
Microsoft Portable Executable and
Common Object File Format
Specification
Visual C++ Business Unit
Microsoft Corporation

Revision 6.0 February 1999

Note   This document is provided to aid in the development of tools and applications for
Microsoft Windows NT® but is not guaranteed to be a complete specification in all
respects. Microsoft reserves the right to alter this document without notice.

Contents

1. General Concepts
2. Overview
3. File Headers
3.1. MS-DOS Stub (Image Only)
3.2. Signature (Image Only)
3.3. COFF File Header (Object & Image)
3.3.1. Machine Types
3.3.2. Characteristics
3.4. Optional Header (Usually Image Only)
3.4.1. Optional Header Standard Fields (Image Only)
3.4.2. Optional Header Windows NT-Specific Fields (Image Only)
3.4.3. Optional Header Data Directories (Image Only)
4. Section Table (Section Headers)
4.1. Section Flags
4.2. Grouped Sections
5. Other Contents of the File
5.1. Section Data
5.2. COFF Relocations (Object Only)
5.2.1. Type Indicators
5.3. COFF Line Numbers
5.4. COFF Symbol Table
5.4.1. Symbol Name Representation
5.4.2. Section Number Values
5.4.3. Type Representation
5.4.4. Storage Class5.5. Auxiliary Symbol Records
5.5.1. Auxiliary Format 1: Function Definitions



5.5.2. Auxiliary Format 2: .bf and .ef Symbols
5.5.3. Auxiliary Format 3: Weak Externals
5.5.4. Auxiliary Format 4: Files
5.5.5. Auxiliary Format 5: Section Definitions
5.5.6. COMDAT Sections (Object Only)
5.6. COFF String Table
5.7. The Attribute Certificate table (Image Only)
5.7.1. Certificate Data
5.8. Delay-Load Import Tables (Image Only)
5.8.1. The Delay-Load Directory Table
5.8.2. Attributes
5.8.3. Name
5.8.4. Module Handle
5.8.5. Delay Import Address Table (IAT)
5.8.6. Delay Import Name Table (INT)
5.8.7. Delay Bound Import Address Table (BIAT) and Time Stamp
5.8.8. Delay Unload Import Address Table (UIAT)
6. Special Sections
6.1. The .debug Section
6.1.1. Debug Directory (Image Only)
6.1.2. Debug Type
6.1.3. .debug$F (Object Only)
6.1.4. .debug$S (Object Only)
6.1.5. .debug$T (Object Only)
6.1.6. Linker Support for Microsoft CodeView Debug Information
6.2. The .drectve Section (Object Only)
6.3. The .edata Section (Image Only)
6.3.1. Export Directory Table
6.3.2. Export Address Table
6.3.3. Export Name Pointer Table
6.3.4. Export Ordinal Table
6.3.5. Export Name Table
6.4. The .idata Section
6.4.1. Import Directory Table
6.4.2. Import Lookup Table
6.4.3. Hint/Name Table
6.4.4. Import Address Table
6.5. The .pdata Section
6.6. The .reloc Section (Image Only)
6.6.1. Fixup Block
6.6.2. Fixup Types
6.7. The .tls Section



6.7.1. The TLS Directory
6.7.2. TLS Callback Functions
6.8. The .rsrc Section
6.8.1. Resource Directory Section
6.8.2. Resource Directory Entries
6.8.3. Resource Directory String
6.8.4. Resource Data Entry
6.8.5. Resource Example
7. Archive (Library) File Format
7.1. Archive File Signature
7.2. Archive Member Headers
7.3. First Linker Member
7.4. Second Linker Member
7.5. Longnames Member
8. Import Library Format
8.1. Import Header
8.2. Import Type
8.3. Import Name Type
Appendix: Example Object File
Appendix: Calculating Image Message Digests
Fields Not To Include In Digests

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


1. General Concepts
This document specifies the structure of executable (image) files and object files under
Microsoft Windows NT®. These files are referred to as Portable Executable (PE) and
Common Object File Format (COFF) files respectively. The name “Portable Executable”
refers to the fact that the format is not architecture-specific.

Certain concepts appear repeatedly throughout the specification and are described in the
following table:

Name Description

Image file Executable file: either a .EXE file or a DLL. An image file
can be thought of as a “memory image.” The term
“image file” is usually used instead of “executable file,”
because the latter sometimes is taken to mean only a
.EXE file.

