes in attributes
have previously been assigned to decl.

536 Using and Porting the GNU Compiler Collection (GCC)

Target Hookint TARGET_VALID_TYPE_ATTRIBUTE (tree type, tree attributes,
tree identifier, tree args)

If defined, this target hook is a function which returns nonzero if identifier with argu-
ments args is a valid machine specific attribute for type. The attributes in attributes
have previously been assigned to type.

Target Hookint TARGET_COMP_TYPE_ATTRIBUTES (tree type1, tree type2)
If defined, this target hook is a function which returns zero if the attributes on type1
and type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated). If this is not defined, machine-
specific attributes are supposed always to be compatible.

Target Hookvoid TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type)
If defined, this target hook is a function which assigns default attributes to newly
defined type.

Target Hooktree TARGET_MERGE_TYPE_ATTRIBUTES (tree type1, tree type2)
Define this target hook if the merging of type attributes needs special handling. If
defined, the result is a list of the combined TYPE_ATTRIBUTES of type1 and type2. It
is assumed that comptypes has already been called and returned 1. This function
may call merge_attributes to handle machine-independent merging.

Target Hooktree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree
newdecl)

Define this target hook if the merging of decl attributes needs special handling. If
defined, the result is a list of the combined DECL_MACHINE_ATTRIBUTES of olddecl
and newdecl. newdecl is a duplicate declaration of olddecl. Examples of when this
is needed are when one attribute overrides another, or when an attribute is nullified
by a subsequent definition. This function may call merge_attributes to handle
machine-independent merging.

If the only target-specific handling you require is ‘dllimport’ for Windows targets,
you should define the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES. This links in a
function called merge_dllimport_decl_attributes which can then be defined as
the expansion of TARGET_MERGE_DECL_ATTRIBUTES. This is done in ‘i386/cygwin.h’
and ‘i386/i386.c’, for example.

Target Hookvoid TARGET_INSERT_ATTRIBUTES (tree node, tree *attr ptr)
Define this target hook if you want to be able to add attributes to a decl when it
is being created. This is normally useful for back ends which wish to implement a
pragma by using the attributes which correspond to the pragma’s effect. The node
argument is the decl which is being created. The attr ptr argument is a pointer to
the attribute list for this decl. The list itself should not be modified, since it may be
shared with other decls, but attributes may be chained on the head of the list and
*attr ptr modified to point to the new attributes, or a copy of the list may be made
if further changes are needed.

Chapter 21: Target Description Macros and Functions 537

DOLLARS_IN_IDENTIFIERS
Define this macro to control use of the character ‘$’ in identifier names. 0 means
‘$’ is not allowed by default; 1 means it is allowed. 1 is the default; there is
no need to define this macro in that case. This macro controls the compiler
proper; it does not affect the preprocessor.

NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character ‘$’ in label
names. By default constructors and destructors in G++ have ‘$’ in the identi-
fiers. If this macro is defined, ‘.’ is used instead.

NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character ‘.’ in label
names. By default constructors and destructors in G++ have names that use
‘.’. If this macro is defined, these names are rewritten to avoid ‘.’.

DEFAULT_MAIN_RETURN
Define this macro if the target system expects every program’s main function
to return a standard “success” value by default (if no other value is explicitly
returned).
The definition should be a C statement (sans semicolon) to generate the appro-
priate rtl instructions. It is used only when compiling the end of main.

NEED_ATEXIT
Define this if the target system lacks the function atexit from the ISO C
standard. If this macro is defined, a default definition will be provided to
support C++. If ON_EXIT is not defined, a default exit function will also be
provided.

ON_EXIT Define this macro if the target has another way to implement atexit functionality
without replacing exit. For instance, SunOS 4 has a similar on_exit library
function.
The definition should be a functional macro which can be used just like the
atexit function.

EXIT_BODY
Define this if your exit function needs to do something besides calling an
external function _cleanup before terminating with _exit. The EXIT_BODY
macro is only needed if NEED_ATEXIT is defined and ON_EXIT is not defined.

INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to
use a resource set or clobbered in insn. insn is always a jump_insn or an insn;
GCC knows that every call_insn has this behavior. On machines where some
insn or jump_insn is really a function call and hence has this behavior, you
should define this macro.
You need not define this macro if it would always return zero.

INSN_REFERENCES_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay
slot scheduler to place instructions in the delay slot of insn, even if they appear

538 Using and Porting the GNU Compiler Collection (GCC)

to set or clobber a resource referenced in insn. insn is always a jump_insn or
an insn. On machines where some insn or jump_insn is really a function call
and its operands are registers whose use is actually in the subroutine it calls,
you should define this macro. Doing so allows the delay slot scheduler to move
instructions which copy arguments into the argument registers into the delay
slot of insn.
You need not define this macro if it would always return zero.

MACHINE_DEPENDENT_REORG (insn)
In rare cases, correct code generation requires extra machine dependent process-
ing between the second jump optimization pass and delayed branch scheduling.
On those machines, define this macro as a C statement to act on the code
starting at insn.

MULTIPLE_SYMBOL_SPACES
Define this macro if in some cases global symbols from one translation unit
may not be bound to undefined symbols in another translation unit without
user intervention. For instance, under Microsoft Windows symbols must be
explicitly imported from shared libraries (DLLs).

MD_ASM_CLOBBERS (clobbers)
A C statement that adds to clobbers STRING_CST trees for any hard regs the
port wishes to automatically clobber for all asms.

ISSUE_RATE
A C expression that returns how many instructions can be issued at the same
time if the machine is a superscalar machine.

MD_SCHED_INIT (file, verbose, max ready)
A C statement which is executed by the scheduler at the beginning of each
block of instructions that are to be scheduled. file is either a null pointer, or a
stdio stream to write any debug output to. verbose is the verbose level provided
by ‘-fsched-verbose-n’. max ready is the maximum number of insns in the
current scheduling region that can be live at the same time. This can be used
to allocate scratch space if it is needed.

MD_SCHED_FINISH (file, verbose)
A C statement which is executed by the scheduler at the end of each block of
instructions that are to be scheduled. It can be used to perform cleanup of
any actions done by the other scheduling macros. file is either a null pointer,
or a stdio stream to write any debug output to. verbose is the verbose level
provided by ‘-fsched-verbose-n’.

MD_SCHED_REORDER (file, verbose, ready, n ready, clock, can issue more)
A C statement which is executed by the scheduler after it has scheduled the
ready list to allow the machine description to reorder it (for example to com-
bine two small instructions together on ‘VLIW’ machines). file is either a null
pointer, or a stdio stream to write any debug output to. verbose is the ver-
bose level provided by ‘-fsched-verbose-n’. ready is a pointer to the ready
list of instructions that are ready to be scheduled. n ready is the number of
elements in the ready list. The scheduler reads the ready list in reverse order,

Chapter 21: Target Description Macros and Functions 539

starting with ready [n ready-1] and going to ready [0]. clock is the timer tick of
the scheduler. can issue more is an output parameter that is set to the number
of insns that can issue this clock; normally this is just issue_rate. See also
‘MD_SCHED_REORDER2’.

MD_SCHED_REORDER2 (file, verbose, ready, n ready, clock, can issue more)
Like ‘MD_SCHED_REORDER’, but called at a different time. While the
‘MD_SCHED_REORDER’ macro is called whenever the scheduler starts a new cycle,
this macro is used immediately after ‘MD_SCHED_VARIABLE_ISSUE’ is called; it
can reorder the ready list and set can issue more to determine whether there
are more insns to be scheduled in the same cycle. Defining this macro can be
useful if there are frequent situations where scheduling one insn causes other
insns to become ready in the same cycle, these other insns can then be taken
into account properly.

MD_SCHED_VARIABLE_ISSUE (file, verbose, insn, more)
A C statement which is executed by the scheduler after it has scheduled an insn
from the ready list. file is either a null pointer, or a stdio stream to write any de-
bug output to. verbose is the verbose level provided by ‘-fsched-verbose-n’.
insn is the instruction that was scheduled. more is the number of instructions
that can be issued in the current cycle. The ‘MD_SCHED_VARIABLE_ISSUE’ macro
is responsible for updating the value of more (typically by ‘more--’).

MAX_INTEGER_COMPUTATION_MODE
Define this to the largest integer machine mode which can be used for operations
other than load, store and copy operations.

You need only define this macro if the target holds values larger than word_mode
in general purpose registers. Most targets should not define this macro.

MATH_LIBRARY
Define this macro as a C string constant for the linker argument to link in the
system math library, or ‘""’ if the target does not have a separate math library.

You need only define this macro if the default of ‘"-lm"’ is wrong.

LIBRARY_PATH_ENV
Define this macro as a C string constant for the environment variable that
specifies where the linker should look for libraries.

You need only define this macro if the default of ‘"LIBRARY_PATH"’ is wrong.

TARGET_HAS_F_SETLKW
Define this macro if the target supports file locking with fcntl / F SETLKW.
Note that this functionality is part of POSIX. Defining TARGET_HAS_F_SETLKW
will enable the test coverage code to use file locking when exiting a program,
which avoids race conditions if the program has forked.

MAX_CONDITIONAL_EXECUTE
A C expression for the maximum number of instructions to execute via condi-
tional execution instructions instead of a branch. A value of BRANCH_COST+1 is
the default if the machine does not use cc0, and 1 if it does use cc0.

540 Using and Porting the GNU Compiler Collection (GCC)

IFCVT_MODIFY_TESTS
A C expression to modify the tests in TRUE_EXPR, and FALSE_EXPR for use in
converting insns in TEST_BB, THEN_BB, ELSE_BB, and JOIN_BB basic blocks to
conditional execution. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
the tests cannot be converted.

IFCVT_MODIFY_INSN
A C expression to modify the PATTERN of an INSN that is to be converted to
conditional execution format.

IFCVT_MODIFY_FINAL
A C expression to perform any final machine dependent modifications in con-
verting code to conditional execution in the basic blocks TEST_BB, THEN_BB,
ELSE_BB, and JOIN_BB.

IFCVT_MODIFY_CANCEL
A C expression to cancel any machine dependent modifications in converting
code to conditional execution in the basic blocks TEST_BB, THEN_BB, ELSE_BB,
and JOIN_BB.

Target Hookvoid TARGET_INIT_BUILTINS ()
Define this hook if you have any machine-specific built-in functions that
need to be defined. It should be a function that performs the necessary
setup.
Machine specific built-in functions can be useful to expand special ma-
chine instructions that would otherwise not normally be generated be-
cause they have no equivalent in the source language (for example, SIMD
vector instructions or prefetch instructions).
To create a built-in function, call the function builtin_function which
is defined by the language front end. You can use any type nodes set
up by build_common_tree_nodes and build_common_tree_nodes_2;
only language front ends that use these two functions will use
‘TARGET_INIT_BUILTINS’.

Target Hookrtx TARGET_EXPAND_BUILTIN (tree exp, rtx target,
rtx subtarget, enum machine_mode mode, int ignore)

Expand a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. exp is the expression for the function call; the
result should go to target if that is convenient, and have mode mode if
that is convenient. subtarget may be used as the target for computing
one of exp’s operands. ignore is nonzero if the value is to be ignored.
This function should return the result of the call to the built-in function.

MD_CAN_REDIRECT_BRANCH(branch1, branch2)
Take a branch insn in branch1 and a another in branch2. Return true if redi-
recting branch1 to the destination of branch2 is possible.
On some targets, branches may have a limited range. Optimizing the filling of
delay slots can result in branches being redirected, and this may in turn cause
a branch offset to overflow.

Chapter 22: The Configuration File 541

22 The Configuration File

The configuration file ‘xm-machine.h’ contains macro definitions that describe the ma-
chine and system on which the compiler is running, unlike the definitions in ‘machine.h’,
which describe the machine for which the compiler is producing output. Most of the values
in ‘xm-machine.h’ are actually the same on all machines that GCC runs on, so large parts
of all configuration files are identical. But there are some macros that vary:

USG Define this macro if the host system is System V.

VMS Define this macro if the host system is VMS.

FATAL_EXIT_CODE
A C expression for the status code to be returned when the compiler exits after
serious errors. The default is the system-provided macro ‘EXIT_FAILURE’, or ‘1’
if the system doesn’t define that macro. Define this macro only if these defaults
are incorrect.

SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler exits
without serious errors. (Warnings are not serious errors.) The default is the
system-provided macro ‘EXIT_SUCCESS’, or ‘0’ if the system doesn’t define that
macro. Define this macro only if these defaults are incorrect.

HOST_WORDS_BIG_ENDIAN
Defined if the host machine stores words of multi-word values in big-endian
order. (GCC does not depend on the host byte ordering within a word.)

HOST_FLOAT_WORDS_BIG_ENDIAN
Define this macro to be 1 if the host machine stores DFmode, XFmode or TFmode
floating point numbers in memory with the word containing the sign bit at the
lowest address; otherwise, define it to be zero.
This macro need not be defined if the ordering is the same as for multi-word
integers.

HOST_FLOAT_FORMAT
A numeric code distinguishing the floating point format for the host machine.
See TARGET_FLOAT_FORMAT in Section 21.5 [Storage Layout], page 428 for the
alternatives and default.

HOST_BITS_PER_CHAR
A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT
A C expression for the number of bits in short on the host machine.

HOST_BITS_PER_INT
A C expression for the number of bits in int on the host machine.

HOST_BITS_PER_LONG
A C expression for the number of bits in long on the host machine.

542 Using and Porting the GNU Compiler Collection (GCC)

HOST_BITS_PER_LONGLONG
A C expression for the number of bits in long long on the host machine.

ONLY_INT_FIELDS
Define this macro to indicate that the host compiler only supports int bit-fields,
rather than other integral types, including enum, as do most C compilers.

OBSTACK_CHUNK_SIZE
A C expression for the size of ordinary obstack chunks. If you don’t define this,
a usually-reasonable default is used.

OBSTACK_CHUNK_ALLOC
The function used to allocate obstack chunks. If you don’t define this, xmalloc
is used.

OBSTACK_CHUNK_FREE
The function used to free obstack chunks. If you don’t define this, free is used.

USE_C_ALLOCA
Define this macro to indicate that the compiler is running with the alloca
implemented in C. This version of alloca can be found in the file ‘alloca.c’;
to use it, you must also alter the ‘Makefile’ variable ALLOCA. (This is done
automatically for the systems on which we know it is needed.)
If you do define this macro, you should probably do it as follows:

#ifndef __GNUC__
#define USE_C_ALLOCA
#else
#define alloca __builtin_alloca
#endif

so that when the compiler is compiled with GCC it uses the more efficient
built-in alloca function.

FUNCTION_CONVERSION_BUG
Define this macro to indicate that the host compiler does not properly han-
dle converting a function value to a pointer-to-function when it is used in an
expression.

MULTIBYTE_CHARS
Define this macro to enable support for multibyte characters in the input to
GCC. This requires that the host system support the ISO C library functions
for converting multibyte characters to wide characters.

POSIX Define this if your system is POSIX.1 compliant.

PATH_SEPARATOR
Define this macro to be a C character constant representing the character used
to separate components in paths. The default value is the colon character

DIR_SEPARATOR
If your system uses some character other than slash to separate directory names
within a file specification, define this macro to be a C character constant speci-
fying that character. When GCC displays file names, the character you specify

Chapter 22: The Configuration File 543

will be used. GCC will test for both slash and the character you specify when
parsing filenames.

DIR_SEPARATOR_2
If your system uses an alternative character other than ‘DIR_SEPARATOR’ to
separate directory names within a file specification, define this macro to be
a C character constant specifying that character. If you define this macro,
GCC will test for slash, ‘DIR_SEPARATOR’, and ‘DIR_SEPARATOR_2’ when parsing
filenames.

TARGET_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on
your target machine. If you do not define this macro, GCC will use ‘.o’ as the
suffix for object files.

TARGET_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix to be automatically
added to executable files on your target machine. If you do not define this
macro, GCC will use the null string as the suffix for executable files.

HOST_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on
your host machine (‘xm-*.h’). If you do not define this macro, GCC will use
‘.o’ as the suffix for object files.

HOST_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix for executable files on
your host machine (‘xm-*.h’). If you do not define this macro, GCC will use
the null string as the suffix for executable files.

HOST_BIT_BUCKET
The name of a file or file-like object on the host system which acts as a “bit
bucket”. If you do not define this macro, GCC will use ‘/dev/null’ as the bit
bucket. If the target does not support a bit bucket, this should be defined to
the null string, or some other illegal filename. If the bit bucket is not writable,
GCC will use a temporary file instead.

COLLECT_EXPORT_LIST
If defined, collect2 will scan the individual object files specified on its com-
mand line and create an export list for the linker. Define this macro for systems
like AIX, where the linker discards object files that are not referenced from main
and uses export lists.

COLLECT2_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when collect2 is being initialized.

GCC_DRIVER_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when a compilation driver is being initialized.

544 Using and Porting the GNU Compiler Collection (GCC)

UPDATE_PATH_HOST_CANONICALIZE (path, key)
If defined, a C statement (sans semicolon) that performs host-dependent canon-
icalization when a path used in a compilation driver or preprocessor is canon-
icalized. path is the path to be canonicalized, and key is a translation prefix
when its value isn’t NULL. If the C statement does canonicalize path, the new
path should be returned.

In addition, configuration files for system V define bcopy, bzero and bcmp as aliases.
Some files define alloca as a macro when compiled with GCC, in order to take advantage
of the benefit of GCC’s built-in alloca.

Chapter 23: Makefile Fragments 545

23 Makefile Fragments

When you configure GCC using the ‘configure’ script (see Chapter 4 [Installation],
page 137), it will construct the file ‘Makefile’ from the template file ‘Makefile.in’. When
it does this, it will incorporate makefile fragment files from the ‘config’ directory, named
‘t-target’ and ‘x-host’. If these files do not exist, it means nothing needs to be added for
a given target or host.

23.1 The Target Makefile Fragment

The target makefile fragment, ‘t-target’, defines special target dependent variables and
targets used in the ‘Makefile’:

LIBGCC2_CFLAGS
Compiler flags to use when compiling ‘libgcc2.c’.

LIB2FUNCS_EXTRA
A list of source file names to be compiled or assembled and inserted into
‘libgcc.a’.

Floating Point Emulation
To have GCC include software floating point libraries in ‘libgcc.a’ define
FPBIT and DPBIT along with a few rules as follows:

We want fine grained libraries, so use the new code
to build the floating point emulation libraries.
FPBIT = fp-bit.c
DPBIT = dp-bit.c

fp-bit.c: $(srcdir)/config/fp-bit.c
echo ’#define FLOAT’ > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c

dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c

You may need to provide additional #defines at the beginning of ‘fp-bit.c’
and ‘dp-bit.c’ to control target endianness and other options.

CRTSTUFF_T_CFLAGS
Special flags used when compiling ‘crtstuff.c’. See Section 21.19.5 [Initial-
ization], page 509.

CRTSTUFF_T_CFLAGS_S
Special flags used when compiling ‘crtstuff.c’ for shared linking. Used if
you use ‘crtbeginS.o’ and ‘crtendS.o’ in EXTRA-PARTS. See Section 21.19.5
[Initialization], page 509.

MULTILIB_OPTIONS
For some targets, invoking GCC in different ways produces objects that can not
be linked together. For example, for some targets GCC produces both big and

546 Using and Porting the GNU Compiler Collection (GCC)

little endian code. For these targets, you must arrange for multiple versions
of ‘libgcc.a’ to be compiled, one for each set of incompatible options. When
GCC invokes the linker, it arranges to link in the right version of ‘libgcc.a’,
based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions
of ‘libgcc.a’ must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.

For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’,
‘Makefile’ will build special versions of ‘libgcc.a’ using the following sets of
options: ‘-m68000’, ‘-m68020’, ‘-msoft-float’, ‘-m68000 -msoft-float’, and
‘-m68020 -msoft-float’.

MULTILIB_DIRNAMES
If MULTILIB_OPTIONS is used, this variable specifies the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_
DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.

For example, if MULTILIB_OPTIONS is set to ‘m68000/m68020 msoft-float’,
then the default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’.
You may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES
Sometimes the same option may be written in two different ways. If an option is
listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that
case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’ to de-
scribe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020’.