Object file A file given as input to the linker. The linker produces
an image file, which in turn is used as input by the
loader. The term “object file” does not necessarily imply
any connection to object-oriented programming.

RVA Relative Virtual Address. In an image file, an RVA is
always the address of an item once loaded into
memory, with the base address of the image file
subtracted from it. The RVA of an item will almost
always differ from its position within the file on disk
(File Pointer).

In an object file, an RVA is less meaningful because
memory locations are not assigned. In this case, an
RVA would be an address within a section (see below),
to which a relocation is later applied during linking. For
simplicity, compilers should just set the first RVA in
each section to zero.

Virtual Address (VA) Same as RVA (see above), except that the base
address of the image file is not subtracted. The address
is called a “Virtual Address” because Windows NT
creates a distinct virtual address space for each
process, independent of physical memory. For almost
all purposes, a virtual address should be considered
just an address. A virtual address is not as predictable
as an RVA, because the loader might not load the
image at its preferred location.

File pointer Location of an item within the file itself, before being
processed by the linker (in the case of object files) or
the loader (in the case of image files). In other words,
this is a position within the file as stored on disk.



Date/Time Stamp Date/time stamps are used in a number of places in a
PE/COFF file, and for different purposes. The format of
each such stamp, however, is always the same: that
used by the time functions in the C run-time library.

Section A section is the basic unit of code or data within a
PE/COFF file. In an object file, for example, all code can
be combined within a single section, or (depending on
compiler behavior) each function can occupy its own
section. With more sections, there is more file
overhead, but the linker is able to link in code more
selectively. A section is vaguely similar to a segment in
Intel® 8086 architecture. All the raw data in a section
must be loaded contiguously. In addition, an image file
can contain a number of sections, such as .tls or
.reloc, that have special purposes.

  Attribute certificates are used to associate verifiable
statements with an image. There are a number of
different verifiable statements that can be associated
with a file, but one of the most useful ones, and one
that is easy to describe, is a statement by a software
manufacturer indicating what the message digest of the
image is expected to be. A message digest is similar to
a checksum except that it is extremely difficult to forge,
and, therefore it is very difficult to modify a file in such
a way as to have the same message digest as the
original file. The statement may be verified as being
made by the manufacturer by use of public/private key
cryptography schemes. This document does not go into
details of attribute certificates other than to allow for
their insertion into image files.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


2. Overview
Figures 1 and 2 illustrate the Microsoft PE executable format and the Microsoft COFF
object-module format.

Figure 1. Typical 32-Bit Portable .EXE File Layout

Figure 2. Typical 32-Bit COFF Object Module Layout

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


3. File Headers
The PE file header consists of an MS-DOS stub, the PE signature, the COFF File Header,
and an Optional Header. A COFF object file header consists of a COFF File Header and
an Optional Header. In both cases, the file headers are followed immediately by section
headers.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


3.1. MS-DOS Stub (Image Only)
The MS-DOS Stub is a valid application that runs under MS-DOS and is placed at the
front of the .EXE image. The linker places a default stub here, which prints out the
message “This program cannot be run in DOS mode” when the image is run in MS-DOS.
The user can specify another stub by using the /STUB linker option.

At location 0x3c, the stub has the file offset to the Portable Executable (PE) signature.
This information enables Windows NT to properly execute the image file, even though it
has a DOS Stub. This file offset is placed at location 0x3c during linking.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


3.2. Signature (Image Only)
After the MS-DOS stub, at the file offset specified at offset 0x3c, there is a 4-byte
signature identifying the file as a PE format image file; this format is used in Win32,
Posix on Windows NT, and for some device drivers in Windows NT. Currently, this
signature is “PE\0\0” (the letters “P” and “E” followed by two null bytes).

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


3.3. COFF File Header (Object &
Image)
At the beginning of an object file, or immediately after the signature of an image file,
there is a standard COFF header of the following format. Note that the Windows NT
loader limits the Number of Sections to 96.

Offset Size Field Description

0 2 Machine Number identifying type of target
machine. See Section 3.3.1,
“Machine Types, ” for more
information.

2 2 NumberOfSections Number of sections; indicates size
of the Section Table, which
immediately follows the headers.

4 4 TimeDateStamp Time and date the file was
created.

8 4 PointerToSymbolTable File offset of the COFF symbol
table or 0 if none is present.

12 4 NumberOfSymbols Number of entries in the symbol
table. This data can be used in
locating the string table, which
immediately follows the symbol
table.

16 2 SizeOfOptionalHeader Size of the optional header, which
is required for executable files but
not for object files. An object file
should have a value of 0 here. The
format is described in the section
“Optional Header.”

18 2 Characteristics Flags indicating attributes of the
file. See Section 3.3.2,
“Characteristics,” for specific flag
values.

3.3.1. Machine Types
The Machine field has one of the following values, defined below, which specify its
machine (CPU) type. An image file can be run only on the specified machine, or a system
emulating it.

Constant Value Description



IMAGE_FILE_MACHINE_UNKNOWN 0x0 Contents assumed to be
applicable to any machine type.

IMAGE_FILE_MACHINE_ALPHA 0x184 Alpha AXP™.

IMAGE_FILE_MACHINE_ARM 0x1c0  

IMAGE_FILE_MACHINE_ALPHA64 0x284 Alpha AXP™ 64-bit.

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or later, and
compatible processors.

IMAGE_FILE_MACHINE_IA64 0x200 Intel IA64™

IMAGE_FILE_MACHINE_M68K 0x268 Motorola 68000 series.

IMAGE_FILE_MACHINE_MIPS16 0x266  

IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU

IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU

IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC, little endian.

IMAGE_FILE_MACHINE_R3000 0x162  

IMAGE_FILE_MACHINE_R4000 0x166 MIPS® little endian.

IMAGE_FILE_MACHINE_R10000 0x168  

IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3

IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4

IMAGE_FILE_MACHINE_THUMB 0x1c2  

3.3.2. Characteristics
The Characteristics field contains flags that indicate attributes of the object or image file.
The following flags are currently defined:

Flag Value Description



IMAGE_FILE_RELOCS_STRIPPED 0x0001 Image only, Windows
CE, Windows NT and
above. Indicates that
the file does not
contain base
relocations and must
therefore be loaded
at its preferred base
address. If the base
address is not
available, the loader
reports an error.
Operating systems
running on top of
MS-DOS (Win32s™)
are generally not
able to use the
preferred base
address and so
cannot run these
images. However,
beginning with
version 4.0, Windows
will use an
application’s
preferred base
address. The default
behavior of the linker
is to strip base
relocations from
EXEs.

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Image only.
Indicates that the
image file is valid
and can be run. If
this flag is not set, it
generally indicates a
linker error.

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 COFF line numbers
have been removed.

IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 COFF symbol table
entries for local
symbols have been
removed.

IMAGE_FILE_AGGRESSIVE_WS_TRIM 0x0010 Aggressively trim
working set.

IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 App can handle >
2gb addresses.

IMAGE_FILE_16BIT_MACHINE 0x0040 Use of this flag is
reserved for future
use.



IMAGE_FILE_BYTES_REVERSED_LO 0x0080 Little endian: LSB
precedes MSB in
memory.

IMAGE_FILE_32BIT_MACHINE 0x0100 Machine based on
32-bit-word
architecture.

IMAGE_FILE_DEBUG_STRIPPED 0x0200 Debugging
information removed
from image file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 If image is on
removable media,
copy and run from
swap file.

IMAGE_FILE_SYSTEM 0x1000 The image file is a
system file, not a
user program.

IMAGE_FILE_DLL 0x2000 The image file is a
dynamic-link library
(DLL). Such files are
considered
executable files for
almost all purposes,
although they cannot
be directly run.

IMAGE_FILE_UP_SYSTEM_ONLY 0x4000 File should be run
only on a UP
machine.

IMAGE_FILE_BYTES_REVERSED_HI 0x8000 Big endian: MSB
precedes LSB in
memory.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


3.4. Optional Header (Usually Image
Only)
Every image file has an Optional Header that provides information to the loader. This header is
also referred to the PE Header. This header is optional in the sense that some files (specifically,
object files) do not have it. For image files, this header is required. An object file may have an
optional header, but generally this header has no function in an object file except to increase size.