MULTILIB_EXCEPTIONS
Sometimes when there are multiple sets of MULTILIB_OPTIONS being specified,
there are combinations that should not be built. In that case, set MULTILIB_
EXCEPTIONS to be all of the switch exceptions in shell case syntax that should
not be built.

For example, in the PowerPC embedded ABI support, it is not desirable
to build libraries compiled with the ‘-mcall-aix’ option and either of the
‘-fleading-underscore’ or ‘-mlittle’ options at the same time. Therefore
MULTILIB_EXCEPTIONS is set to *mcall-aix/*fleading-underscore*
*mlittle/*mcall-aix*.

MULTILIB_EXTRA_OPTS
Sometimes it is desirable that when building multiple versions of ‘libgcc.a’
certain options should always be passed on to the compiler. In that case, set
MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds.

Chapter 23: Makefile Fragments 547

23.2 The Host Makefile Fragment

The host makefile fragment, ‘x-host’, defines special host dependent variables and targets
used in the ‘Makefile’:

CC The compiler to use when building the first stage.

INSTALL The install program to use.

548 Using and Porting the GNU Compiler Collection (GCC)

Funding Free Software 549

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

550 Using and Porting the GNU Compiler Collection (GCC)

Linux and the GNU Project 551

Linux and the GNU Project

Many computer users run a modified version of the GNU system every day, without
realizing it. Through a peculiar turn of events, the version of GNU which is widely used
today is more often known as “Linux”, and many users are not aware of the extent of its
connection with the GNU Project.

There really is a Linux; it is a kernel, and these people are using it. But you can’t use a
kernel by itself; a kernel is useful only as part of a whole system. The system in which Linux
is typically used is a modified variant of the GNU system—in other words, a Linux-based
GNU system.

Many users are not fully aware of the distinction between the kernel, which is Linux, and
the whole system, which they also call “Linux”. The ambiguous use of the name doesn’t
promote understanding.

Programmers generally know that Linux is a kernel. But since they have generally
heard the whole system called “Linux” as well, they often envisage a history which fits that
name. For example, many believe that once Linus Torvalds finished writing the kernel, his
friends looked around for other free software, and for no particular reason most everything
necessary to make a Unix-like system was already available.

What they found was no accident—it was the GNU system. The available free software
added up to a complete system because the GNU Project had been working since 1984 to
make one. The GNU Manifesto had set forth the goal of developing a free Unix-like system,
called GNU. By the time Linux was written, the system was almost finished.

Most free software projects have the goal of developing a particular program for a par-
ticular job. For example, Linus Torvalds set out to write a Unix-like kernel (Linux); Donald
Knuth set out to write a text formatter (TeX); Bob Scheifler set out to develop a window
system (X Windows). It’s natural to measure the contribution of this kind of project by
specific programs that came from the project.

If we tried to measure the GNU Project’s contribution in this way, what would we
conclude? One CD-ROM vendor found that in their “Linux distribution”, GNU software
was the largest single contingent, around 28% of the total source code, and this included
some of the essential major components without which there could be no system. Linux
itself was about 3%. So if you were going to pick a name for the system based on who wrote
the programs in the system, the most appropriate single choice would be “GNU”.

But we don’t think that is the right way to consider the question. The GNU Project was
not, is not, a project to develop specific software packages. It was not a project to develop
a C compiler, although we did. It was not a project to develop a text editor, although we
developed one. The GNU Project’s aim was to develop a complete free Unix-like system.

Many people have made major contributions to the free software in the system, and
they all deserve credit. But the reason it is a system—and not just a collection of useful
programs—is because the GNU Project set out to make it one. We wrote the programs
that were needed to make a complete free system. We wrote essential but unexciting major
components, such as the assembler and linker, because you can’t have a system without
them. A complete system needs more than just programming tools, so we wrote other
components as well, such as the Bourne Again SHell, the PostScript interpreter Ghostscript,
and the GNU C library.

552 Using and Porting the GNU Compiler Collection (GCC)

By the early 90s we had put together the whole system aside from the kernel (and we
were also working on a kernel, the GNU Hurd, which runs on top of Mach). Developing
this kernel has been a lot harder than we expected, and we are still working on finishing it.

Fortunately, you don’t have to wait for it, because Linux is working now. When Linus
Torvalds wrote Linux, he filled the last major gap. People could then put Linux together
with the GNU system to make a complete free system: a Linux-based GNU system (or
GNU/Linux system, for short).

Putting them together sounds simple, but it was not a trivial job. The GNU C library
(called glibc for short) needed substantial changes. Integrating a complete system as a
distribution that would work “out of the box” was a big job, too. It required addressing
the issue of how to install and boot the system—a problem we had not tackled, because we
hadn’t yet reached that point. The people who developed the various system distributions
made a substantial contribution.

The GNU Project supports GNU/Linux systems as well as the GNU system—even with
funds. We funded the rewriting of the Linux-related extensions to the GNU C library,
so that now they are well integrated, and the newest GNU/Linux systems use the current
library release with no changes. We also funded an early stage of the development of Debian
GNU/Linux.

We use Linux-based GNU systems today for most of our work, and we hope you use
them too. But please don’t confuse the public by using the name “Linux” ambiguously.
Linux is the kernel, one of the essential major components of the system. The system as a
whole is more or less the GNU system.

GNU GENERAL PUBLIC LICENSE 553

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

554 Using and Porting the GNU Compiler Collection (GCC)

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 555

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

556 Using and Porting the GNU Compiler Collection (GCC)

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 557

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

558 Using and Porting the GNU Compiler Collection (GCC)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

GNU GENERAL PUBLIC LICENSE 559

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

560 Using and Porting the GNU Compiler Collection (GCC)

GNU Free Documentation License 561

GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

562 Using and Porting the GNU Compiler Collection (GCC)

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

GNU Free Documentation License 563

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

564 Using and Porting the GNU Compiler Collection (GCC)

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant

GNU Free Documentation License 565

Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

566 Using and Porting the GNU Compiler Collection (GCC)

License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

GNU Free Documentation License 567

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

568 Using and Porting the GNU Compiler Collection (GCC)

Contributors to GCC 569

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com if you have been left out or some of your
contributions are not listed. Please keep this list in alphabetical order.

Some projects operating under the GCC project maintain their own list of contributors,
such as the C++ library.
• Analog Devices helped implement the support for complex data types and iterators.
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Alasdair Baird for various bugfixes.
• Gerald Baumgartner added the signature extension to the C++ front end.
• Neil Booth for various work on cpplib.
• Per Bothner for his direction via the steering committee and various improvements to

our infrastructure for supporting new languages. Chill and Java front end implemen-
tations. Initial implementations of cpplib, fix-header, config.guess, libio, and past C++
library (libg++) maintainer.

• Devon Bowen helped port GCC to the Tahoe.
• Don Bowman for mips-vxworks contributions.
• Dave Brolley for work on cpplib and Chill.
• Robert Brown implemented the support for Encore 32000 systems.
• Christian Bruel for improvements to local store elimination.
• Herman A.J. ten Brugge for various fixes.
• Joe Buck for his direction via the steering committee.
• Craig Burley for leadership of the Fortran effort.
• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous

contributions to the steering committee, loop optimizations, etc.
• Steve Chamberlain wrote the support for the Hitachi SH and H8 processors and the

PicoJava processor.
• Scott Christley for his ObjC contributions.
• Branko Cibej for more warning contributions.
• Nick Clifton for arm, mcore, fr30, v850, m32r work, ‘--help’, and other random hack-

ing.
• Ralf Corsepius for SH testing and minor bugfixing.
• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.
• Alex Crain provided changes for the 3b1.
• Ian Dall for major improvements to the NS32k port.
• Dario Dariol contributed the four varieties of sample programs that print a copy of

their source.
• Ulrich Drepper for his work on the C++ runtime libraries, glibc, testing of GCC using

glibc, ISO C99 support, CFG dumping support, etc.

mailto:law@redhat.com
http://gcc.gnu.org/libstdc++/

570 Using and Porting the GNU Compiler Collection (GCC)

• Richard Earnshaw for his ongoing work with the ARM.
• David Edelsohn for his direction via the steering committee, ongoing work with the

RS6000/PowerPC port, and help cleaning up Haifa loop changes.
• Paul Eggert for random hacking all over GCC.
• Mark Elbrecht for various DJGPP improvements.
• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory

and for his work on autoconf.
• Marc Espie for OpenBSD support.
• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC

work.
• Fred Fish for BeOS support and Ada fixes.
• Peter Gerwinski for various bugfixes and the Pascal front end.
• Kaveh Ghazi for his direction via the steering committee and amazing work to make

‘-W -Wall’ useful.
• Judy Goldberg for c++ contributions.
• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-

by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

• Anthony Green for his ‘-Os’ contributions and Java front end work.
• Michael K. Gschwind contributed the port to the PDP-11.
• Ron Guilmette implemented the protoize and unprotoize tools, the support for

Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

• Bruno Haible for improvements in the runtime overhead for EH, new warnings and
assorted bugfixes.

• Andrew Haley for his Java work.
• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports

functional. Lots of loop and unroll improvements and fixes.
• Kate Hedstrom for staking the g77 folks with an initial testsuite.
• Richard Henderson for his ongoing SPARC and alpha work, loop opts, and generally

fixing lots of old problems we’ve ignored for years, flow rewrite and lots of stuff I’ve
forgotten.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for
the Sony NEWS machine.

• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing an
bugfixing, particularly of our configury code.

• Steve Holmgren for MachTen patches.
• Jan Hubicka for his x86 port improvements.
• Christian Iseli for various bugfixes.
• Kamil Iskra for general m68k hacking.

Contributors to GCC 571

• Lee Iverson for random fixes and mips testing.
• Andreas Jaeger for various fixes to the MIPS port
• Jakub Jelinek for his SPARC work and sibling call optimizations.
• J. Kean Johnston for OpenServer support.
• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
• David Kashtan of SRI adapted GCC to VMS.
• Geoffrey Keating for his ongoing work to make the PPC work for Linux.
• Brendan Kehoe for his ongoing work with g++.
• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote

the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the cygwin and mingw32 ports and maintain-
ing binary releases for Windows hosts.

• Robin Kirkham for cpu32 support.
• Mark Klein for PA improvements.
• Thomas Koenig for various bugfixes.
• Bruce Korb for the new and improved fixincludes code.
• Benjamin Kosnik for his g++ work.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Jeff Law for his direction via the steering committee, coordinating the entire egcs

project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

• Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

• Ted Lemon wrote parts of the RTL reader and printer.
• Kriang Lerdsuwanakij for improvements to demangler and various c++ fixes.
• Warren Levy major work on libgcj (Java Runtime Library) and random work on the

Java front end.
• Alain Lichnewsky ported GCC to the Mips cpu.
• Robert Lipe for OpenServer support, new testsuites, testing, etc.
• Weiwen Liu for testing and various bugfixes.
• Dave Love for his ongoing work with the Fortran front end and runtime libraries.
• Martin von Löwis for internal consistency checking infrastructure, and various C++

improvements including namespace support.
• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,

prototype patches, and keeping the Linux ports working.

572 Using and Porting the GNU Compiler Collection (GCC)

• Greg McGary for random fixes and (someday) bounded pointers.
• Andrew MacLeod for his ongoing work in building a real EH system, various code

generation improvements, work on the global optimizer, etc.
• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-

ments to compile-time performance and overall knowledge and direction in the area of
instruction scheduling.

• Bob Manson for his behind the scenes work on dejagnu.
• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS powerpc, haifa,

ECOFF debug support, and other assorted hacking.
• Jason Merrill for his direction via the steering committee and leading the g++ effort.
• David Miller for his direction via the steering committee, lots of SPARC work, im-

provements in jump.c and interfacing with the Linux kernel developers.
• Gary Miller ported GCC to Charles River Data Systems machines.
• Mark Mitchell for his direction via the steering committee, mountains of C++ work,

load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.0.

• Alan Modra for various Linux bits and testing.
• Toon Moene for his direction via the steering committee, Fortran maintenance, and his

ongoing work to make us make Fortran run fast.
• Jason Molenda for major help in the care and feeding of all the services on the

gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc
etc.

• Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

• David Mosberger-Tang for various Alpha improvements.
• Stephen Moshier contributed the floating point emulator that assists in cross-

compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.
• Philippe De Muyter for his work on the m68k port.
• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99

support, and continuous emphasis on (and contributions to) documentation.
• Nathan Myers for his work on libstdc++-v3.
• NeXT, Inc. donated the front end that supports the Objective-C language.
• Hans-Peter Nilsson for improvements to the search engine setup, various documentation

fixes and other small fixes.
• Geoff Noer for this work on getting cygwin native builds working.
• Alexandre Oliva for various build infrastructure improvements, scripts and amazing

testing work.
• Melissa O’Neill for various NeXT fixes.
• Rainer Orth for random MIPS work, including improvements to our o32 ABI support,

improvements to dejagnu’s MIPS support, etc.

Contributors to GCC 573

• Paul Petersen wrote the machine description for the Alliant FX/8.
• Alexandre Petit-Bianco for his Java work.
• Matthias Pfaller for major improvements to the NS32k port.
• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems

we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

• Ovidiu Predescu for his work on the ObjC front end and runtime libraries.
• Ken Raeburn for various improvements to checker, mips ports and various cleanups in

the compiler.
• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
• Gabriel Dos Reis for contributions and maintenance of libstdc++-v3, including valarray

implementation and limits support.
• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.
• Gavin Romig-Koch for lots of behind the scenes MIPS work.
• Ken Rose for fixes to our delay slot filling code.
• Paul Rubin wrote most of the preprocessor.
• Juha Sarlin for improvements to the H8 code generator.
• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
• Peter Schauer wrote the code to allow debugging to work on the Alpha.
• William Schelter did most of the work on the Intel 80386 support.
• Bernd Schmidt for various code generation improvements and major work in the reload

pass as well a serving as release manager for GCC 2.95.3.
• Andreas Schwab for his work on the m68k port.
• Joel Sherrill for his direction via the steering committee, RTEMS contributions and

RTEMS testing.
• Nathan Sidwell for many C++ fixes/improvements.
• Jeffrey Siegal for helping RMS with the original design of GCC, some code which

handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

• Franz Sirl for his ongoing work with making the PPC port stable for linux.
• Andrey Slepuhin for assorted AIX hacking.
• Christopher Smith did the port for Convex machines.
• Randy Smith finished the Sun FPA support.
• Scott Snyder for various fixes.
• Richard Stallman, for writing the original gcc and launching the GNU project.
• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as

part of the 32000 machine description.
• Nigel Stephens for various mips16 related fixes/improvements.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Graham Stott for various infrastructure improvements.

574 Using and Porting the GNU Compiler Collection (GCC)

• Mike Stump for his Elxsi port, g++ contributions over the years and more recently his
vxworks contributions

• Shigeya Suzuki for this fixes for the bsdi platforms.
• Ian Lance Taylor for his mips16 work, general configury hacking, fixincludes, etc.
• Holger Teutsch provided the support for the Clipper cpu.
• Gary Thomas for his ongoing work to make the PPC work for Linux.
• Philipp Thomas for random bugfixes throughout the compiler
• Kresten Krab Thorup wrote the run time support for the Objective-C language.
• Michael Tiemann for random bugfixes the first instruction scheduler, initial C++ sup-

port, function integration, NS32k, sparc and M88k machine description work, delay
slot scheduling.

• Teemu Torma for thread safe exception handling support.
• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of

the VAX machine description.
• Tom Tromey for internationalization support and his Java work.
• Lassi Tuura for improvements to config.guess to determine HP processor types.
• Todd Vierling for contributions for NetBSD ports.
• Dean Wakerley for converting the install documentation from HTML to texinfo in time

for GCC 3.0.
• Krister Walfridsson for random bugfixes.
• John Wehle for various improvements for the x86 code generator, related infrastructure

improvements to help x86 code generation, value range propagation and other work,
WE32k port.

• Zack Weinberg for major work on cpplib and various other bugfixes.
• Dale Wiles helped port GCC to the Tahoe.
• Jim Wilson for his direction via the steering committee, tackling hard problems in

various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

• Carlo Wood for various fixes.
• Tom Wood for work on the m88k port.
• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the

Tron architecture (specifically, the Gmicro).
• Kevin Zachmann helped ported GCC to the Tahoe.

We’d also like to thank the folks who have contributed time and energy in testing GCC:
• David Billinghurst
• Horst von Brand
• Rodney Brown
• Joe Buck
• Craig Burley
• Ulrich Drepper

Contributors to GCC 575

• David Edelsohn
• Yung Shing Gene
• Kaveh Ghazi
• Kate Hedstrom
• Richard Henderson
• Manfred Hollstein
• Kamil Iskra
• Christian Joensson
• Jeff Law
• Robert Lipe
• Damon Love
• Dave Love
• H.J. Lu
• Mumit Khan
• Matthias Klose
• Martin Knoblauch
• David Miller
• Toon Moene
• Matthias Mueller
• Alexandre Oliva
• Richard Polton
• David Rees
• Peter Schmid
• David Schuler
• Vin Shelton
• Franz Sirl
• Mike Stump
• Carlo Wood
• And many others

And finally we’d like to thank everyone who uses the compiler, submits bug reports and
generally reminds us why we’re doing this work in the first place.

576 Using and Porting the GNU Compiler Collection (GCC)

Option Index 577

Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an
option has both positive and negative forms (such as ‘-foption’ and ‘-fno-option’), relevant
entries in the manual are indexed under the most appropriate form; it may sometimes be
useful to look up both forms.

A
a . 43
A . 62
ansi . 5, 18, 195, 239
aux-info . 19
ax . 43

B
b . 74
B . 67

C
c . 17, 64
C . 60

D
d . 45
D . 62
da . 47
dA . 46
db . 46
dB . 46, 274
dc . 46, 273
dC . 46
dd . 46, 274
dD . 46, 62
de . 46, 271
dE . 46, 273
df . 46, 272
dF . 46
dg . 46, 273
dG . 46, 272
dh . 46
di . 46, 270
dI . 62
dj . 46, 271
dJ . 274
dk . 46, 274
dl . 46, 273
dL . 46, 272
dm . 47
dM . 46, 62
dn . 46
dN . 46, 62, 273

do . 46
dp . 47
dP . 47
dr . 46, 270
dR . 46, 274
ds . 46, 272
dS . 46, 273
dt . 47, 272
dumpmachine . 49
dumpspecs . 49
dumpversion . 49
dv . 47
dw . 47
dW . 271
dx . 47
dX . 47, 271
dy . 47
dz . 47

E
E . 17, 60, 64
EB . 104, 120
EL . 104, 120

F
falign-functions . 57
falign-jumps . 58
falign-labels . 57
falign-loops . 58
fallow-single-precision 23
falt-external-templates 24, 206
fargument-alias . 131
fargument-noalias . 131
fargument-noalias-global 131
fbranch-probabilities . 56
fcall-saved . 129, 227
fcall-used . 129
fcaller-saves . 55
fcheck-memory-usage 129, 170
fcheck-new . 23
fcond-mismatch . 22
fconserve-space . 23
fconstant-string-class . 29
fcse-follow-jumps . 53
fcse-skip-blocks . 54

578 Using and Porting the GNU Compiler Collection (GCC)

fdata-sections . 55
fdelayed-branch . 55
fdelete-null-pointer-checks 54
fdiagnostics-show-location 29
fdollars-in-identifiers 24, 226
fdump-ast . 47
fdump-class-hierarchy . 47
fdump-translation-unit . 47
fdump-unnumbered . 47
fexceptions . 126
fexpensive-optimizations 54
fexternal-templates 24, 206
ffast-math . 52
ffixed . 128
ffloat-store . 50, 233
ffor-scope . 24
fforce-addr . 51
fforce-mem . 51
ffreestanding . 6, 20, 168
ffunction-sections . 55
fgcse . 54
fgcse-lm . 54
fgcse-sm . 54
fgnu-runtime . 29
fhosted . 20
finhibit-size-directive 128
finline-functions . 51
finline-limit . 52
finstrument-functions 130, 169
fkeep-inline-functions 52, 184
fkeep-static-consts . 52
fleading-underscore . 132
fmem-report . 43
fmessage-length . 29
fmove-all-movables . 56
fms-extensions . 25
fnext-runtime . 29
fno-access-control . 23
fno-asm . 20
fno-builtin . 20, 195
fno-common . 127, 179
fno-const-strings . 24
fno-default-inline 26, 51, 184
fno-defer-pop . 51
fno-elide-constructors . 24
fno-enforce-eh-specs . 24
fno-for-scope . 24

fno-function-cse . 52
fno-gnu-keywords . 25
fno-gnu-linker . 127
fno-guess-branch-probability 56
fno-ident . 127
fno-implement-inlines 25, 203
fno-implicit-inline-templates 25
fno-implicit-templates 25, 205
fno-inline . 51
fno-math-errno . 52
fno-nonansi-builtins . 25
fno-operator-names . 25
fno-optional-diags . 25
fno-peephole . 56
fno-peephole2 . 56
fno-rtti . 26
fno-signed-bitfields . 22
fno-stack-limit . 131
fno-trapping-math . 53
fno-unsigned-bitfields . 22
fno-weak . 26
fnon-call-exceptions. 126
fomit-frame-pointer . 51
foptimize-register-move 54
foptimize-sibling-calls 51
fpack-struct . 129
fpcc-struct-return 127, 231
fpermissive . 25
fpic . 128
fPIC . 128
fprefix-function-name . 130
fpreprocessed . 62
fpretend-float . 48
fprofile-arcs . 45, 197
freduce-all-givs . 56
freg-struct-return . 127
fregmove . 54
frename-registers . 58
frepo . 26, 205
frerun-cse-after-loop 54, 272
frerun-loop-opt . 54
fschedule-insns . 55
fschedule-insns2 . 55
fshared-data . 127
fshort-double . 127
fshort-enums . 127, 182, 238
fshort-wchar . 23

Option Index 579

fsigned-bitfields . 22, 238

fsigned-char . 22

fsingle-precision-constant 58

fssa . 58, 271

fssa-ccp . 58, 271

fssa-dce . 58, 271

fstack-check . 131

fstack-limit-register . 131

fstack-limit-symbol . 131

fstats . 26

fstrength-reduce . 53

fstrict-aliasing . 56

fsyntax-only . 30

ftemplate-depth . 26

ftest-coverage . 45

fthread-jumps . 53, 271

ftime-report . 43

ftrapv . 51

funroll-all-loops . 56

funroll-loops . 55, 239

funsafe-math-optimizations 53

funsigned-bitfields 22, 238

funsigned-char . 22

funwind-tables . 126

fuse-cxa-atexit . 26

fverbose-asm . 128

fvolatile . 128

fvolatile-global . 128

fvolatile-static . 128

fvtable-gc . 26

fwritable-strings . 23, 228

G
g . 41

G . 90, 100, 104, 117

gcoff . 42

gdwarf . 42

gdwarf-2 . 42

gdwarf+ . 42

gen-decls . 29

ggdb . 42

gstabs . 42

gstabs+ . 42

gxcoff . 42

gxcoff+ . 42

H
H . 62
help . 17

I
I . 66
I- . 66
idirafter . 60
imacros . 60
include . 59
iprefix . 60
isystem . 60
iwithprefix . 60
iwithprefixbefore . 60

L
l . 64
L . 67
lobjc . 64

M
M . 61
m1 . 115
m128bit-long-double . 106
m2 . 115
m210 . 123
m29000 . 83
m29050 . 83
m3 . 115
m31 . 126
m32 . 81
m32032 . 120
m32081 . 120
m32332 . 120
m32381 . 120
m32532 . 120
m340 . 123
m386 . 105
m3e . 116
m4 . 116
m4-nofpu . 116
m4-single . 116
m4-single-only . 116

580 Using and Porting the GNU Compiler Collection (GCC)

m4650 . 104
m486 . 105
m4byte-functions . 123
m5200 . 76
m64 . 81, 126
m68000 . 75
m68020 . 75
m68020-40 . 76
m68020-60 . 76
m68030 . 75
m68040 . 75
m68060 . 76
m6811 . 77
m6812 . 77
m68881 . 75
m68hc11 . 77
m68hc12 . 77
m88000 . 90
m88100 . 90
m88110 . 90
m96bit-long-double . 106
mabi=32 . 102
mabi=64 . 102
mabi=eabi . 102
mabi=n32 . 102
mabi=o64 . 102
mabicalls . 103
mabort-on-noreturn . 87
maccumulate-outgoing-args 108
mads . 99
maix32 . 96
maix64 . 96
malign-300 . 115
malign-double . 106
malign-int . 77
malignment-traps . 85
malpha-as . 114
mam33 . 89
mapcs . 84
mapcs-26 . 84
mapcs-32 . 84
mapcs-frame . 84
mapp-regs . 78
march . 86, 101, 105, 109
margcount . 82
masm-compat . 111
masm-optimize . 125

mauto-incdec . 77
mauto-pic . 124
mb . 116
mb-step . 124
mbackchain . 125
mbig . 98, 117
mbig-endian . 85, 98, 123
mbig-memory . 117
mbig-pic . 90
mbig-switch . 109, 120
mbigtable . 116
mbit-align . 97
mbitfield . 76, 121
mbk . 117
mbranch-cost . 125
mbroken-saverestore . 81
mbsd . 86
mbuild-constants . 113
mbw . 83
mbwx . 114
mc1 . 82
mc2 . 82
mc300 . 115
mc32 . 82
mc34 . 82
mc38 . 82
mc400 . 115
mc68000 . 75
mc68020 . 75
mca . 110
mcall-aix . 98
mcall-lib-mul . 100
mcall-linux . 98
mcall-netbsd . 98
mcall-prologues . 122
mcall-solaris . 98
mcall-sysv . 98
mcall-sysv-eabi . 98
mcall-sysv-noeabi . 98
mcallee-super-interworking 88
mcaller-super-interworking 88
mcallgraph-data . 123
mcf . 110
mcheck-zero-division . 92
mcix . 114
mcmodel=embmedany . 81
mcmodel=medany . 81

Option Index 581

mcmodel=medlow . 81
mcmodel=medmid . 81
mcode-align . 111
mcode-model=large . 89
mcode-model=medium . 89
mcode-model=small . 89
mcomplex-addr . 111
mcond-exec . 125
mconstant-gp . 124
mcpu 80, 86, 94, 101, 105, 114, 117, 120
mcpu32 . 76
mcypress . 80
MD . 61
mdalign . 116
mdata . 120
mdb . 117
mdebug . 126
mdisable-fpregs . 109
mdisable-indexing . 109
mdiv . 123
mdouble-float . 104
mdp-isr-reload . 117
mdw . 83
mdwarf2-asm . 124
meabi . 99
memb . 99
membedded-data . 104
membedded-pic . 104
mentry . 104
mep . 119
mepilogue . 79
mextmem . 125
mextmemory . 125
MF . 61
mfast-fix . 118
mfast-indirect-calls. 109
mfaster-structs . 79
mfix7000 . 105
mfixed-range . 124
mflat . 79
mfmovd . 116
mfp . 87
mfp-arg-in-fpregs . 100
mfp-arg-in-gregs . 100
mfp-reg . 112
mfp-rounding-mode . 113
mfp-trap-mode . 112

mfp32 . 101
mfp64 . 101
mfpa . 76
mfpe . 87
mfpu . 78
mfull-fp-blocks . 100
mfull-toc . 95
mfused-madd . 97
mg . 78
MG . 61
mgas . 102, 109, 114
mgnu . 78
mgnu-as . 124
mgnu-ld . 124
mgp32 . 101
mgp64 . 102
mgpopt . 103
mh . 115
mhalf-pic . 104
mhandle-large-shift . 93
mhard-float 78, 85, 96, 103, 125
mhard-quad-float . 78
mhardlit . 123
mhc-struct-return . 101, 227
mhimem . 122
mhitachi . 116
mic-compat . 111
mic2.0-compat . 111
mic3.0-compat . 111
midentify-revision . 90
mieee . 112, 116
mieee-conformant . 113
mieee-fp . 105
mieee-with-inexact . 112
mimpure-text . 84
min-line-mul . 100
minit-stack . 122
minline-all-stringops . 108
minline-divide-max-throughput 124
minline-divide-min-latency 124
mint32 . 115
mint64 . 102
mintel-asm . 111
mintel-syntax . 105
mips1 . 101
mips16 . 104
mips2 . 101

582 Using and Porting the GNU Compiler Collection (GCC)

mips3 . 101
mips4 . 101
misize . 116
mjump-in-delay . 109
mka . 110
mkb . 110
mkernel-registers . 83
ml . 116
mlarge . 83
mleaf-procedures . 110
mlinker-opt . 110
mlittle . 98
mlittle-endian 81, 85, 98, 123, 124
mlive-g0 . 81
mlong-calls . 87, 103, 119
mlong-double-64 . 111
mlong-load-store . 109
mlong32 . 82, 102
mlong64 . 82, 102
mloop-unsigned . 118
MM . 61
mmad . 104
mmangle-cpu . 120
mmax . 114
mmc . 110
mmcu . 122
MMD . 61
mmemcpy . 103
mmemory-latency . 114
mmemparm . 119
mminimal-toc . 95
mminimum-fp-blocks . 100
mmips-as . 102
mmips-tfile . 103
mmpyi . 118
mmult-bug . 89
mmulti-add . 121
mmultiple . 96
mmvcle . 126
mmvme . 99
mnbw . 83
mndw . 83
mnew-mnemonics . 94
mno-4byte-functions . 123
mno-abicalls . 103
mno-align-double . 106
mno-align-int . 77

mno-align-stringops . 108
mno-alignment-traps . 86
mno-am33 . 89
mno-app-regs . 78
mno-asm-optimize . 125
mno-backchain . 125
mno-bit-align . 97
mno-bk . 117
mno-bwx . 114
mno-callgraph-data . 123
mno-check-zero-division 92
mno-cix . 114
mno-code-align . 111
mno-complex-addr . 111
mno-crt0 . 89
mno-db . 117
mno-debug . 126
mno-div . 123
mno-dwarf2-asm . 124
mno-eabi . 99
mno-embedded-data . 104
mno-embedded-pic . 104
mno-ep . 119
mno-epilogue . 79
mno-fancy-math-387 . 106
mno-fast-fix . 118
mno-faster-structs . 79
mno-flat . 79
mno-fp-in-toc . 95
mno-fp-regs . 112
mno-fp-ret-in-387 . 106
mno-fpu . 78
mno-fused-madd . 97
mno-gnu-as . 124
mno-gnu-ld . 124
mno-gpopt . 103
mno-half-pic . 104
mno-hardlit . 123
mno-ieee-fp . 105
mno-impure-text . 84
mno-interrupts . 122
mno-leaf-procedures . 110
mno-long-calls . 87, 103, 119
mno-loop-unsigned . 118
mno-mad . 104
mno-max . 114
mno-memcpy . 103

Option Index 583

mno-mips-tfile . 103
mno-mips16 . 104
mno-mpyi . 118
mno-mult-bug . 89
mno-multiple . 96
mno-multm . 84
mno-mvcle . 126
mno-ocs-debug-info . 90
mno-ocs-frame-position . 91
mno-optimize-arg-area . 91
mno-parallel-insns . 119
mno-parallel-mpy . 119
mno-pic . 124
mno-power . 93
mno-power2 . 93
mno-powerpc . 93
mno-powerpc-gfxopt . 93
mno-powerpc-gpopt . 93
mno-powerpc64 . 93
mno-prolog-function . 119
mno-prototype . 98
mno-register-names . 124
mno-regnames . 100
mno-relax-immediate . 123
mno-relocatable . 97
mno-relocatable-lib . 97
mno-reuse-arg-regs . 84
mno-rnames . 102
mno-rptb . 118
mno-rpts . 118
mno-sched-prolog . 85
mno-sdata . 100, 124
mno-serialize-volatile 91, 226
mno-short-load-bytes . 86
mno-short-load-words . 86
mno-slow-bytes . 123
mno-small-exec . 125
mno-soft-float . 111
mno-space-regs . 109
mno-split-addresses . 102
mno-stack-bias . 82
mno-stack-check . 83
mno-stats . 103
mno-storem-bug . 83
mno-strict-align 77, 97, 111
mno-string . 96
mno-sum-in-toc . 95

mno-svr3-shlib . 107
mno-symrename . 86
mno-tablejump . 122
mno-tail-call . 110
mno-toc . 98
mno-unaligned-doubles . 79
mno-underscores . 90
mno-uninit-const-in-rodata 104
mno-update . 97
mno-volatile-asm-stop . 124
mno-wide-bitfields . 123
mno-wide-multiply . 107
mno-xl-call . 96
mnoargcount . 82
mnobitfield . 76, 121
mnohc-struct-return . 101
mnohimem . 122
mnomacsave . 116
mnomulti-add . 121
mnop-fun-dllimport . 87
mnoregparam . 121
mnormal . 83
mnosb . 121
mnumerics . 110
mocs-debug-info . 90
mocs-frame-position . 91
mold-align . 111
mold-mnemonics . 94
momit-leaf-frame-pointer 108
monchip . 125
moptimize-arg-area . 91
MP . 61
mpa-risc-1-0 . 109
mpa-risc-1-1 . 109
mpa-risc-2-0 . 109
mpadstruct . 116
mparallel-insns . 119
mparallel-mpy . 119
mparanoid . 117
mpcrel . 77
mpe . 96
mpentium . 105
mpentiumpro . 105
mpic-register . 88
mpoke-function-name . 88
mportable-runtime . 109
mpower . 93

584 Using and Porting the GNU Compiler Collection (GCC)

mpower2 . 93
mpowerpc . 93
mpowerpc-gfxopt . 93
mpowerpc-gpopt . 93
mpowerpc64 . 93
mprefergot . 116
mpreferred-stack-boundary 107
mprolog-function . 119
mprototype . 98
mpush-args . 108
MQ . 61
mregister-names . 124
mregnames . 100
mregparam . 121
mregparm . 107, 119
mrelax . 88, 89, 115, 116
mrelax-immediate . 123
mrelocatable . 97
mrelocatable-lib . 97
mreuse-arg-regs . 84
mrnames . 102
mrodata . 120
mrptb . 118
mrpts . 118
mrtd . 76, 107, 121, 170
ms . 115
ms2600 . 115
msa . 110
msb . 110, 121
mschedule . 110
msda . 119
msdata . 100, 124
msdata-data . 100
msdata=default . 100
msdata=eabi . 99
msdata=none . 89, 100
msdata=sdata . 90
msdata=sysv . 99
msdata=use . 90
mserialize-volatile . 91
mshort . 76, 78
mshort-data . 91
mshort-load-bytes . 86
mshort-load-words . 86
msim . 99
msingle-float . 104
msingle-pic-base . 87

msize . 122
mslow-bytes . 123
msmall . 83, 117
msmall-exec . 125
msmall-memory . 117
msoft-float 76, 78, 84, 85, 96, 103, 106, 110,

111, 121, 125, 268
msoft-quad-float . 79
msoft-reg-count . 78
mspace . 116, 119
msparclite . 80
msplit-addresses . 102
mstack-bias . 82
mstack-check . 83
mstats . 103
mstorem-bug . 83
mstrict-align . 77, 97, 111
mstring . 96
mstructure-size-boundary 87
msupersparc . 80
msvr3 . 92
msvr3-shlib . 107
msvr4 . 92
MT . 61
mtail-call . 110
mtda . 119
mtext . 120
mthreads . 96, 108
mthumb . 88
mthumb-interwork . 84
mti . 118
mtiny-stack . 122
mtoc . 98
mtpcs-frame . 88
mtpcs-leaf-frame . 88
mtrap-large-shift . 93
mtrap-precision . 113
mtune. 80, 86, 95, 101
munaligned-doubles . 79
muninit-const-in-rodata 104
munix . 78
mupdate . 97
muse-div-instruction . 92
muser-registers . 83
musermode . 116
mv8 . 80
mv850 . 119

Option Index 585

mversion-03.00 . 92
mvolatile-asm-stop . 124
mvolatile-cache . 82
mvolatile-nocache . 82
mvxworks . 99
mwarn-passed-structs . 93
mwide-bitfields . 123
mwide-multiply . 107
mwords-little-endian . 85
mxl-call . 96
mxopen . 86
myellowknife . 99
mzda . 119

N
no-crt0 . 105
noasmopt . 227
nocpp . 105
nodefaultlibs . 64
nostartfiles . 64
nostdinc . 60
nostdinc++ . 26
nostdlib . 64

O
o . 17
O . 49
O0 . 50
O1 . 49
O2 . 50
O3 . 50
Os . 50

P
p . 43
P . 60
param . 58
pass-exit-codes . 16
pedantic . 5, 30, 149, 193, 240
pedantic-errors 5, 31, 223, 240
pg . 43
pipe . 17
print-file-name . 48
print-libgcc-file-name . 49

print-multi-directory . 48
print-multi-lib . 49
print-prog-name . 49
print-search-dirs . 49

Q
Q . 43
Qn . 117
Qy . 117

R
remap . 60

S
s . 65
S . 17, 64
save-temps . 48
shared . 65
shared-libgcc . 65
specs . 67
static . 65
static-libgcc . 65
std . 5, 19, 195, 239
symbolic . 65

T
target-help . 18
time . 48
traditional . 5, 21, 228, 239
traditional-cpp . 21
trigraphs . 21, 63

U
u . 66
U . 62
undef . 60

V
v . 17
V . 74

586 Using and Porting the GNU Compiler Collection (GCC)

W
w . 31
W . 36, 229
Wa . 63
Waggregate-return . 39
Wall . 36, 232
Wbad-function-cast . 39
Wcast-align . 39
Wcast-qual . 39
Wchar-subscripts . 31
Wcomment . 31
Wconversion . 39, 236
Wctor-dtor-privacy . 27
Wdisabled-optimization . 41
Weffc++ . 27
Werror . 41
Werror-implicit-function-declaration 32
Wfloat-equal . 37
Wformat . 31, 40, 167
Wformat-nonliteral . 31, 168
Wformat-security . 32
Wformat=2 . 32
Wimplicit . 32
Wimplicit-function-declaration 32
Wimplicit-int . 32
Winline . 41, 184
Wl . 66
Wlarger-than . 38
Wlong-long . 41
Wmain . 32
Wmissing-braces . 32
Wmissing-declarations . 40
Wmissing-format-attribute 40
Wmissing-noreturn . 40
Wmissing-prototypes . 40
Wmultichar . 32
Wnested-externs . 40
Wno-deprecated . 27
Wno-format-extra-args . 31
Wno-format-y2k . 31
Wno-import . 31
Wno-long-long . 41
Wno-non-template-friend 27
Wno-pmf-conversions 28, 207

Wno-protocol . 29
Wnon-virtual-dtor . 27
Wold-style-cast . 27
Woverloaded-virtual . 28
Wp . 63
Wpacked . 40
Wpadded . 40
Wparentheses . 32
Wpointer-arith . 39, 162
Wredundant-decls . 40
Wreorder . 27, 36
Wreturn-type . 34
Wselector . 29
Wsequence-point . 33
Wshadow . 38
Wsign-compare . 39
Wsign-promo . 28
Wstrict-prototypes . 39
Wswitch . 34
Wsynth . 28
Wsystem-headers . 36
Wtraditional . 37
Wtrigraphs . 34
Wundef . 38
Wuninitialized . 35
Wunknown-pragmas . 36
Wunreachable-code . 41
Wunused . 35
Wunused-function . 34
Wunused-label . 34
Wunused-parameter . 34
Wunused-value . 34
Wunused-variable . 34
Wwrite-strings . 39

X
x . 16
Xlinker . 66

Y
Ym . 117
YP . 117

Index 587

Index

!
‘!’ in constraint . 365

#
‘#’ in constraint . 366

in template . 358

#pragma . 197

#pragma . 534, 535

#pragma implementation . 203

#pragma implementation, implied 203

#pragma interface . 202

#pragma, reason for not using 173

$
$. 176

%
‘%’ in constraint . 366

‘%’ in template . 357

%include . 68

%include noerr . 68

%rename . 68

&
‘&’ in constraint . 365

’
’. 230

(
(nil) . 310

*
‘*’ in constraint . 366

* in template . 359

-
‘-lgcc’, use with ‘-nodefaultlibs’ 64

‘-lgcc’, use with ‘-nostdlib’ 64

‘-nodefaultlibs’ and unresolved references 64

‘-nostdlib’ and unresolved references 64

.