Note that the size of the optional header is not fixed. The Optional Header Size in the COFF
Header (see Section 3.3 COFF File Header (Object & Image)) must be used in conjunction with
the Optional Header’s Number of Data Directories field to accurately calculate the size of the
header. In addition, it is important to validate the Optional Header’s Magic number for format
compatibility.

The Optional Header’s Magic number determines whether an image is a PE32 or PE32+
executable:

Magic Number PE Format

0x10b PE32

0x20b PE32+

PE32+ images allow for a 64-bit address space while limiting the image size to 4 Gigabytes.
Other PE32+ modifications are addressed in their respective sections.

The Optional Header itself has three major parts:

Offset
(PE32/PE32+)

Size
(PE32/PE32+)

Header part Description

0 28/24 Standard fields These are defined for all
implementations of COFF,
including UNIX®.

28/24 68 / 88 Windows specific
fields

These include additional fields
to support specific features of
Windows (for example,
subsystem).

96/112 Variable Data directories These fields are address/size
pairs for special tables, found
in the image file and used by
the operating system (for
example, Import Table and
Export Table).



3.4.1. Optional Header Standard Fields (Image
Only)
The first eight fields of the Optional Header are standard fields, defined for every implementation
of COFF. These fields contain general information useful for loading and running an executable
file, and are unchanged for the PE32+ format.

Offset Size Field Description

0 2 Magic Unsigned integer identifying the state
of the image file. The most common
number is 0413 octal (0x10B),
identifying it as a normal executable
file. 0407 (0x107) identifies a ROM
image.

2 1 MajorLinkerVersion Linker major version number.

3 1 MinorLinkerVersion Linker minor version number.

4 4 SizeOfCode Size of the code (text) section, or the
sum of all code sections if there are
multiple sections.

8 4 SizeOfInitializedData Size of the initialized data section, or
the sum of all such sections if there
are multiple data sections.

12 4 SizeOfUninitializedData Size of the uninitialized data section
(BSS), or the sum of all such sections
if there are multiple BSS sections.

16 4 AddressOfEntryPoint Address of entry point, relative to
image base, when executable file is
loaded into memory. For program
images, this is the starting address.
For device drivers, this is the address
of the initialization function. An entry
point is optional for DLLs. When none
is present this field should be 0.

20 4 BaseOfCode Address, relative to image base, of
beginning of code section, when
loaded into memory.

PE32 contains this additional field, absent in PE32+, following BaseOfCode:

24 4 BaseOfData Address, relative to image base, of
beginning of data section, when
loaded into memory.



3.4.2. Optional Header Windows NT-Specific
Fields (Image Only)
The next twenty-one fields are an extension to the COFF Optional Header format and contain
additional information needed by the linker and loader in Windows NT.

Offset
(PE32/PE32+)

Size
(PE32/PE32+)

Field Description

28 / 24 4 / 8 ImageBase Preferred address
of first byte of
image when
loaded into
memory; must be
a multiple of 64K.
The default for
DLLs is
0x10000000. The
default for
Windows CE EXEs
is 0x00010000.
The default for
Windows NT,
Windows 95, and
Windows 98 is
0x00400000.

32 / 32 4 SectionAlignment Alignment (in
bytes) of sections
when loaded into
memory. Must
greater or equal
to File Alignment.
Default is the
page size for the
architecture.

36 / 36 4 FileAlignment Alignment factor
(in bytes) used to
align the raw data
of sections in the
image file. The
value should be a
power of 2
between 512 and
64K inclusive.
The default is
512. If the
SectionAlignment
is less than the
architecture’s
page size than
this must match
the
SectionAlignment.

40 / 40 2 MajorOperatingSystemVersion Major version
number of
required OS.



42 / 42 2 MinorOperatingSystemVersion Minor version
number of
required OS.

44 / 44 2 MajorImageVersion Major version
number of image.

46 / 46 2 MinorImageVersion Minor version
number of image.

48 / 48 2 MajorSubsystemVersion Major version
number of
subsystem.

50 / 50 2 MinorSubsystemVersion Minor version
number of
subsystem.

52 / 52 4 Reserved dd

56 / 56 4 SizeOfImage Size, in bytes, of
image, including
all headers; must
be a multiple of
Section
Alignment.