.sdata/.sdata2 references (PowerPC) 100

/
// . 176
‘/f’ in RTL dump . 313
‘/i’ in RTL dump . 313
‘/s’ in RTL dump . 313, 315
‘/u’ in RTL dump . 314
‘/v’ in RTL dump . 313

=
‘=’ in constraint . 365

?
‘?’ in constraint . 365
?: extensions . 155, 156
?: side effect . 156

‘_’ in variables in macros . 154
__bb . 475
__bb_init_func . 474
__bb_init_trace_func 474, 475
__bb_trace_func . 475
__bb_trace_ret . 475
__builtin_apply . 154
__builtin_apply_args. 154
__builtin_args_info . 477
__builtin_classify_type 477
__builtin_constant_p. 196
__builtin_expect . 197
__builtin_frame_address 195
__builtin_isgreater . 195
__builtin_isgreaterequal 195
__builtin_isless . 195
__builtin_islessequal . 195
__builtin_islessgreater 195
__builtin_isunordered . 195
__builtin_next_arg . 477
__builtin_return . 154
__builtin_return_address 195
__builtin_saveregs . 477
__complex__ keyword . 157
__CTOR_LIST__ . 509
__DTOR_LIST__ . 509
__extension__ . 193
__func__ identifier . 193

588 Using and Porting the GNU Compiler Collection (GCC)

__FUNCTION__ identifier . 193
__imag__ keyword . 157
__main . 146
__PRETTY_FUNCTION__ identifier 193
__real__ keyword . 157
__STDC_HOSTED__ . 5
_Complex keyword . 157
_exit . 195
_Exit . 195

+
‘+’ in constraint . 365

>
‘>’ in constraint . 361
>? . 199

\
\ . 358
‘\a’ . 21
‘\x’ . 21

<
‘<’ in constraint . 361
<? . 199

0
‘0’ in constraint . 362

A
abort . 195, 265
abs . 195, 329
abs and attributes . 406
absm2 instruction pattern 378
absolute value . 329
access to operands . 312
accessing volatiles. 199
accessors . 312
ACCUMULATE_OUTGOING_ARGS 460
ACCUMULATE_OUTGOING_ARGS and stack frames

. 471
ADDITIONAL_REGISTER_NAMES 512
addm3 instruction pattern 377
addr_diff_vec . 338
addr_diff_vec, length of . 410
ADDR_EXPR . 299

addr_vec . 338
addr_vec, length of . 410
address constraints. 362
address of a label . 151
ADDRESS_COST . 490
address_operand . 362
addressing modes . 483
addressof . 326
ADJUST_COST . 494
ADJUST_FIELD_ALIGN . 431
ADJUST_INSN_LENGTH . 411
ADJUST_PRIORITY . 494
aggregates as return values 467
alias attribute . 169
aliasing of parameters . 131
aligned attribute . 177, 181
alignment . 177
ALL_REGS . 445
Alliant . 227
alloca . 195
alloca vs variable-length arrays 160
allocate_stack instruction pattern 385
ALLOCATE_TRAMPOLINE . 480
alternate keywords . 193
AMD1 . 5
AMD29K options . 83
analysis, data flow . 272
and . 328
and and attributes . 406
and, canonicalization of . 393
andm3 instruction pattern 377
ANSI C . 5
ANSI C standard . 5
ANSI C89 . 5
ANSI support . 18
ANSI X3.159-1989 . 5
apostrophes . 230
APPLY_RESULT_SIZE . 467
ARC Options. 120
ARG_POINTER_CFA_OFFSET 454
ARG_POINTER_REGNUM . 458
ARG_POINTER_REGNUM and virtual registers 323
arg_pointer_rtx . 458
ARGS_GROW_DOWNWARD . 452
argument passing . 267
arguments in frame (88k) . 91
arguments in registers . 462
arguments on stack . 460
arithmetic libraries . 268
arithmetic shift . 328
arithmetic simplifications . 270
arithmetic, in RTL . 326

Index 589

ARITHMETIC_TYPE_P . 281
ARM [Annotated C++ Reference Manual] 208
ARM options . 84
array . 280
ARRAY_REF . 299
ARRAY_TYPE . 280
arrays of length zero . 158
arrays of variable length . 159
arrays, non-lvalue . 162
ashift . 328
ashift and attributes . 406
ashiftrt . 328
ashiftrt and attributes . 406
ashlm3 instruction pattern 377
ashrm3 instruction pattern 378
asm expressions . 185
ASM_APP_OFF . 498
ASM_APP_ON . 498
ASM_BYTE_OP . 500
ASM_CLOBBERS . 293
ASM_COMMENT_START . 498
ASM_CV_QUAL . 293
ASM_DECLARE_CLASS_REFERENCE 508
ASM_DECLARE_FUNCTION_NAME 504
ASM_DECLARE_FUNCTION_SIZE 504
ASM_DECLARE_OBJECT_NAME 504
ASM_DECLARE_REGISTER_GLOBAL 505
ASM_DECLARE_UNRESOLVED_REFERENCE 508
ASM_FILE_END . 497
ASM_FILE_START . 497
ASM_FINAL_SPEC . 420
ASM_FINISH_DECLARE_OBJECT 505
ASM_FORMAT_PRIVATE_NAME 507
asm_fprintf . 514
ASM_FPRINTF_EXTENSIONS 514
ASM_GENERATE_INTERNAL_LABEL 507
ASM_GLOBALIZE_LABEL . 505
asm_input . 337
ASM_INPUTS . 293
ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX 455
ASM_NO_SKIP_IN_TEXT . 518
asm_noperands . 343
asm_operands, RTL sharing 349
asm_operands, usage . 339
ASM_OUTPUT_ADDR_DIFF_ELT 515
ASM_OUTPUT_ADDR_VEC_ELT 516
ASM_OUTPUT_ALIGN . 519
ASM_OUTPUT_ALIGNED_BSS 503
ASM_OUTPUT_ALIGNED_COMMON 502
ASM_OUTPUT_ALIGNED_DECL_COMMON 502
ASM_OUTPUT_ALIGNED_DECL_LOCAL 504
ASM_OUTPUT_ALIGNED_LOCAL 503

ASM_OUTPUT_ALTERNATE_LABEL_NAME 507
ASM_OUTPUT_ASCII . 500
ASM_OUTPUT_BSS . 503
ASM_OUTPUT_BYTE . 500
ASM_OUTPUT_CASE_END . 516
ASM_OUTPUT_CASE_LABEL . 516
ASM_OUTPUT_CHAR . 499
ASM_OUTPUT_COMMON . 502
ASM_OUTPUT_CONSTRUCTOR 511
ASM_OUTPUT_DEBUG_LABEL 506
ASM_OUTPUT_DEF . 507
ASM_OUTPUT_DEF_FROM_DECLS 507
ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL

. 507
ASM_OUTPUT_DESTRUCTOR . 511
ASM_OUTPUT_DOUBLE . 499
ASM_OUTPUT_DOUBLE_INT . 499
ASM_OUTPUT_EH_REGION_BEG 516
ASM_OUTPUT_EH_REGION_END 516
ASM_OUTPUT_EXTERNAL . 506
ASM_OUTPUT_EXTERNAL_LIBCALL 506
ASM_OUTPUT_FLOAT . 499
ASM_OUTPUT_IDENT . 498
ASM_OUTPUT_INT . 499
ASM_OUTPUT_INTERNAL_LABEL 506
ASM_OUTPUT_LABEL . 504
ASM_OUTPUT_LABELREF . 506
ASM_OUTPUT_LOCAL . 503
ASM_OUTPUT_LONG_DOUBLE 499
ASM_OUTPUT_MAX_SKIP_ALIGN 519
ASM_OUTPUT_MI_THUNK . 472
ASM_OUTPUT_OPCODE . 512
ASM_OUTPUT_POOL_EPILOGUE 501
ASM_OUTPUT_POOL_PROLOGUE 501
ASM_OUTPUT_QUADRUPLE_INT 499
ASM_OUTPUT_REG_POP . 515
ASM_OUTPUT_REG_PUSH . 515
ASM_OUTPUT_SHARED_BSS . 503
ASM_OUTPUT_SHARED_COMMON 503
ASM_OUTPUT_SHARED_LOCAL 504
ASM_OUTPUT_SHORT . 499
ASM_OUTPUT_SKIP . 518
ASM_OUTPUT_SOURCE_FILENAME 498
ASM_OUTPUT_SOURCE_LINE 498
ASM_OUTPUT_SPECIAL_POOL_ENTRY 501
ASM_OUTPUT_SYMBOL_REF . 506
ASM_OUTPUT_WEAK_ALIAS . 508
ASM_OUTPUTS . 293
ASM_PREFERRED_EH_DATA_FORMAT 455
ASM_SPEC . 420
ASM_STABD_OP . 520
ASM_STABN_OP . 520

590 Using and Porting the GNU Compiler Collection (GCC)

ASM_STABS_OP . 520
ASM_STMT . 293
ASM_STRING . 293
ASM_WEAKEN_LABEL . 505
assemble_name . 504
assembler format . 497
assembler instructions . 185
assembler instructions in RTL 339
assembler names for identifiers 190
assembler syntax, 88k . 92
ASSEMBLER_DIALECT . 515
assembly code, invalid . 243
assigning attribute values to insns 408
assignment operator . 290
asterisk in template . 359
atof . 526
attr . 408
attr_flag . 407
attribute expressions . 405
attribute of types . 181
attribute of variables . 177
attribute specifications . 409
attribute specifications example 409
attribute syntax . 173
attributes . 298
attributes, defining . 404
autoincrement addressing, availability 265
autoincrement/decrement addressing 360
autoincrement/decrement analysis 272
automatic inline for C++ member fns 184
AVOID_CCMODE_COPIES . 444
AVR Options . 122

B
backslash . 358
backtrace for bug reports . 246
Backwards Compatibility . 208
barrier . 342
BASE_REG_CLASS . 447
basic block reordering . 274
basic blocks . 272
bcmp . 195, 544
bcond instruction pattern 381
bcopy, implicit usage . 483
BIGGEST_ALIGNMENT . 431
BIGGEST_FIELD_ALIGNMENT 431
BImode . 317
BIND_EXPR . 299
BINFO_TYPE . 285
bit shift overflow (88k) . 93
bit-fields . 330

BIT_AND_EXPR . 299
BIT_IOR_EXPR . 299
BIT_NOT_EXPR . 299
BIT_XOR_EXPR . 299
BITFIELD_NBYTES_LIMITED 433
BITS_BIG_ENDIAN . 428
BITS_BIG_ENDIAN, effect on sign_extract 330
BITS_PER_UNIT . 429
BITS_PER_WORD . 429
bitwise complement . 328
bitwise exclusive-or . 328
bitwise inclusive-or. 328
bitwise logical-and . 328
BLKmode . 318
BLKmode, and function return values 348
BLOCK_PROFILER . 474
BLOCK_PROFILER_CODE . 476
BOOL_TYPE_SIZE . 436
BOOLEAN_TYPE . 280
bound pointer to member function 206
branch shortening . 274
BRANCH_COST . 492
break_out_memory_refs . 486
BREAK_STMT . 293
BSS_SECTION_ASM_OP . 494
bug criteria . 243
bug report mailing lists . 244
bugs . 243
bugs, known . 223
built-in functions . 20, 195
builtin_longjmp instruction pattern 387
BUILTIN_SETJMP_FRAME_VALUE 453
builtin_setjmp_receiver instruction pattern

. 387
builtin_setjmp_setup instruction pattern . . . 386
byte writes (29k) . 83
byte_mode . 320
BYTES_BIG_ENDIAN . 428
BYTES_BIG_ENDIAN, effect on subreg 324
bzero . 195, 544
bzero, implicit usage . 483

C
C compilation options . 7
C intermediate output, nonexistent 3
C language extensions . 149
C language, traditional . 21
C standard . 5
C standards . 5
C statements for assembler output 359
C/C++ Internal Representation 277

Index 591

C_INCLUDE_PATH . 133
c++ . 18
C++ . 3
C++ comments . 176
C++ compilation options . 7
C++ interface and implementation headers 202
C++ language extensions . 199
C++ member fns, automatically inline 184
C++ misunderstandings . 234
C++ options, command line 23
C++ pragmas, effect on inlining 203
C++ source file suffixes . 18
C++ static data, declaring and defining 234
C4X_FLOAT_FORMAT . 435
C89 . 5
C90 . 5
C94 . 5
C95 . 5
C99 . 5
C9X . 5
call . 334
call instruction pattern . 381
call usage . 348
call-clobbered register . 440
call-saved register . 440
call-used register . 440
CALL_EXPR . 299
call_insn . 341
call_insn and ‘/u’ . 315
CALL_INSN_FUNCTION_USAGE 341
call_pop instruction pattern 382
CALL_REALLY_USED_REGISTERS 440
CALL_USED_REGISTERS . 440
call_used_regs . 441
call_value instruction pattern 381
call_value_pop instruction pattern 382
CALLER_SAVE_PROFITABLE 469
calling conventions . 452
calling functions in RTL . 348
calling functions through the function vector on

the H8/300 processors 171
CAN_DEBUG_WITHOUT_FP. 427
CAN_ELIMINATE . 460
canadian . 262
canonicalization of instructions 393
CANONICALIZE_COMPARISON 489
canonicalize_funcptr_for_compare instruction

pattern . 384
case labels in initializers . 163
case ranges . 165
case sensitivity and VMS . 258
CASE_DROPS_THROUGH . 530

CASE_VALUES_THRESHOLD . 530
CASE_VECTOR_MODE . 530
CASE_VECTOR_PC_RELATIVE 530
CASE_VECTOR_SHORTEN_MODE 530
casesi instruction pattern 383
cast to a union . 165
casts as lvalues . 155
CC . 547
cc_status . 487
CC_STATUS_MDEP . 487
CC_STATUS_MDEP_INIT . 487
cc0 . 325
cc0, RTL sharing . 349
cc0_rtx . 325
CC1_SPEC . 419
CC1PLUS_SPEC . 419
CCmode . 318
CDImode . 318
change_address . 375
CHAR_TYPE_SIZE . 436
CHECK_FLOAT_VALUE . 434
check_stack instruction pattern 386
CHILL . 3
CHImode . 318
cimag . 195
cimagf . 195
cimagl . 195
class . 285
class definitions, register. 445
class preference constraints 365
CLASS_LIKELY_SPILLED_P 450
CLASS_MAX_NREGS . 450
CLASS_TYPE_P . 281
classes of RTX codes . 310
CLASSTYPE_DECLARED_CLASS 285
CLASSTYPE_HAS_MUTABLE . 286
CLASSTYPE_NON_POD_P . 287
CLEANUP_DECL . 293
CLEANUP_EXPR . 293
CLEANUP_POINT_EXPR . 299
CLEANUP_STMT . 293
CLEAR_INSN_CACHE . 481
clobber . 335
clrstrm instruction pattern 379
cmpm instruction pattern . 378
cmpstrm instruction pattern 379
code generation conventions 126
code generation RTL sequences 394
code motion . 272
code, mixed with declarations. 165
code_label . 342
code_label and ‘/i’ . 315

592 Using and Porting the GNU Compiler Collection (GCC)

CODE_LABEL_NUMBER . 342
codes, RTL expression . 309
COImode . 318
COLLECT_EXPORT_LIST . 543
COLLECT2_HOST_INITIALIZATION 543
combiner pass . 324
command options . 7
comments, C++ style . 176
common subexpression elimination 271
compare . 327
compare, canonicalization of 393
comparison of signed and unsigned values, warning

. 39
compiler bugs, reporting . 244
compiler compared to C++ preprocessor 3
compiler options, C++ . 23
compiler options, Objective-C 28
compiler passes and files. 269
compiler version, specifying 74
COMPILER_PATH . 133
complement, bitwise . 328
complex conjugation . 157
complex numbers . 157
COMPLEX_CST . 299
COMPLEX_EXPR . 299
COMPLEX_TYPE . 280
COMPONENT_REF . 299
compound expressions as lvalues 155
compound literals . 162
COMPOUND_BODY . 293
COMPOUND_EXPR . 299
COMPOUND_STMT . 293
computed gotos . 151
computing the length of an insn 410
cond . 330
cond and attributes . 406
cond_exec . 337
COND_EXPR . 299
condition code register . 325
condition code status . 487
condition codes . 329
conditional constant propagation 271
Conditional Constant Propagation, SSA based

. 271
conditional execution . 414
conditional expressions as lvalues 155
conditional expressions, extensions 156
CONDITIONAL_REGISTER_USAGE 441
conditional_trap instruction pattern 388
conditions, in patterns . 352
configuration file . 541
configurations supported by GNU CC 138

configure terms . 262
conflicting types . 232
conj . 195
CONJ_EXPR . 299
conjf . 195
conjl . 195
const applied to function 166
const function attribute. 167
CONST_CALL_P . 315
CONST_COSTS . 490
CONST_DECL . 287
const_double . 321
const_double, RTL sharing 349
CONST_DOUBLE_CHAIN . 321
CONST_DOUBLE_LOW . 321
CONST_DOUBLE_MEM . 321
CONST_DOUBLE_OK_FOR_LETTER_P 451
const_int . 320
const_int and attribute tests 406
const_int and attributes. 405
const_int, RTL sharing . 349
CONST_OK_FOR_LETTER_P . 451
const_string . 321
const_string and attributes 405
const_true_rtx . 320
const0_rtx . 320
CONST0_RTX . 321
const1_rtx . 320
CONST1_RTX . 321
const2_rtx . 320
CONST2_RTX . 321
constant attributes. 411
constant definitions . 415
constant folding . 270
constant folding and floating point 527
constant propagation 271, 272
CONSTANT_ADDRESS_P . 484
CONSTANT_AFTER_FUNCTION_P 501
CONSTANT_ALIGNMENT . 431
CONSTANT_P . 484
CONSTANT_POOL_ADDRESS_P 315
CONSTANT_POOL_BEFORE_FUNCTION 500
constants in constraints . 361
constm1_rtx . 320
constraint modifier characters. 365
constraint, matching . 362
constraints . 360
constraints, machine specific 366
constructing calls . 153
constructor . 290
CONSTRUCTOR . 299
constructor expressions . 162

Index 593

constructor function attribute 169
constructors, automatic calls. 146
constructors, output of . 509
container . 279
CONTINUE_STMT . 293
contributors . 569
controlling register usage . 441
controlling the compilation driver 417
conventions, run-time . 267
conversions . 332
CONVERT_EXPR . 299
Convex options . 82
copy constructor . 290
copy propagation . 272
copy_rtx . 487
copy_rtx_if_shared . 350
core dump . 243
cos . 195
cosf . 195
cosl . 195
costs of instructions . 490
COSTS_N_INSNS . 490
CP_INTEGRAL_TYPE . 281
cp_namespace_decls . 285
CP_TYPE_CONST_NON_VOLATILE_P 280
CP_TYPE_CONST_P . 280
CP_TYPE_QUALS . 280
CP_TYPE_RESTRICT_P . 280
CP_TYPE_VOLATILE_P . 280
CPLUS_INCLUDE_PATH . 133
CPLUSPLUS_CPP_SPEC . 418
CPP_PREDEFINES . 425
cpp_register_pragma . 534
cpp_register_pragma_space 535
CPP_SPEC . 418
CQImode . 318
creal . 195
crealf . 195
creall . 195
cross compilation and floating point 526
cross compiling . 74
cross-compiler, installation 139
cross-jumping . 274
CRT_CALL_STATIC_FUNCTION 495
CRTSTUFF_T_CFLAGS . 545
CRTSTUFF_T_CFLAGS_S . 545
CSImode . 318
CTImode . 318
CUMULATIVE_ARGS . 464
current_function_epilogue_delay_list 472
current_function_is_leaf 445
current_function_outgoing_args_size 460

current_function_pops_args 471
current_function_pretend_args_size 471
current_function_uses_only_leaf_regs 445
current_insn_predicate 415
cycle_display instruction pattern 388

D
D30V Options . 125
data flow analysis . 272
data structures . 427
DATA_ALIGNMENT . 431
data_section . 495
DATA_SECTION_ASM_OP . 494
DBR_OUTPUT_SEQEND . 514
dbr_sequence_length . 514
DBX . 224
DBX_BLOCKS_FUNCTION_RELATIVE 522
DBX_CONTIN_CHAR . 521
DBX_CONTIN_LENGTH . 521
DBX_DEBUGGING_INFO . 520
DBX_FUNCTION_FIRST . 521
DBX_LBRAC_FIRST . 522
DBX_MEMPARM_STABS_LETTER 521
DBX_NO_XREFS . 521
DBX_OUTPUT_ENUM . 522
DBX_OUTPUT_FUNCTION_END 522
DBX_OUTPUT_LBRAC . 522
DBX_OUTPUT_MAIN_SOURCE_DIRECTORY 524
DBX_OUTPUT_MAIN_SOURCE_FILE_END 524
DBX_OUTPUT_MAIN_SOURCE_FILENAME 524
DBX_OUTPUT_RBRAC . 522
DBX_OUTPUT_SOURCE_FILENAME 524
DBX_OUTPUT_STANDARD_TYPES 522
DBX_REGISTER_NUMBER . 519
DBX_REGPARM_STABS_CODE 521
DBX_REGPARM_STABS_LETTER 521
DBX_STATIC_CONST_VAR_CODE 521
DBX_STATIC_STAB_DATA_SECTION 521
DBX_TYPE_DECL_STABS_CODE 521
DBX_USE_BINCL . 522
DBX_WORKING_DIRECTORY . 523
DCE, SSA based . 271
DCmode . 318
De Morgan’s law. 393
dead code . 271
dead code elimination . 271
dead_or_set_p . 401
deallocating variable length arrays 160
debug_rtx . 246
DEBUG_SYMS_TEXT . 520
DEBUGGER_ARG_OFFSET . 519

594 Using and Porting the GNU Compiler Collection (GCC)

DEBUGGER_AUTO_OFFSET. 519
debugging information generation 274
debugging information options 41
debugging, 88k OCS . 90
DECL_ALIGN . 287
DECL_ANTICIPATED . 291
DECL_ARGUMENTS . 293
DECL_ARRAY_DELETE_OPERATOR_P 293
DECL_ARTIFICIAL 287, 290, 293
DECL_ASSEMBLER_NAME . 290
DECL_BASE_CONSTRUCTOR_P 292
DECL_CLASS_SCOPE_P . 288
DECL_COMPLETE_CONSTRUCTOR_P 292
DECL_COMPLETE_DESTRUCTOR_P 292
DECL_CONST_MEMFUNC_P. 291
DECL_CONSTRUCTOR_P 290, 291
DECL_CONTEXT . 285
DECL_CONV_FN_P . 290, 292
DECL_COPY_CONSTRUCTOR_P 292
DECL_DESTRUCTOR_P . 290, 292
DECL_EXTERN_C_FUNCTION_P 291
DECL_EXTERNAL . 287, 291
DECL_FUNCTION_MEMBER_P 290, 291
DECL_FUNCTION_SCOPE_P . 288
DECL_GLOBAL_CTOR_P 290, 292
DECL_GLOBAL_DTOR_P 290, 292
DECL_INITIAL . 287
DECL_LINKONCE_P . 290, 291
DECL_LOCAL_FUNCTION_P . 291
DECL_MACHINE_ATTRIBUTES 299
DECL_MAIN_P . 290
DECL_NAME . 284, 287, 290
DECL_NAMESPACE_ALIAS. 285
DECL_NAMESPACE_SCOPE_P 288
DECL_NAMESPACE_STD_P. 285
DECL_NON_THUNK_FUNCTION_P 292
DECL_NONCONVERTING_P. 291
DECL_NONSTATIC_MEMBER_FUNCTION_P 291
DECL_OVERLOADED_OPERATOR_P 290, 292
DECL_RESULT . 293
DECL_SIZE . 287
DECL_SOURCE_FILE . 287
DECL_SOURCE_LINE . 287
DECL_STATIC_FUNCTION_P 291
DECL_STMT . 293
DECL_STMT_DECL . 293
DECL_THUNK_P . 292
DECL_VOLATILE_MEMFUNC_P 291
declaration . 287
declaration scope . 229
declarations inside expressions 149
declarations, mixed with code. 165

declarations, RTL . 333
declaring attributes of functions 166
declaring static data in C++ 234
decrement_and_branch_until_zero instruction

pattern . 383
DEFAULT_CALLER_SAVES. 469
DEFAULT_GDB_EXTENSIONS 520
DEFAULT_MAIN_RETURN . 537
DEFAULT_PCC_STRUCT_RETURN 468
DEFAULT_RTX_COSTS . 490
DEFAULT_SHORT_ENUMS . 437
DEFAULT_SIGNED_CHAR . 437
define_asm_attributes . 409
define_attr . 404
define_cond_exec . 414
define_constants . 415
define_delay . 412
define_expand . 394
define_function_unit. 413
define_insn . 351
define_insn example . 352
define_peephole . 401
define_peephole2 . 403
define_split . 397
defining attributes and their values 404
defining jump instruction patterns 390
defining looping instruction patterns 391
defining peephole optimizers 400
defining RTL sequences for code generation . . . 394
defining static data in C++ 234
delay slots, defining . 412
DELAY_SLOTS_FOR_EPILOGUE 472
delayed branch scheduling 274
dependencies for make as output 133
dependencies, make . 60
DEPENDENCIES_OUTPUT . 133
Dependent Patterns . 388
designated initializers . 163
designator lists . 164
designators . 164
destructor . 290
destructor function attribute 169
destructors, output of . 509
detecting ‘-traditional’ . 22
DFmode . 318
diagnostic messages . 29
dialect options . 18
digits in constraint . 362
DImode . 317
DIR_SEPARATOR . 542
DIR_SEPARATOR_2 . 543
directory options . 66

Index 595

disabling certain registers 441
dispatch table . 515
div . 327
div and attributes . 406
DIVDI3_LIBCALL . 482
divide instruction, 88k . 92
division . 327, 328
divm3 instruction pattern 377
divmodm4 instruction pattern 377
DIVSI3_LIBCALL . 481
DO_BODY . 293
DO_COND . 293
DO_STMT . 293
DOESNT_NEED_UNWINDER. 517
dollar signs in identifier names 176
DOLLARS_IN_IDENTIFIERS 537
doloop_begin instruction pattern 384
doloop_end instruction pattern 384
DONE . 395
DONT_REDUCE_ADDR . 492
double-word arithmetic . 157
DOUBLE_TYPE_SIZE . 436
downward funargs . 152
driver . 417
DW bit (29k) . 83
DWARF_CIE_DATA_ALIGNMENT 517
DWARF_DEBUGGING_INFO. 524
DWARF2_ASM_LINE_DEBUG_INFO 525
DWARF2_DEBUGGING_INFO . 524
DWARF2_FRAME_INFO . 525
DWARF2_GENERATE_TEXT_SECTION_LABEL 525
DWARF2_UNWIND_INFO . 517
DYNAMIC_CHAIN_ADDRESS . 453

E
‘E’ in constraint . 361
earlyclobber operand . 365
EASY_DIV_EXPR . 531
EDOM, implicit usage . 482
EH_FRAME_SECTION_NAME . 516
eh_return instruction pattern 387
EH_RETURN_DATA_REGNO. 454
EH_RETURN_HANDLER_RTX . 455
EH_RETURN_STACKADJ_RTX 455
EH_TABLE_LOOKUP . 517
eight bit data on the H8/300 and H8/300H . . . 172
ELIGIBLE_FOR_EPILOGUE_DELAY 472
ELIMINABLE_REGS . 459
ELSE_CLAUSE . 293
EMIT_MODE_SET . 529
EMPTY_CLASS_EXPR . 293

EMPTY_FIELD_BOUNDARY. 432
ENCODE_SECTION_INFO . 496
ENCODE_SECTION_INFO and address validation

. 485
ENCODE_SECTION_INFO usage 514
ENDFILE_SPEC . 420
endianness . 265
enum machine_mode . 317
enum reg_class . 446
ENUMERAL_TYPE . 280
environment variables . 132
epilogue . 469
epilogue instruction pattern 387
EPILOGUE_USES . 472
eq . 330
eq and attributes . 406
eq_attr . 407
EQ_EXPR . 299
equal . 330
errno, implicit usage . 483
error messages . 240
escape sequences . 439
escape sequences, traditional 21
escaped newlines. 161
exception handling . 454
exception_receiver instruction pattern 386
EXCEPTION_SECTION . 516
exclamation point. 365
exclusive-or, bitwise . 328
exit . 195
exit status and VMS . 258
EXIT_BODY . 537
EXIT_EXPR . 299
EXIT_IGNORE_STACK . 472
EXPAND_BUILTIN_SAVEREGS 478
expander definitions . 394
explicit register variables . 190
expr_list . 348
EXPR_STMT . 293
EXPR_STMT_EXPR . 293
expression . 299
expression codes . 309
expressions containing statements 149
expressions, compound, as lvalues 155
expressions, conditional, as lvalues 155
expressions, constructor . 162
extended asm . 185
extendmn2 instruction pattern 380
extensible constraints . 362
extensions, ?: . 155, 156
extensions, C language . 149
extensions, C++ language . 199

596 Using and Porting the GNU Compiler Collection (GCC)

extern int target_flags 425
external declaration scope 229
EXTRA_CC_MODES . 488
EXTRA_CONSTRAINT . 451
EXTRA_SECTION_FUNCTIONS 495
EXTRA_SECTIONS . 495
EXTRA_SPECS . 421
extv instruction pattern . 380
extzv instruction pattern 380

F
‘F’ in constraint . 361
fabs . 195
fabsf . 195
fabsl . 195
FAIL . 395
fatal signal . 243
FATAL_EXIT_CODE . 541
FDL, GNU Free Documentation License 561
features, optional, in system conventions 425
ffs . 195, 329
ffsm2 instruction pattern 378
FIELD_DECL . 287
file name suffix . 15
file names . 63
files and passes of the compiler 269
final pass. 274
FINAL_PRESCAN_INSN . 513
FINAL_PRESCAN_LABEL . 513
FINAL_REG_PARM_STACK_SPACE 461
final_scan_insn . 472
final_sequence . 514
FINALIZE_PIC . 497
FIND_BASE_TERM . 485
FINI_SECTION_ASM_OP . 495
FIRST_INSN_ADDRESS . 411
FIRST_PARM_OFFSET . 453
FIRST_PARM_OFFSET and virtual registers 323
FIRST_PSEUDO_REGISTER . 440
FIRST_STACK_REG . 445
FIRST_VIRTUAL_REGISTER 323
fix . 333
FIX_TRUNC_EXPR . 299
fix_truncmn2 instruction pattern 379
fixed register . 440
FIXED_REGISTERS . 440
fixed_regs . 441
fixmn2 instruction pattern 379
FIXUNS_TRUNC_LIKE_FIX_TRUNC 531
fixuns_truncmn2 instruction pattern 379
fixunsmn2 instruction pattern 379

flags in RTL expression . 313
flexible array members . 158
float . 332
float as function value type 230
FLOAT_EXPR . 299
float_extend . 332
FLOAT_LIB_COMPARE_RETURNS_BOOL (mode,

comparison) . 482
FLOAT_STORE_FLAG_VALUE 533
float_truncate . 332
FLOAT_TYPE_SIZE . 436
FLOAT_WORDS_BIG_ENDIAN 429
FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on

subreg . 324
floating point and cross compilation 526
Floating Point Emulation 545
floating point precision 50, 233
floatmn2 instruction pattern 379
floatunsmn2 instruction pattern 379
FOR_BODY . 293
FOR_COND . 293
FOR_EXPR . 293
FOR_INIT_STMT . 293
FOR_STMT . 293
force_reg . 375
format function attribute 167
format_arg function attribute 168
Fortran . 3
forwarding calls . 153
fprintf . 195
fputs . 195
frame layout . 452
FRAME_GROWS_DOWNWARD. 452
FRAME_GROWS_DOWNWARD and virtual registers . . 323
frame_pointer_needed. 470
FRAME_POINTER_REGNUM. 457
FRAME_POINTER_REGNUM and virtual registers . . 323
FRAME_POINTER_REQUIRED 459
frame_pointer_rtx . 458
frame_related, in reg . 313
frame_related, inmem . 313
free_machine_status . 428
freestanding environment . 5
freestanding implementation 5
fscanf, and constant strings 228
ftruncm2 instruction pattern 379
function . 289
function addressability on the M32R/D 172
function attributes . 166
function body . 293
function call conventions . 267
function entry and exit . 469

Index 597

function pointers, arithmetic 162

function prototype declarations 175

function units, for scheduling 413

function without a prologue/epilogue code 172

function, size of pointer to 162

function-call insns . 348

FUNCTION_ARG . 462

FUNCTION_ARG_ADVANCE. 465

FUNCTION_ARG_BOUNDARY . 466

FUNCTION_ARG_CALLEE_COPIES 464

FUNCTION_ARG_PADDING. 465

FUNCTION_ARG_PARTIAL_NREGS 463

FUNCTION_ARG_PASS_BY_REFERENCE 464

FUNCTION_ARG_REGNO_P. 466

FUNCTION_BLOCK_PROFILER 473

FUNCTION_BLOCK_PROFILER_EXIT 475

FUNCTION_BOUNDARY . 431

FUNCTION_CONVERSION_BUG 542

FUNCTION_DECL . 289

FUNCTION_INCOMING_ARG . 463

FUNCTION_MODE . 533

FUNCTION_OK_FOR_SIBCALL 476

FUNCTION_OUTGOING_VALUE 467

FUNCTION_PROFILER . 473

FUNCTION_TYPE . 280

FUNCTION_VALUE . 466

FUNCTION_VALUE_REGNO_P 467

functions called via pointer on the RS/6000 and
PowerPC . 170

functions in arbitrary sections 166

functions that are passed arguments in registers on
the 386 . 166, 170

functions that behave like malloc 166

functions that do not pop the argument stack on
the 386 . 166

functions that do pop the argument stack on the
386 . 170

functions that have no side effects 166

functions that never return 166

functions that pop the argument stack on the 386
. 166, 170

functions which are exported from a dll on
PowerPC Windows NT 171

functions which are imported from a dll on
PowerPC Windows NT 171

functions which specify exception handling on
PowerPC Windows NT 171

functions with printf, scanf, strftime or
strfmon style arguments 166

functions, leaf . 444

fundamental type . 280

G
‘g’ in constraint . 361
‘G’ in constraint . 361
g++ . 18
G++ . 3
GCC. 3
GCC and portability . 265
GCC command options . 7
gcc-bugs@gcc.gnu.org or bug-gcc@gnu.org . . 244
GCC_DRIVER_HOST_INITIALIZATION 543
GCC_EXEC_PREFIX . 132
gccbug script . 247
GCOV_TYPE_SIZE . 438
ge . 330
ge and attributes . 406
GE_EXPR . 299
GEN_ERRNO_RTX . 483
gencodes . 270
genconfig . 275
general_operand . 354
GENERAL_REGS . 445
generalized lvalues . 155
generating assembler output 359
generating insns . 353
genflags . 270
get_attr . 406
get_attr_length . 411
GET_CLASS_NARROWEST_MODE 320
GET_CODE . 309
get_frame_size . 459
get_insns . 340
get_last_insn . 340
GET_MODE . 319
GET_MODE_ALIGNMENT . 320
GET_MODE_BITSIZE . 320
GET_MODE_CLASS . 319
GET_MODE_MASK . 320
GET_MODE_NAME . 319
GET_MODE_NUNITS . 320
GET_MODE_SIZE . 320
GET_MODE_UNIT_SIZE . 320
GET_MODE_WIDER_MODE . 320
GET_RTX_CLASS . 310
GET_RTX_FORMAT . 311
GET_RTX_LENGTH . 311
geu . 330
geu and attributes . 406
global common subexpression elimination 272
global offset table . 128
global register after longjmp 192
global register allocation . 273
global register variables . 191

598 Using and Porting the GNU Compiler Collection (GCC)

GLOBAL_INIT_PRIORITY 290, 293
GLOBALDEF . 256
GLOBALREF . 256
GLOBALVALUEDEF . 256
GLOBALVALUEREF . 256
GO_IF_LEGITIMATE_ADDRESS 484
GO_IF_MODE_DEPENDENT_ADDRESS 487
goto with computed label 151
GOTO_DESTINATION . 293
GOTO_STMT . 293
gp-relative references (MIPS) 104
gprof . 43
greater than . 330
grouping options . 7
gt . 330
gt and attributes . 406
GT_EXPR . 299
gtu . 330
gtu and attributes . 406

H
‘H’ in constraint . 361
HANDLE_PRAGMA . 534
HANDLE_PRAGMA_PACK_PUSH_POP 535
HANDLE_SYSV_PRAGMA . 535
HANDLER . 293
HANDLER_BODY . 293
HANDLER_PARMS . 293
hard registers. 322
HARD_FRAME_POINTER_REGNUM 457
HARD_REGNO_CALL_PART_CLOBBERED 440
HARD_REGNO_CALLER_SAVE_MODE 469
HARD_REGNO_MODE_OK . 442
HARD_REGNO_NREGS . 442
hardware models and configurations, specifying

. 75
HAS_INIT_SECTION . 511
HAVE_POST_DECREMENT . 483
HAVE_POST_INCREMENT . 483
HAVE_POST_MODIFY_DISP . 483
HAVE_POST_MODIFY_REG. 484
HAVE_PRE_DECREMENT . 483
HAVE_PRE_INCREMENT . 483
HAVE_PRE_MODIFY_DISP. 483
HAVE_PRE_MODIFY_REG . 484
HCmode . 318
header files and VMS . 255
hex floats . 158
HFmode . 317
high . 322
HImode . 317

HImode, in insn . 343
host makefile fragment . 547
HOST_BIT_BUCKET . 543
HOST_BITS_PER_CHAR . 541
HOST_BITS_PER_INT . 541
HOST_BITS_PER_LONG . 541
HOST_BITS_PER_LONGLONG 541
HOST_BITS_PER_SHORT . 541
HOST_EXECUTABLE_SUFFIX 543
HOST_FLOAT_FORMAT . 541
HOST_FLOAT_WORDS_BIG_ENDIAN 541
HOST_OBJECT_SUFFIX . 543
HOST_WORDS_BIG_ENDIAN . 541
hosted environment . 5, 20
hosted implementation . 5
HPPA Options . 108

I
‘i’ in constraint . 361
‘I’ in constraint . 361
i386 Options . 105
IA-64 Options . 123
IBM RS/6000 and PowerPC Options 93
IBM RT options . 100
IBM RT PC . 227
IBM_FLOAT_FORMAT . 435
identifier . 279
identifier names, dollar signs in 176
IDENTIFIER_LENGTH . 279
IDENTIFIER_NODE . 279
IDENTIFIER_OPNAME_P . 279
IDENTIFIER_POINTER . 279
IDENTIFIER_TYPENAME_P . 279
identifiers, names in assembler code 190
identifying source, compiler (88k) 90
IEEE_FLOAT_FORMAT . 435
if conversion . 273
IF_COND . 293
IF_STMT . 293
if_then_else . 330
if_then_else and attributes 406
if_then_else usage . 334
IFCVT_MODIFY_CANCEL . 540
IFCVT_MODIFY_FINAL . 540
IFCVT_MODIFY_INSN . 540
IFCVT_MODIFY_TESTS . 539
IMAGPART_EXPR . 299
imaxabs . 195
immediate_operand . 354
IMMEDIATE_PREFIX . 514
IMPLICIT_FIX_EXPR . 531

Index 599

implied #pragma implementation 203
in_data . 495
in_struct . 316
in_struct, in code_label 315
in_struct, in insn . 315
in_struct, in label_ref . 315
in_struct, in mem . 313
in_struct, in reg . 313
in_struct, in subreg . 313
in_text . 495
include files and VMS . 255
INCLUDE_DEFAULTS . 423
inclusive-or, bitwise . 328
INCOMING_FRAME_SP_OFFSET 454
INCOMING_REGNO . 441
INCOMING_RETURN_ADDR_RTX 454
incompatibilities of GCC . 228
increment operators . 243
index . 195
INDEX_REG_CLASS . 447
indirect calls on ARM . 170
indirect_jump instruction pattern 383
INDIRECT_REF . 299
INIT_CUMULATIVE_ARGS. 464
INIT_CUMULATIVE_INCOMING_ARGS 465
INIT_CUMULATIVE_LIBCALL_ARGS 465
INIT_ENVIRONMENT . 422
INIT_EXPANDERS . 428
INIT_EXPR . 299
init_machine_status . 428
init priority attribute . 207
INIT_SECTION_ASM_OP 495, 510
INIT_TARGET_OPTABS . 482
INITIAL_ELIMINATION_OFFSET 460
INITIAL_FRAME_POINTER_OFFSET 459
initialization routines . 509
initializations in expressions 162
INITIALIZE_TRAMPOLINE . 480
initializers with labeled elements 163
initializers, non-constant . 162
inline automatic for C++ member fns 184
inline functions . 183
inline functions, omission of 184
inline on rtx, automatic . 270
inline on trees, automatic 270
inlining . 476
inlining and C++ pragmas 203
insn . 341
insn and ‘/i’ . 315
insn and ‘/s’ . 315
insn and ‘/u’ . 315
insn attributes . 404

insn canonicalization . 393
insn lengths, computing . 410
insn splitting . 397
insn-attr.h . 405
INSN_ANNULLED_BRANCH_P 315
INSN_CACHE_DEPTH . 481
INSN_CACHE_LINE_WIDTH . 480
INSN_CACHE_SIZE . 480
INSN_CODE . 343
INSN_DELETED_P . 315
INSN_FROM_TARGET_P . 315
insn_list . 348
INSN_REFERENCES_ARE_DELAYED 537
INSN_SETS_ARE_DELAYED . 537
INSN_UID . 340
insns. 340
insns, generating . 353
insns, recognizing . 353
INSTALL . 547
installation trouble . 223
installing GNU CC . 137
installing GNU CC on VMS 142
instruction attributes . 404
instruction combination . 272
instruction patterns . 351
instruction recognizer . 275
instruction scheduling 273, 274
instruction splitting . 397
insv instruction pattern . 380
INT_TYPE_SIZE . 435
INTEGER_CST . 299
INTEGER_TYPE . 280
INTEGRATE_THRESHOLD . 533
integrated . 317
integrated, in insn . 314
integrated, in reg . 313
integrated, in symbol_ref 315
integrating function code . 183
Intel 386 Options . 105
INTEL_EXTENDED_IEEE_FORMAT 436
Interdependence of Patterns 388
interface and implementation headers, C++ . . . 202
interfacing to GCC output 267
intermediate C version, nonexistent 3
interrupt handler functions 171
interrupt handler functions on the H8/300 and SH

processors. 171
INTMAX_TYPE . 438
introduction . 1
invalid assembly code . 243
invalid input . 243
INVOKE__main . 511

600 Using and Porting the GNU Compiler Collection (GCC)

invoking g++ . 18
ior . 328
ior and attributes . 406
ior, canonicalization of . 393
iorm3 instruction pattern 377
IS_ASM_LOGICAL_LINE_SEPARATOR 501
isinf . 527
isnan . 527
ISO 9899 . 5
ISO C . 5
ISO C standard . 5
ISO C89 . 5
ISO C90 . 5
ISO C94 . 5
ISO C95 . 5
ISO C99 . 5
ISO C9X . 5
ISO support . 18
ISO/IEC 9899 . 5
ISSUE_RATE . 538

J
Java . 3
java interface attribute . 207
jump instruction pattern . 381
jump instruction patterns 390
jump instructions and set 334
jump optimization . 271
jump threading . 271
jump_insn . 341
JUMP_LABEL . 341
JUMP_TABLES_IN_TEXT_SECTION 496

K
kernel and user registers (29k) 83
keywords, alternate . 193
known causes of trouble . 223

L
LABEL_ALIGN . 518
LABEL_ALIGN_AFTER_BARRIER 517
LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 518
LABEL_ALIGN_MAX_SKIP. 518
LABEL_ALTERNATE_NAME. 342
LABEL_DECL . 287
LABEL_NUSES . 342
LABEL_OUTSIDE_LOOP_P. 315
LABEL_PRESERVE_P . 315
label_ref . 321

label_ref and ‘/s’ . 315
label_ref, RTL sharing . 349
LABEL_STMT . 293
LABEL_STMT_LABEL . 293
labeled elements in initializers 163
labels as values . 151
labs . 195
LANG . 132, 134
language dialect options . 18
large bit shifts (88k) . 93
large return values . 467
LAST_STACK_REG . 445
LAST_VIRTUAL_REGISTER . 323
LC_ALL . 132
LC_CTYPE . 132
LC_MESSAGES . 132
LD_FINI_SWITCH . 511
LD_INIT_SWITCH . 511
LDD_SUFFIX . 512
ldexp . 526
le . 330
le and attributes . 406
LE_EXPR . 299
leaf functions . 444
leaf_function_p . 382
LEAF_REG_REMAP . 444
LEAF_REGISTERS . 444
left rotate . 328
left shift . 328
LEGITIMATE_CONSTANT_P . 487
LEGITIMATE_PIC_OPERAND_P 497
LEGITIMIZE_ADDRESS . 486
LEGITIMIZE_RELOAD_ADDRESS 486
length-zero arrays. 158
less than . 330
less than or equal . 330
leu . 330
leu and attributes . 406
LIB_SPEC . 420
LIB2FUNCS_EXTRA . 545
LIBCALL_VALUE . 467
‘libgcc.a’ . 481
LIBGCC_NEEDS_DOUBLE . 483
LIBGCC_SPEC . 420
LIBGCC2_CFLAGS . 545
LIBGCC2_WORDS_BIG_ENDIAN 429
Libraries . 64
library subroutine names . 481
LIBRARY_PATH . 133
LIBRARY_PATH_ENV . 539
LIMIT_RELOAD_CLASS . 448
link options . 63

Index 601

LINK_COMMAND_SPEC . 422

LINK_ELIMINATE_DUPLICATE_LDIRECTORIES . . . 422

LINK_LIBGCC_SPECIAL . 421

LINK_LIBGCC_SPECIAL_1 . 421

LINK_SPEC . 420

linkage . 290

LINKER_DOES_NOT_WORK_WITH_DWARF2 525

list . 279

LL integer suffix . 157

llabs . 195

lo_sum . 326

load address instruction . 362

LOAD_ARGS_REVERSED . 466

LOAD_EXTEND_OP . 530

load_multiple instruction pattern 376

local labels . 150

local register allocation . 273

local variables in macros . 154

local variables, specifying registers 192

LOCAL_ALIGNMENT . 432

LOCAL_CLASS_P . 286

LOCAL_INCLUDE_DIR . 423

LOCAL_LABEL_PREFIX . 514

LOCAL_REGNO . 441

locale . 132

locale definition . 134

LOG_LINKS . 344

logical-and, bitwise . 328

long long data types . 157

LONG_DOUBLE_TYPE_SIZE . 436

LONG_LONG_TYPE_SIZE . 436

LONG_TYPE_SIZE . 436

longjmp . 192

longjmp and automatic variables 21, 267

longjmp incompatibilities . 229

longjmp warnings . 35

LONGJMP_RESTORE_FROM_STACK 460

loop optimization . 272

LOOP_ALIGN . 518

LOOP_ALIGN_MAX_SKIP . 518

LOOP_EXPR . 299

looping instruction patterns 391

LSHIFT_EXPR . 299

lshiftrt . 328

lshiftrt and attributes . 406

lshrm3 instruction pattern 378

lt . 330

lt and attributes . 406

LT_EXPR . 299

ltu . 330

lvalues, generalized . 155

M
‘m’ in constraint . 360
M32R/D options . 89
M680x0 options . 75
M68hc1x options . 77
M88k options . 90
machine dependent options 75
machine description macros 417
machine descriptions . 351
machine mode conversions 332
machine modes . 317
machine specific constraints 366
MACHINE_DEPENDENT_REORG 538
MACHINE_STATE_RESTORE . 475
MACHINE_STATE_SAVE . 475
macro with variable arguments 160
macros containing asm . 187
macros, inline alternative . 183
macros, local labels . 150
macros, local variables in . 154
macros, statements in expressions 149
macros, target description 417
macros, types of arguments 155
main and the exit status . 258
make . 60
MAKE_DECL_ONE_ONLY (decl) 505
make_safe_from . 396
makefile fragment . 545
makefile targets . 261
malloc attribute . 169
mark_machine_status . 428
MASK_RETURN_ADDR . 517
match_dup . 354, 403
match_dup and attributes. 410
match_insn . 357
match_insn2 . 357
match_op_dup . 356
match_operand . 353
match_operand and attributes 406
match_operator . 355
match_par_dup . 357
match_parallel . 356
match_scratch . 354, 403
matching constraint . 362
matching operands . 358
math libraries . 268
math, in RTL . 326
MATH_LIBRARY . 539
MAX_BITS_PER_WORD . 429
MAX_CHAR_TYPE_SIZE . 436
MAX_CONDITIONAL_EXECUTE 539
MAX_FIXED_MODE_SIZE . 434

602 Using and Porting the GNU Compiler Collection (GCC)

MAX_INT_TYPE_SIZE . 435
MAX_INTEGER_COMPUTATION_MODE 539
MAX_LONG_DOUBLE_TYPE_SIZE 436
MAX_LONG_TYPE_SIZE . 436
MAX_MOVE_MAX . 531
MAX_OFILE_ALIGNMENT . 431
MAX_REGS_PER_ADDRESS. 484
MAX_WCHAR_TYPE_SIZE . 437
maximum operator . 199
maxm3 instruction pattern 377
MAYBE_REG_PARM_STACK_SPACE 461
MCore options . 123
mcount . 473
MD_ASM_CLOBBERS . 538
MD_CAN_REDIRECT_BRANCH 540
MD_EXEC_PREFIX . 422
MD_FALLBACK_FRAME_STATE_FOR 455
MD_SCHED_FINISH . 538
MD_SCHED_INIT . 538
MD_SCHED_REORDER . 538
MD_SCHED_REORDER2 . 539
MD_SCHED_VARIABLE_ISSUE 539
MD_STARTFILE_PREFIX . 422
MD_STARTFILE_PREFIX_1 . 422
mem . 326
mem and ‘/f’ . 313
mem and ‘/s’ . 313
mem and ‘/u’ . 314
mem and ‘/v’ . 313
mem, RTL sharing . 349
MEM_ALIAS_SET . 313
MEM_IN_STRUCT_P . 313
MEM_SCALAR_P . 313
MEM_VOLATILE_P . 313
member fns, automatically inline 184
MEMBER_TYPE_FORCES_BLK 433
memcmp . 195
memcpy . 195
memcpy, implicit usage. 483
memmove, implicit usage . 483
memory model (29k) . 83
memory reference, nonoffsettable 364
memory references in constraints 360
MEMORY_MOVE_COST . 491
memset . 195
memset, implicit usage. 483
message formatting . 29
messages, warning . 30
messages, warning and error 240
METHOD_TYPE . 280
middle-operands, omitted 156
MIN_UNITS_PER_WORD . 429

minimum operator . 199
MINIMUM_ATOMIC_ALIGNMENT 431
minm3 instruction pattern 377
minus . 326
minus and attributes . 406
minus, canonicalization of 393
MINUS_EXPR . 299
MIPS options . 101
misunderstandings in C++ 234
mixed declarations and code 165
mktemp, and constant strings 228
MN10200 options . 88
MN10300 options . 89
mod . 328
mod and attributes . 406
MODDI3_LIBCALL . 482
mode attribute . 178
mode classes . 319
mode switching . 528
MODE_CC . 319
MODE_COMPLEX_FLOAT . 319
MODE_COMPLEX_INT . 319
MODE_FLOAT . 319
MODE_FUNCTION . 319
MODE_INT . 319
MODE_NEEDED . 528
MODE_PARTIAL_INT . 319
MODE_PRIORITY_TO_MODE . 529
MODE_RANDOM . 319
MODES_TIEABLE_P . 443
modifiers in constraints . 365
MODIFY_EXPR . 299
MODIFY_TARGET_NAME . 423
modm3 instruction pattern 377
MODSI3_LIBCALL . 482
MOVE_BY_PIECES_P . 493
MOVE_MAX . 531
MOVE_MAX_PIECES . 493
MOVE_RATIO . 492
movm instruction pattern . 374
movmodecc instruction pattern 380
movstrictm instruction pattern 376
movstrm instruction pattern 378
MULDI3_LIBCALL . 482
mulhisi3 instruction pattern 377
mulm3 instruction pattern 377
mulqihi3 instruction pattern 377
MULSI3_LIBCALL . 481
mulsidi3 instruction pattern 377
mult . 327
mult and attributes . 406
mult, canonicalization of . 393

Index 603

MULT_EXPR . 299
multi-line string literals . 161
MULTIBYTE_CHARS . 542
MULTILIB_DEFAULTS . 422
MULTILIB_DIRNAMES . 546
MULTILIB_EXCEPTIONS . 546
MULTILIB_EXTRA_OPTS . 546
MULTILIB_MATCHES . 546
MULTILIB_OPTIONS . 545
multiple alternative constraints 364
MULTIPLE_SYMBOL_SPACES 538
multiplication . 327
multiprecision arithmetic . 157
MUST_PASS_IN_STACK . 463
MUST_PASS_IN_STACK, and FUNCTION_ARG 463

N
‘n’ in constraint . 361
N_REG_CLASSES . 446
name . 279
name augmentation . 258
named patterns and conditions 352
names used in assembler code 190
names, pattern . 374
namespace . 284
namespace, class, scope . 284
NAMESPACE_DECL . 284, 287
naming convention, implementation headers . . 203
naming types . 154
ne . 330
ne and attributes . 406
NE_EXPR . 299
NEED_ATEXIT . 537
neg . 327
neg and attributes . 406
neg, canonicalization of . 393
NEGATE_EXPR . 299
negm2 instruction pattern 378
nested functions . 152
nested functions, trampolines for 479
newline vs string constants 22
newlines (escaped) . 161
next_cc0_user . 390
NEXT_INSN . 340
NEXT_OBJC_RUNTIME . 483
nil . 310
no-op move instructions . 274
NO_BUILTIN_PTRDIFF_TYPE 419
NO_BUILTIN_SIZE_TYPE. 419
NO_BUILTIN_WCHAR_TYPE . 419
NO_BUILTIN_WINT_TYPE. 419

no_check_memory_usage function attribute . . . 170

NO_DBX_FUNCTION_END . 523

NO_DOLLAR_IN_LABEL . 537

NO_DOT_IN_LABEL . 537

NO_FUNCTION_CSE . 493

NO_IMPLICIT_EXTERN_C. 534

no_instrument_function function attribute . . 169

no_new_pseudos . 375

NO_PROFILE_COUNTERS . 473

NO_RECURSIVE_FUNCTION_CSE 493

NO_REGS . 445

nocommon attribute . 179

non-constant initializers . 162

non-static inline function . 184

NON_SAVING_SETJMP . 441

nonlocal_goto instruction pattern 386

nonlocal_goto_receiver instruction pattern
. 386

nonoffsettable memory reference 364

nop instruction pattern . 383

NOP_EXPR . 299

noreturn function attribute 166

NORMAL_MODE . 529

not . 328

not and attributes . 406

not equal . 330

not, canonicalization of . 393

note . 342

NOTE_INSN_BLOCK_BEG . 342

NOTE_INSN_BLOCK_END . 342

NOTE_INSN_DELETED . 342

NOTE_INSN_EH_REGION_BEG 342

NOTE_INSN_EH_REGION_END 342

NOTE_INSN_FUNCTION_END 343

NOTE_INSN_LOOP_BEG . 342

NOTE_INSN_LOOP_CONT . 343

NOTE_INSN_LOOP_END . 342

NOTE_INSN_LOOP_VTOP . 343

NOTE_INSN_SETJMP . 343

NOTE_LINE_NUMBER . 342

NOTE_SOURCE_FILE . 342

NOTICE_UPDATE_CC . 487

NS32K options . 120

NUM_MACHINE_MODES . 319

NUM_MODES_FOR_MODE_SWITCHING 528

604 Using and Porting the GNU Compiler Collection (GCC)

O
‘o’ in constraint . 360
OBJC_GEN_METHOD_LABEL . 508
OBJC_INCLUDE_PATH . 133
OBJC_PROLOGUE . 498
OBJC_SELECTORS_WITHOUT_LABELS 438
OBJECT_FORMAT_COFF . 512
OBJECT_FORMAT_ROSE . 512
Objective-C . 3
Objective-C options, command line 28
OBSTACK_CHUNK_ALLOC . 542
OBSTACK_CHUNK_FREE . 542
OBSTACK_CHUNK_SIZE . 542
OCS (88k) . 90
OFFSET_TYPE . 280
offsettable address . 360
OImode . 317
old-style function definitions 175
OMIT_EH_TABLE . 517
omitted middle-operands . 156
ON_EXIT . 537
one_cmplm2 instruction pattern 378
ONLY_INT_FIELDS . 542
open coding . 183
operand access . 312
operand constraints . 360
operand substitution . 357
operands . 352
OPTIMIZATION_OPTIONS. 427
optimize options . 49
OPTIMIZE_MODE_SWITCHING 528
optional hardware or system features 425
options to control diagnostics formatting 29
options to control warnings 30
options, C++ . 23
options, code generation . 126
options, debugging . 41
options, dialect . 18
options, directory search . 66
options, GCC command . 7
options, grouping . 7
options, linking . 63
options, Objective-C . 28
options, optimization . 49
options, order . 7
options, preprocessor . 59
order of evaluation, side effects 240
order of options . 7
order of register allocation 442
ORDER_REGS_FOR_LOCAL_ALLOC 442
Ordering of Patterns . 388
other register constraints . 362

OUTGOING_REG_PARM_STACK_SPACE 461
OUTGOING_REGNO . 441
output file option . 17
output of assembler code . 497
output statements . 359
output templates . 357
output_addr_const . 499
OUTPUT_ADDR_CONST_EXTRA 500
output_asm_insn . 359
OUTPUT_QUOTED_STRING. 498
overflow while constant folding 527
OVERLOAD . 289
overloaded virtual fn, warning 28
OVERRIDE_OPTIONS . 427
OVL_CURRENT . 289
OVL_NEXT . 289

P
‘p’ in constraint . 362
packed attribute . 179
PAD_VARARGS_DOWN . 465
parallel . 336
parameter forward declaration 160
parameters, aliased . 131
parameters, miscellaneous 529
PARM_BOUNDARY . 430
PARM_DECL . 287
PARSE_LDD_OUTPUT . 512
parsing pass . 269
passes and files of the compiler 269
passing arguments . 267
PATH_SEPARATOR . 542
PATTERN . 343
pattern conditions . 352
pattern names . 374
Pattern Ordering . 388
patterns . 351
pc . 326
pc and attributes . 410
pc, RTL sharing . 349
pc_rtx . 326
PCC_BITFIELD_TYPE_MATTERS 432
PCC_STATIC_STRUCT_RETURN 468
PDImode . 317
peephole optimization . 274
peephole optimization, RTL representation . . . 337
peephole optimizer definitions 400
per-function data . 427
percent sign . 357
PIC . 128, 496
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 497

Index 605

PIC_OFFSET_TABLE_REGNUM 496
plus . 326
plus and attributes . 406
plus, canonicalization of . 393
PLUS_EXPR . 299
pmf . 206
Pmode . 533
pointer . 280
pointer arguments . 167
pointer to member function 206
POINTER_SIZE . 429
POINTER_TYPE . 280
POINTERS_EXTEND_UNSIGNED 429
portability . 265
portions of temporary objects, pointers to 234
position independent code 496
POSIX . 542
post_dec . 338
post_inc . 338
post_modify . 338, 339
pragma . 534, 535
pragma, long calls . 197
pragma, long calls off . 197
pragma, mark . 198
pragma, no long calls . 197
pragma, options align . 198
pragma, reason for not using 173
pragma, segment . 198
pragma, unused . 198
pragmas . 197
pragmas in C++, effect on inlining 203
pragmas, interface and implementation 202
pragmas, warning of unknown 36
pre_dec . 338
pre_inc . 338
predefined macros . 425
PREDICATE_CODES . 529
predication . 414
PREFERRED_DEBUGGING_TYPE 519
PREFERRED_OUTPUT_RELOAD_CLASS 448
PREFERRED_RELOAD_CLASS 448
PREFERRED_STACK_BOUNDARY 430
preprocessing numbers . 231
preprocessing tokens . 231
preprocessor options . 59
PRETEND_OUTGOING_VARARGS_NAMED 479
prev_active_insn . 401
prev_cc0_setter . 390
PREV_INSN . 340
PRINT_OPERAND . 513
PRINT_OPERAND_ADDRESS . 514
PRINT_OPERAND_PUNCT_VALID_P 514

printf . 195

probe instruction pattern 385

processor selection (29k) . 83

product . 327

prof . 43

PROFILE_BEFORE_PROLOGUE 473

profile_block_flag 473, 474, 475

PROFILE_HOOK . 473

profiling, code generation . 473

program counter . 326

prologue . 469

prologue instruction pattern 387

PROMOTE_FOR_CALL_ONLY . 430

PROMOTE_FUNCTION_ARGS . 430

PROMOTE_FUNCTION_RETURN 430

PROMOTE_MODE . 430

PROMOTE_PROTOTYPES . 460

promotion of formal parameters 175

pseudo registers . 322

PSImode . 317

PTRDIFF_TYPE . 437

PTRMEM_CST . 299

PTRMEM_CST_CLASS . 299

PTRMEM_CST_MEMBER . 299

pure function attribute . 167

push address instruction. 362

PUSH_ARGS . 460

push_reload . 486

PUSH_ROUNDING . 460

PUSH_ROUNDING, interaction with
PREFERRED_STACK_BOUNDARY 431

pushm instruction pattern 376

PUT_CODE . 309

PUT_MODE . 319

PUT_REG_NOTE_KIND . 344

PUT_SDB_... 525

Q
QCmode . 318

QFmode . 317

QImode . 317

QImode, in insn . 343

qsort, and global register variables 191

qualified type . 280

question mark . 365

quotient . 327

606 Using and Porting the GNU Compiler Collection (GCC)

R
‘r’ in constraint . 361
r0-relative references (88k) 91
ranges in case statements . 165
RDIV_EXPR . 299
read-only strings . 228
READONLY_DATA_SECTION . 495
REAL_ARITHMETIC . 527
REAL_CST . 299
REAL_INFINITY . 527
REAL_NM_FILE_NAME . 512
REAL_TYPE . 280
REAL_VALUE_ATOF . 527
REAL_VALUE_FIX . 526
REAL_VALUE_FROM_INT . 528
REAL_VALUE_ISINF . 527
REAL_VALUE_ISNAN . 527
REAL_VALUE_LDEXP . 526
REAL_VALUE_NEGATE . 527
REAL_VALUE_RNDZINT . 526
REAL_VALUE_TO_DECIMAL . 502
REAL_VALUE_TO_INT . 528
REAL_VALUE_TO_TARGET_DOUBLE 502
REAL_VALUE_TO_TARGET_LONG_DOUBLE 502
REAL_VALUE_TO_TARGET_SINGLE 502
REAL_VALUE_TRUNCATE . 527
REAL_VALUE_TYPE . 526
REAL_VALUE_UNSIGNED_FIX 526
REAL_VALUE_UNSIGNED_RNDZINT 526
REAL_VALUES_EQUAL . 526
REAL_VALUES_LESS . 526
REALPART_EXPR . 299
recog_operand . 513
recognizing insns . 353
RECORD_TYPE . 280, 285
reference . 280
REFERENCE_TYPE . 280
reg . 322
reg and ‘/f’ . 313
reg and ‘/i’ . 313
reg and ‘/s’ . 313
reg and ‘/u’ . 314
reg and ‘/v’ . 313
reg, RTL sharing . 349
REG_ALLOC_ORDER . 442
REG_BR_PRED . 348
REG_BR_PROB . 347
REG_CC_SETTER . 347
REG_CC_USER . 347
REG_CLASS_CONTENTS . 446
REG_CLASS_FROM_LETTER . 447
REG_CLASS_NAMES . 446

REG_DEAD . 344
REG_DEP_ANTI . 347
REG_DEP_OUTPUT . 347
REG_EQUAL . 345
REG_EQUIV . 345
REG_EXEC_COUNT . 347
REG_FRAME_RELATED_EXPR 348
REG_FUNCTION_VALUE_P. 313
REG_INC . 345
REG_LABEL . 345
REG_LIBCALL . 347
REG_LOOP_TEST_P . 313
REG_MODE_OK_FOR_BASE_P 485
reg_names . 513
REG_NO_CONFLICT . 345
REG_NONNEG . 345
REG_NOTE_KIND . 344
REG_NOTES . 344
REG_OK_FOR_BASE_P . 485
REG_OK_FOR_INDEX_P . 485
REG_OK_STRICT . 484
REG_PARM_STACK_SPACE. 461
REG_PARM_STACK_SPACE, and FUNCTION_ARG . . . 463
REG_POINTER . 313
REG_RETVAL . 347
REG_UNUSED . 344
REG_USERVAR_P . 313
REG_WAS_0 . 346
register allocation . 273
register allocation order . 442
register class definitions . 445
register class preference constraints 365
register class preference pass 273
register movement . 273
register pairs . 442
register positions in frame (88k) 91
Register Transfer Language (RTL) 309
register usage. 439
register use analysis . 271
register variable after longjmp 192
register-to-stack conversion 274
REGISTER_MOVE_COST . 491
REGISTER_NAMES . 512
register_operand . 354
REGISTER_PREFIX . 514
REGISTER_TARGET_PRAGMAS 534
registers . 185
registers arguments . 462
registers for local variables 192
registers in constraints . 361
registers, global allocation 190
registers, global variables in 191

Index 607

REGNO_MODE_OK_FOR_BASE_P 447
REGNO_OK_FOR_BASE_P . 447
REGNO_OK_FOR_INDEX_P. 447
REGNO_REG_CLASS . 447
regs_ever_live . 470
relative costs . 490
RELATIVE_PREFIX_NOT_LINKDIR 422
reload pass . 324
reload_completed . 382
reload_in instruction pattern 376
reload_in_progress . 375
reload_out instruction pattern 376
reloading . 273
remainder . 328
reordering, block . 274
reordering, warning . 27, 36
reporting bugs . 243
representation of RTL . 309
rest argument (in macro) . 160
rest_of_compilation . 269
rest_of_decl_compilation 269
restore_stack_block instruction pattern 384
restore_stack_function instruction pattern

. 384
restore_stack_nonlocal instruction pattern

. 384
restricted pointers . 200
restricted references . 200
restricted this pointer . 200
RESULT_DECL . 287
return . 334
return instruction pattern 382
return value of main . 258
return values in registers . 466
RETURN_ADDR_IN_PREVIOUS_FRAME 453
RETURN_ADDR_RTX . 453
RETURN_ADDRESS_POINTER_REGNUM 458
RETURN_EXPR . 293
RETURN_IN_MEMORY . 468
RETURN_INIT . 293
RETURN_POPS_ARGS . 462
RETURN_STMT . 293
returning aggregate values 467
returning structures and unions 267
REVERSE_CONDEXEC_PREDICATES_P 489
REVERSE_CONDITION (code, mode) 489
REVERSIBLE_CC_MODE . 489
right rotate . 328
right shift . 328
rindex . 195
rotate . 328
rotatert . 328

rotlm3 instruction pattern 378

rotrm3 instruction pattern 378

ROUND_TYPE_ALIGN . 434

ROUND_TYPE_SIZE . 433

ROUND_TYPE_SIZE_UNIT. 434

RS/6000 and PowerPC Options 93

RSHIFT_EXPR . 299

RT options . 100

RT PC . 227

RTL addition . 326

RTL addition with signed saturation 326, 327

RTL addition with unsigned saturation . . 326, 327

RTL classes . 310

RTL comparison . 327

RTL comparison operations 329

RTL constant expression types 320

RTL constants. 320

RTL declarations . 333

RTL difference . 326

RTL expression . 309

RTL expressions for arithmetic 326

RTL format . 311

RTL format characters . 311

RTL function-call insns . 348

RTL generation . 270

RTL insn template . 353

RTL integers . 309

RTL memory expressions . 322

RTL object types . 309

RTL postdecrement . 338

RTL postincrement . 338

RTL predecrement . 338

RTL preincrement . 338

RTL register expressions . 322

RTL representation . 309

RTL side effect expressions 333

RTL strings . 309

RTL structure sharing assumptions 349

RTL subtraction . 326

RTL sum . 326

RTL vectors . 309

RTTI . 201

RTX (See RTL) . 309

RTX codes, classes of . 310

RTX_COSTS . 490

RTX_FRAME_RELATED_P . 314

RTX_INTEGRATED_P . 314

RTX_UNCHANGING_P . 314

run-time conventions . 267

run-time options . 126

run-time target specification 425

608 Using and Porting the GNU Compiler Collection (GCC)

S
‘s’ in constraint . 361
S/390 and zSeries Options 125
same_type_p . 281
save_stack_block instruction pattern 384
save_stack_function instruction pattern 384
save_stack_nonlocal instruction pattern 384
saveable_obstack . 485
scalars, returned as values 466
scanf, and constant strings 228
SCCS_DIRECTIVE . 534
SCHED_GROUP_P . 315
scheduling, delayed branch 274
scheduling, instruction 273, 274
SCmode . 318
scond instruction pattern 380
scope of a variable length array 160
scope of declaration . 232
scope of external declarations 229
SCOPE_BEGIN_P . 293
SCOPE_END_P . 293
SCOPE_NULLIFIED_P . 293
SCOPE_STMT . 293
scratch . 325
scratch operands . 325
scratch, RTL sharing . 349
SDB_ALLOW_FORWARD_REFERENCES 525
SDB_ALLOW_UNKNOWN_REFERENCES 525
SDB_DEBUGGING_INFO . 524
SDB_DELIM . 525
SDB_GENERATE_FAKE . 525
search path. 66
second include path . 60
SECONDARY_INPUT_RELOAD_CLASS 448
SECONDARY_MEMORY_NEEDED 449
SECONDARY_MEMORY_NEEDED_MODE 449
SECONDARY_MEMORY_NEEDED_RTX 449
SECONDARY_OUTPUT_RELOAD_CLASS 448
SECONDARY_RELOAD_CLASS 448
section function attribute 169
section variable attribute 179
SELECT_CC_MODE . 488
SELECT_RTX_SECTION . 495
SELECT_SECTION . 495
sequence . 337
sequential consistency on 88k 91
set . 333
SET_ASM_OP . 507, 508
set_attr . 408
set_attr_alternative. 408
SET_DEST . 334
SET_SRC . 334

setjmp . 192
setjmp incompatibilities . 229
SETUP_FRAME_ADDRESSES . 453
SETUP_INCOMING_VARARGS 478
SFmode . 318
shared strings . 228
shared variable attribute . 180
shared VMS run time system 258
SHARED_BSS_SECTION_ASM_OP 494
SHARED_SECTION_ASM_OP . 494
sharing of RTL components 349
shift . 328
SHIFT_COUNT_TRUNCATED . 531
SHORT_IMMEDIATES_SIGN_EXTEND 530
SHORT_TYPE_SIZE . 436
sibcall_epilogue instruction pattern 388
sibling call optimization . 270
sibling calls . 476
side effect in ?: . 156
side effects, macro argument 149
side effects, order of evaluation 240
sign_extend . 332
sign_extract . 330
sign_extract, canonicalization of 394
signal handler functions on the AVR processors

. 172
signed and unsigned values, comparison warning

. 39
signed division. 327
signed maximum . 328
signed minimum . 328
SIGNED_CHAR_SPEC . 419
SImode . 317
simple constraints . 360
simplifications, arithmetic 270
sin . 195
sinf . 195
Single Static Assignment optimizations 271
sinl . 195
SIZE_TYPE . 437
sizeof . 155
SLOW_BYTE_ACCESS . 492
SLOW_UNALIGNED_ACCESS . 492
SLOW_ZERO_EXTEND . 492
SMALL_REGISTER_CLASSES 450
SMALL_STACK . 454
smaller data references . 90
smaller data references (88k) 91
smaller data references (MIPS) 104
smaller data references (PowerPC) 100
smax . 328
smaxm3 instruction pattern 377

Index 609

smin . 328
sminm3 instruction pattern 377
smulm3_highpart instruction pattern 377
SPARC options . 78
Spec Files . 68
SPECIAL_MODE_PREDICATES 529
specified registers . 190
specifying compiler version and target machine

. 74
specifying hardware config . 75
specifying machine version . 74
specifying registers for local variables 192
speed of instructions . 490
splitting instructions . 397
sqrt . 195, 329
sqrtf . 195
sqrtl . 195
sqrtm2 instruction pattern 378
square root . 329
ss_minus . 327
ss_plus . 326
ss_truncate . 332
SSA Conditional Constant Propagation 271
SSA DCE . 271
SSA optimizations . 271
sscanf, and constant strings 228
stack arguments . 460
stack checks (29k) . 83
stack frame layout . 452
STACK_BOUNDARY . 430
STACK_CHECK_BUILTIN . 456
STACK_CHECK_FIXED_FRAME_SIZE 457
STACK_CHECK_MAX_FRAME_SIZE 457
STACK_CHECK_MAX_VAR_SIZE 457
STACK_CHECK_PROBE_INTERVAL 456
STACK_CHECK_PROBE_LOAD 456
STACK_CHECK_PROTECT . 456
STACK_DYNAMIC_OFFSET. 453
STACK_DYNAMIC_OFFSET and virtual registers . . 323
STACK_GROWS_DOWNWARD. 452
STACK_PARMS_IN_REG_PARM_AREA 461
STACK_POINTER_OFFSET. 452
STACK_POINTER_OFFSET and virtual registers . . 323
STACK_POINTER_REGNUM. 457
STACK_POINTER_REGNUM and virtual registers . . 323
stack_pointer_rtx . 458
STACK_PUSH_CODE . 452
STACK_REGS . 445
STACK_SAVEAREA_MODE . 434
STACK_SIZE_MODE . 434
standard pattern names . 374
STANDARD_EXEC_PREFIX. 422

STANDARD_INCLUDE_COMPONENT 423
STANDARD_INCLUDE_DIR. 423
STANDARD_STARTFILE_PREFIX 422
start files. 141
STARTFILE_SPEC . 420
STARTING_FRAME_OFFSET . 452
STARTING_FRAME_OFFSET and virtual registers

. 323
statements . 293
statements inside expressions 149
static data in C++, declaring and defining 234
STATIC_CHAIN . 458
STATIC_CHAIN_INCOMING . 458
STATIC_CHAIN_INCOMING_REGNUM 458
STATIC_CHAIN_REGNUM . 458
‘stdarg.h’ and register arguments 463
‘stdarg.h’ and RT PC . 100
STDC_0_IN_SYSTEM_HEADERS 533
STMT_EXPR . 299
STMT_IS_FULL_EXPR_P . 294
STMT_LINENO . 294
storage layout . 428
STORE_FLAG_VALUE . 532
‘store_multiple’ instruction pattern 376
storem bug (29k) . 83
strcat . 195
strchr . 195
strcmp . 195
strcpy . 195, 431
strcspn . 195
strength-reduction . 272
STRICT_ALIGNMENT . 432
STRICT_ARGUMENT_NAMING 478
strict_low_part . 333
strict_memory_address_p 486
string constants . 228
string constants vs newline 22
STRING_CST . 299
STRIP_NAME_ENCODING . 496
strlen . 195
strlenm instruction pattern 379
strncat . 195
strncmp . 195
strncpy . 195
strpbrk . 195
strrchr . 195
strspn . 195
strstr . 195
STRUCT_VALUE . 468
STRUCT_VALUE_INCOMING . 468
STRUCT_VALUE_INCOMING_REGNUM 468
STRUCT_VALUE_REGNUM . 468

610 Using and Porting the GNU Compiler Collection (GCC)

structure passing (88k) . 93

structure value address . 467

STRUCTURE_SIZE_BOUNDARY 432

structures . 230

structures, constructor expression 162

structures, returning . 267

subm3 instruction pattern 377

submodel options . 75

SUBOBJECT . 293

SUBOBJECT_CLEANUP . 293

subreg . 323

subreg and ‘/s’ . 313

subreg and ‘/u’ . 314

subreg, in strict_low_part 333

subreg, special reload handling 324

SUBREG_BYTE . 325

SUBREG_PROMOTED_UNSIGNED_P 314

SUBREG_PROMOTED_VAR_P . 313

SUBREG_REG . 325

SUBREG_REGNO_OFFSET . 444

subscripting . 162

subscripting and function values 162

SUCCESS_EXIT_CODE . 541

suffixes for C++ source . 18

SUPPORTS_INIT_PRIORITY 511

SUPPORTS_ONE_ONLY . 505

SUPPORTS_WEAK . 505

suppressing warnings . 30

surprises in C++ . 234

SVr4 . 92

SWITCH_BODY . 293

SWITCH_COND . 293

SWITCH_CURTAILS_COMPILATION 418

SWITCH_STMT . 293

SWITCH_TAKES_ARG . 417

SWITCHES_NEED_SPACES. 418

symbol_ref . 321

symbol_ref and ‘/i’ . 315

symbol_ref and ‘/u’ . 315

symbol_ref and ‘/v’ . 314

symbol_ref, RTL sharing 349

SYMBOL_REF_FLAG . 314

SYMBOL_REF_FLAG, in ENCODE_SECTION_INFO . . . 496

SYMBOL_REF_USED . 314

SYMBOL_REF_WEAK . 315

symbolic label . 349

syntax checking . 30

synthesized methods, warning. 28

system headers, warnings from 36

SYSTEM_INCLUDE_DIR . 423

T
‘t-target’ . 545
tablejump instruction pattern 383
tagging insns . 408
tail calls . 476
tail recursion optimization 270
target description macros . 417
target functions . 417
target hooks . 417
target machine, specifying . 74
target makefile fragment . 545
target options . 74
target specifications . 425
target-parameter-dependent code 270
TARGET_ALLOWS_PROFILING_WITHOUT_FRAME_

POINTER . 476
TARGET_ASM_CLOSE_PAREN 502
TARGET_ASM_FUNCTION_BEGIN_EPILOGUE 470
TARGET_ASM_FUNCTION_END_PROLOGUE 470
TARGET_ASM_FUNCTION_EPILOGUE 470
TARGET_ASM_FUNCTION_EPILOGUE and trampolines

. 480
TARGET_ASM_FUNCTION_PROLOGUE 469
TARGET_ASM_FUNCTION_PROLOGUE and trampolines

. 480
TARGET_ASM_NAMED_SECTION 499
TARGET_ASM_OPEN_PAREN . 502
TARGET_BELL . 439
TARGET_BS . 439
TARGET_COMP_TYPE_ATTRIBUTES 536
TARGET_CR . 439
TARGET_DLLIMPORT_DECL_ATTRIBUTES 536
TARGET_EDOM . 482
TARGET_ESC . 439
TARGET_EXECUTABLE_SUFFIX 543
TARGET_EXPAND_BUILTIN . 540
TARGET_FF . 439
TARGET_FLOAT_FORMAT . 435
TARGET_HAS_F_SETLKW . 539
TARGET_HAVE_NAMED_SECTIONS 499
TARGET_INIT_BUILTINS. 540
TARGET_INSERT_ATTRIBUTES 536
TARGET_MEM_FUNCTIONS. 483
TARGET_MERGE_DECL_ATTRIBUTES 536
TARGET_MERGE_TYPE_ATTRIBUTES 536
TARGET_NEWLINE . 439
TARGET_OBJECT_SUFFIX. 543
TARGET_OPTION_TRANSLATE_TABLE 418
TARGET_OPTIONS . 426
TARGET_PTRMEMFUNC_VBIT_LOCATION 438
TARGET_SECTION_TYPE_FLAGS 499
TARGET_SET_DEFAULT_TYPE_ATTRIBUTES 536

Index 611

TARGET_SWITCHES . 425
TARGET_TAB . 439
TARGET_VALID_DECL_ATTRIBUTE 535
TARGET_VALID_TYPE_ATTRIBUTE 536
TARGET_VERSION . 426
TARGET_VT . 439
targetm . 417
targets, makefile . 261
TC1 . 5
TC2 . 5
TCmode . 318
tcov . 43
Technical Corrigenda . 5
Technical Corrigendum 1 . 5
Technical Corrigendum 2 . 5
template instantiation . 204
TEMPLATE_DECL . 287
temporaries, lifetime of . 234
termination routines . 509
text_section . 495
TEXT_SECTION_ASM_OP . 494
TFmode . 318
THEN_CLAUSE . 293
THREAD_MODEL_SPEC . 420
THROW_EXPR . 299
THUNK_DECL . 287
THUNK_DELTA . 287
thunks . 152
TImode . 317
TImode, in insn . 343
tiny data section on the H8/300H 172
‘tm.h’ macros . 417
TMPDIR . 132
TMS320C3x/C4x Options 117
top level of compiler . 269
TQFmode . 317
traditional C language . 21
TRADITIONAL_RETURN_FLOAT 466
TRAMPOLINE_ADJUST_ADDRESS 480
TRAMPOLINE_ALIGNMENT. 479
TRAMPOLINE_SECTION . 479
TRAMPOLINE_SIZE . 479
TRAMPOLINE_TEMPLATE . 479
trampolines for nested functions 479
TRANSFER_FROM_TRAMPOLINE 481
trap instruction pattern . 388
tree . 277, 278
Tree optimization . 270
TREE_CODE . 277
tree_int_cst_equal . 299
TREE_INT_CST_HIGH . 299
TREE_INT_CST_LOW . 299

tree_int_cst_lt . 299
TREE_LIST . 279
TREE_OPERAND . 299
TREE_PUBLIC . 290, 291
TREE_PURPOSE . 279
TREE_STRING_LENGTH . 299
TREE_STRING_POINTER . 299
TREE_TYPE . 280, 287, 293, 299
TREE_VALUE . 279
TREE_VEC . 279
TREE_VEC_ELT . 279
TREE_VEC_LENGTH . 279
TREE_VIA_PRIVATE . 285
TREE_VIA_PROTECTED . 285
TREE_VIA_PUBLIC . 285
Trees . 277
TRULY_NOOP_TRUNCATION . 531
TRUNC_DIV_EXPR . 299
TRUNC_MOD_EXPR . 299
truncate . 332
truncmn2 instruction pattern 379
TRUTH_AND_EXPR . 299
TRUTH_ANDIF_EXPR . 299
TRUTH_NOT_EXPR . 299
TRUTH_OR_EXPR . 299
TRUTH_ORIF_EXPR . 299
TRUTH_XOR_EXPR . 299
TRY_BLOCK . 293
TRY_HANDLERS . 293
TRY_STMTS . 293
tstm instruction pattern . 378
type . 280
type alignment . 177
type attributes . 181
type declaration . 287
TYPE_ALIGN . 280
TYPE_ARG_TYPES . 280
TYPE_ATTRIBUTES . 299
TYPE_BINFO . 285
TYPE_BUILT_IN . 281
TYPE_CONTEXT . 280
TYPE_DECL . 287
TYPE_FIELDS . 280, 285
TYPE_HAS_ARRAY_NEW_OPERATOR 287
TYPE_HAS_DEFAULT_CONSTRUCTOR 286
TYPE_HAS_MUTABLE_P . 287
TYPE_HAS_NEW_OPERATOR . 287
type info . 201
TYPE_MAIN_VARIANT . 280
TYPE_MAX_VALUE . 280
TYPE_METHOD_BASETYPE. 280
TYPE_METHODS . 285

612 Using and Porting the GNU Compiler Collection (GCC)

TYPE_MIN_VALUE . 280
TYPE_NAME . 280, 281
TYPE_NOTHROW_P . 293
TYPE_OFFSET_BASETYPE. 280
TYPE_OVERLOADS_ARRAY_REF 287
TYPE_OVERLOADS_ARROW. 287
TYPE_OVERLOADS_CALL_EXPR 287
TYPE_POLYMORPHIC_P . 286
TYPE_PRECISION . 280
TYPE_PTR_P . 281
TYPE_PTRFN_P . 281
TYPE_PTRMEM_P . 280, 281
TYPE_PTROB_P . 281
TYPE_PTROBV_P . 280
TYPE_QUAL_CONST . 280
TYPE_QUAL_RESTRICT . 280
TYPE_QUAL_VOLATILE . 280
TYPE_RAISES_EXCEPTIONS 293
TYPE_SIZE . 280
TYPE_UNQUALIFIED . 280
TYPE_VFIELD . 285
typedef names as function parameters 230
TYPENAME_TYPE . 280
TYPENAME_TYPE_FULLNAME 280
typeof . 155
TYPEOF_TYPE . 280

U
udiv . 328
UDIVDI3_LIBCALL . 482
udivm3 instruction pattern 377
udivmodm4 instruction pattern 377
UDIVSI3_LIBCALL . 481
UINTMAX_TYPE . 438
ULL integer suffix . 157
Ultrix calling convention . 227
umax . 328
umaxm3 instruction pattern 377
umin . 328
uminm3 instruction pattern 377
umod . 328
UMODDI3_LIBCALL . 482
umodm3 instruction pattern 377
UMODSI3_LIBCALL . 482
umulhisi3 instruction pattern 377
umulm3_highpart instruction pattern 377
umulqihi3 instruction pattern 377
umulsidi3 instruction pattern 377
UNALIGNED_DOUBLE_INT_ASM_OP 500
UNALIGNED_INT_ASM_OP. 500
UNALIGNED_SHORT_ASM_OP 500

unchanging . 316
unchanging, in call_insn 315
unchanging, in insn . 315
unchanging, in reg and mem 314
unchanging, in subreg . 314
unchanging, in symbol_ref 315
undefined behavior . 243
undefined function value . 243
underscores in variables in macros. 154
underscores, avoiding (88k) 90
union, casting to a . 165
UNION_TYPE . 280, 285
unions . 230
unions, returning . 267
UNIQUE_SECTION . 496
UNITS_PER_WORD . 429
unknown pragmas, warning 36
UNKNOWN_FLOAT_FORMAT. 435
UNKNOWN_TYPE . 280
unreachable code . 271
unresolved references and ‘-nodefaultlibs’ 64
unresolved references and ‘-nostdlib’ 64
unshare_all_rtl . 349
unsigned division . 328
unsigned greater than . 330
unsigned less than . 330
unsigned minimum and maximum 328
unsigned_fix . 333
unsigned_float . 332
unspec . 337
unspec_volatile . 337
untyped_call instruction pattern 382
untyped_return instruction pattern 382
UPDATE_PATH_HOST_CANONICALIZE 543
us_minus . 327
us_plus . 326
us_truncate . 332
use . 336
USE_C_ALLOCA . 542
USE_LOAD_POST_DECREMENT 493
USE_LOAD_POST_INCREMENT 493
USE_LOAD_PRE_DECREMENT 493
USE_LOAD_PRE_INCREMENT 493
USE_STORE_POST_DECREMENT 493
USE_STORE_POST_INCREMENT 493
USE_STORE_PRE_DECREMENT 493
USE_STORE_PRE_INCREMENT 493
used . 316
used, in symbol_ref . 314
USER_LABEL_PREFIX . 514
USG . 541
USING_DECL . 287

Index 613

USING_STMT . 293

V
‘V’ in constraint . 361
V850 Options . 119
vague linkage . 201
value after longjmp . 192
values, returned by functions 466
VAR_DECL . 287, 299
varargs implementation . 476
‘varargs.h’ and RT PC . 100
variable . 287
variable addressability on the M32R/D 180
variable alignment . 177
variable attributes . 177
variable number of arguments 160
variable-length array scope 160
variable-length arrays . 159
variables in specified registers 190
variables, local, in macros 154
variadic macros . 160
VAX calling convention . 227
VAX options . 78
VAX_FLOAT_FORMAT . 435
‘VAXCRTL’ . 258
vec_concat . 331
vec_const . 331
vec_duplicate . 331
vec_merge . 331
vec_select . 331
vector . 279
vector operations . 331
VECTOR_MODE_SUPPORTED_P 434
VIRTUAL_INCOMING_ARGS_REGNUM 323
VIRTUAL_OUTGOING_ARGS_REGNUM 323
VIRTUAL_STACK_DYNAMIC_REGNUM 323
VIRTUAL_STACK_VARS_REGNUM 323
VLAs . 159
VMS . 541
VMS and case sensitivity . 258
VMS and include files . 255
VMS installation . 142
void pointers, arithmetic . 162
void, size of pointer to . 162
VOID_TYPE . 280
VOIDmode . 318
volatil . 316
volatil, in insn . 315
volatil, in mem . 313
volatil, in reg . 313
volatil, in symbol_ref . 314

volatile access . 199
volatile applied to function 166
volatile memory references 316
volatile read . 199
volatile write . 199
voting between constraint alternatives 365
vtable . 201

W
warning for comparison of signed and unsigned

values . 39
warning for overloaded virtual fn 28
warning for reordering of member initializers . . 27,

36
warning for synthesized methods 28
warning for unknown pragmas 36
warning messages . 30
warnings from system headers 36
warnings vs errors . 240
WCHAR_TYPE . 437
WCHAR_TYPE_SIZE . 437
weak attribute . 169
which_alternative . 359
WHILE_BODY . 293
WHILE_COND . 293
WHILE_STMT . 293
whitespace . 230
WIDEST_HARDWARE_FP_SIZE 437
WINT_TYPE . 438
word_mode . 320
WORD_REGISTER_OPERATIONS 530
WORD_SWITCH_TAKES_ARG . 418
WORDS_BIG_ENDIAN . 429
WORDS_BIG_ENDIAN, effect on subreg 324

X
‘X’ in constraint . 361
‘x-host’ . 547
X3.159-1989 . 5
XCmode . 318
XCOFF_DEBUGGING_INFO. 520
XEXP . 312
XFmode . 318
XINT . 312
‘xm-machine.h’ . 541
xor . 328
xor, canonicalization of . 394
xorm3 instruction pattern 377
XSTR . 312
XVEC . 312

614 Using and Porting the GNU Compiler Collection (GCC)

XVECEXP . 312

XVECLEN . 312

XWINT . 312

Z

zero division on 88k . 92
zero-length arrays. 158
zero_extend . 332
zero_extendmn2 instruction pattern 380
zero_extract . 331
zero_extract, canonicalization of 394

	Introduction
	Compile C, C{@char 43}{@char 43}, Objective-C, Fortran, Java or CHILL
	Language Standards Supported by GCC
	GCC Command Options
	Option Summary
	Options Controlling the Kind of Output
	Compiling C{@char 43}{@char 43} Programs
	Options Controlling C Dialect
	Options Controlling C{@char 43}{@char 43} Dialect
	Options Controlling Objective-C Dialect
	Options to Control Diagnostic Messages Formatting
	Options to Request or Suppress Warnings
	Options for Debugging Your Program or GCC
	Options That Control Optimization
	Options Controlling the Preprocessor
	Passing Options to the Assembler
	Options for Linking
	Options for Directory Search
	Specifying subprocesses and the switches to pass to them
	Specifying Target Machine and Compiler Version
	Hardware Models and Configurations
	M680x0 Options
	M68hc1x Options
	VAX Options
	SPARC Options
	Convex Options
	AMD29K Options
	ARM Options
	MN10200 Options
	MN10300 Options
	M32R/D Options
	M88K Options
	IBM RS/6000 and PowerPC Options
	IBM RT Options
	MIPS Options
	Intel 386 Options
	HPPA Options
	Intel 960 Options
	DEC Alpha Options
	Clipper Options
	H8/300 Options
	SH Options
	Options for System V
	TMS320C3x/C4x Options
	V850 Options
	ARC Options
	NS32K Options
	AVR Options
	MCore Options
	IA-64 Options
	D30V Options
	S/390 and zSeries Options

	Options for Code Generation Conventions
	Environment Variables Affecting GCC
	Running Protoize

	Installing GNU CC
	Files Created by configure
	Configurations Supported by GNU CC
	Building and Installing a Cross-Compiler
	Steps of Cross-Compilation
	Configuring a Cross-Compiler
	Tools and Libraries for a Cross-Compiler
	Cross-Compilers and Header Files
	Actually Building the Cross-Compiler

	Installing GNU CC on VMS
	collect2
	Standard Header File Directories

	Extensions to the C Language Family
	Statements and Declarations in Expressions
	Locally Declared Labels
	Labels as Values
	Nested Functions
	Constructing Function Calls
	Naming an Expression's Type
	Referring to a Type with typeof
	Generalized Lvalues
	Conditionals with Omitted Operands
	Double-Word Integers
	Complex Numbers
	Hex Floats
	Arrays of Length Zero
	Arrays of Variable Length
	Macros with a Variable Number of Arguments.
	Slightly Looser Rules for Escaped Newlines
	String Literals with Embedded Newlines
	Non-Lvalue Arrays May Have Subscripts
	Arithmetic on void- and Function-Pointers
	Non-Constant Initializers
	Compound Literals
	Designated Initializers
	Case Ranges
	Cast to a Union Type
	Mixed Declarations and Code
	Declaring Attributes of Functions
	Attribute Syntax
	Prototypes and Old-Style Function Definitions
	C{@char 43}{@char 43} Style Comments
	Dollar Signs in Identifier Names
	The Character ESC in Constants
	Inquiring on Alignment of Types or Variables
	Specifying Attributes of Variables
	Specifying Attributes of Types
	An Inline Function is As Fast As a Macro
	Assembler Instructions with C Expression Operands
	i386 floating point asm operands

	Controlling Names Used in Assembler Code
	Variables in Specified Registers
	Defining Global Register Variables
	Specifying Registers for Local Variables

	Alternate Keywords
	Incomplete enum Types
	Function Names as Strings
	Getting the Return or Frame Address of a Function
	Other built-in functions provided by GCC
	Pragmas Accepted by GCC
	ARM Pragmas
	Darwin Pragmas

	Extensions to the C{@char 43}{@char 43} Language
	Minimum and Maximum Operators in C{@char 43}{@char 43}
	When is a Volatile Object Accessed?
	Restricting Pointer Aliasing
	Vague Linkage
	Declarations and Definitions in One Header
	Where's the Template?
	Extracting the function pointer from a bound pointer to member function
	C{@char 43}{@char 43}-Specific Variable, Function, and Type Attributes
	Java Exceptions
	Deprecated Features
	Backwards Compatibility

	GNU Objective-C runtime features
	{@char 43}load: Executing code before main
	What you can and what you cannot do in {@char 43}load

	Type encoding
	Garbage Collection
	Constant string objects
	compatibility@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}alias

	gcov: a Test Coverage Program
	Introduction to gcov
	Invoking gcov
	Using gcov with GCC Optimization
	Brief description of gcov data files

	Known Causes of Trouble with GCC
	Actual Bugs We Haven't Fixed Yet
	Cross-Compiler Problems
	Interoperation
	Problems Compiling Certain Programs
	Incompatibilities of GCC
	Fixed Header Files
	Standard Libraries
	Disappointments and Misunderstandings
	Common Misunderstandings with GNU C{@char 43}{@char 43}
	Declare and Define Static Members
	Temporaries May Vanish Before You Expect
	Implicit Copy-Assignment for Virtual Bases

	Caveats of using protoize
	Certain Changes We Don't Want to Make
	Warning Messages and Error Messages

	Reporting Bugs
	Have You Found a Bug?
	Where to Report Bugs
	How to Report Bugs
	The gccbug script
	Sending Patches for GCC

	How To Get Help with GCC
	Contributing to GCC Development
	Using GCC on VMS
	Include Files and VMS
	Global Declarations and VMS
	Other VMS Issues

	Additional Makefile and configure information.
	Makefile Targets
	Configure Terms and History

	GCC and Portability
	Interfacing to GCC Output
	Passes and Files of the Compiler
	Trees: The intermediate representation used by the C and C{@char 43}{@char 43} front ends
	Deficiencies
	Overview
	Trees
	Identifiers
	Containers

	Types
	Scopes
	Namespaces
	Classes

	Declarations
	Functions
	Function Basics
	Function Bodies
	Statements

	Attributes in trees
	Expressions

	RTL Representation
	RTL Object Types
	RTL Classes and Formats
	Access to Operands
	Flags in an RTL Expression
	Machine Modes
	Constant Expression Types
	Registers and Memory
	RTL Expressions for Arithmetic
	Comparison Operations
	Bit-Fields
	Vector Operations
	Conversions
	Declarations
	Side Effect Expressions
	Embedded Side-Effects on Addresses
	Assembler Instructions as Expressions
	Insns
	RTL Representation of Function-Call Insns
	Structure Sharing Assumptions
	Reading RTL

	Machine Descriptions
	Overview of How the Machine Description is Used
	Everything about Instruction Patterns
	Example of define@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}insn
	RTL Template
	Output Templates and Operand Substitution
	C Statements for Assembler Output
	Operand Constraints
	Simple Constraints
	Multiple Alternative Constraints
	Register Class Preferences
	Constraint Modifier Characters
	Constraints for Particular Machines

	Standard Pattern Names For Generation
	When the Order of Patterns Matters
	Interdependence of Patterns
	Defining Jump Instruction Patterns
	Defining Looping Instruction Patterns
	Canonicalization of Instructions
	Defining RTL Sequences for Code Generation
	Defining How to Split Instructions
	Machine-Specific Peephole Optimizers
	RTL to Text Peephole Optimizers
	RTL to RTL Peephole Optimizers

	Instruction Attributes
	Defining Attributes and their Values
	Attribute Expressions
	Assigning Attribute Values to Insns
	Example of Attribute Specifications
	Computing the Length of an Insn
	Constant Attributes
	Delay Slot Scheduling
	Specifying Function Units

	Conditional Execution
	Constant Definitions

	Target Description Macros and Functions
	The Global targetm Variable
	Controlling the Compilation Driver, gcc
	Run-time Target Specification
	Defining data structures for per-function information.
	Storage Layout
	Layout of Source Language Data Types
	Target Character Escape Sequences
	Register Usage
	Basic Characteristics of Registers
	Order of Allocation of Registers
	How Values Fit in Registers
	Handling Leaf Functions
	Registers That Form a Stack

	Register Classes
	Stack Layout and Calling Conventions
	Basic Stack Layout
	Exception Handling Support
	Specifying How Stack Checking is Done
	Registers That Address the Stack Frame
	Eliminating Frame Pointer and Arg Pointer
	Passing Function Arguments on the Stack
	Passing Arguments in Registers
	How Scalar Function Values Are Returned
	How Large Values Are Returned
	Caller-Saves Register Allocation
	Function Entry and Exit
	Generating Code for Profiling
	Permitting inlining of functions with attributes
	Permitting tail calls to functions

	Implementing the Varargs Macros
	Trampolines for Nested Functions
	Implicit Calls to Library Routines
	Addressing Modes
	Condition Code Status
	Describing Relative Costs of Operations
	Dividing the Output into Sections (Texts, Data, ...{})
	Position Independent Code
	Defining the Output Assembler Language
	The Overall Framework of an Assembler File
	Output of Data
	Output of Uninitialized Variables
	Output and Generation of Labels
	How Initialization Functions Are Handled
	Macros Controlling Initialization Routines
	Output of Assembler Instructions
	Output of Dispatch Tables
	Assembler Commands for Exception Regions
	Assembler Commands for Alignment

	Controlling Debugging Information Format
	Macros Affecting All Debugging Formats
	Specific Options for DBX Output
	Open-Ended Hooks for DBX Format
	File Names in DBX Format
	Macros for SDB and DWARF Output

	Cross Compilation and Floating Point
	Mode Switching Instructions
	Miscellaneous Parameters

	The Configuration File
	Makefile Fragments
	The Target Makefile Fragment
	The Host Makefile Fragment

	Funding Free Software
	Linux and the GNU Project
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Contributors to GCC
	Option Index
	Index