60 / 60 4 SizeOfHeaders Combined size of
MS-DOS stub, PE
Header, and
section headers
rounded up to a
multiple of
FileAlignment.

64 / 64 4 CheckSum Image file
checksum. The
algorithm for
computing is
incorporated into
IMAGHELP.DLL.
The following are
checked for
validation at load
time: all drivers,
any DLL loaded at
boot time, and
any DLL that
ends up in the
server.

68 / 68 2 Subsystem Subsystem
required to run
this image. See
“Windows NT
Subsystem”
below for more
information.



70 / 70 2 DLL Characteristics See “DLL
Characteristics”
below for more
information.

72 / 72 4 / 8 SizeOfStackReserve Size of stack to
reserve. Only the
Stack Commit
Size is
committed; the
rest is made
available one
page at a time,
until reserve size
is reached.

76 / 80 4 / 8 SizeOfStackCommit Size of stack to
commit.

80 / 88 4 / 8 SizeOfHeapReserve Size of local heap
space to reserve.
Only the Heap
Commit Size is
committed; the
rest is made
available one
page at a time,
until reserve size
is reached.

84 / 96 4 / 8 SizeOfHeapCommit Size of local heap
space to commit.

88 / 104 4 LoaderFlags Obsolete.

92 / 108 4 NumberOfRvaAndSizes Number of
data-dictionary
entries in the
remainder of the
Optional Header.
Each describes a
location and size.

Windows NT Subsystem
The following values are defined for the Subsystem field of the Optional Header. They determine
what, if any, Windows NT subsystem is required to run the image.

Constant Value Description

IMAGE_SUBSYSTEM_UNKNOWN 0 Unknown subsystem.

IMAGE_SUBSYSTEM_NATIVE 1 Used for device drivers and
native Windows NT
processes.



IMAGE_SUBSYSTEM_WINDOWS_GUI 2 Image runs in the Windows™
graphical user interface
(GUI) subsystem.

IMAGE_SUBSYSTEM_WINDOWS_CUI 3 Image runs in the Windows
character subsystem.

IMAGE_SUBSYSTEM_POSIX_CUI 7 Image runs in the Posix
character subsystem.

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI 9 Image runs in on Windows
CE.

IMAGE_SUBSYSTEM_EFI_APPLICATION 10 Image is an EFI application.

IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_

DRIVER

11 Image is an EFI driver that
provides boot services.

IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12 Image is an EFI driver that
provides runtime services.

DLL Characteristics
The following values are defined for the DLLCharacteristics field of the Optional Header.

Constant Value Description

  0x0001 Reserved

0x0002 Reserved

0x0004 Reserved

0x0008 Reserved

IMAGE_DLLCHARACTERISTICS_NO_BIND 0x0800 Do not bind
image

IMAGE_DLLCHARACTERISTICS_WDM_DRIVER 0x2000 Driver is a
WDM Driver

IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE 0x8000 Image is
Terminal
Server aware

3.4.3. Optional Header Data Directories (Image
Only)
Each data directory gives the address and size of a table or string used by Windows NT. These
are all loaded into memory so that they can be used by the system at run time. A data directory is
an eight-byte field that has the following declaration:



typedef struct _IMAGE_DATA_DIRECTORY {
    DWORD   RVA;
    DWORD   Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, RVA, is the relative virtual address of the table. The RVA is the address of the
table, when loaded, relative to the base address of the image. The second field gives the size in
bytes. The data directories, which form the last part of the Optional Header, are listed below.

Note that the number of directories is not fixed. The NumberOfRvaAndSizes field in the optional
header should be checked before looking for a specific directory.

Do not assume that the RVAs given in this table point to the beginning of a section or that the
sections containing specific tables have specific names.

Offset

(PE/PE32+)

Size Field Description

96/112 8 Export Table Export Table address and size.

104/120 8 Import Table Import Table address and size

112/128 8 Resource Table Resource Table address and size.

120/136 8 Exception Table Exception Table address and size.

128/144 8 Certificate Table Attribute Certificate Table address and
size.

136/152 8 Base Relocation
Table

Base Relocation Table address and size.

144/160 8 Debug Debug data starting address and size.

152/168 8 Architecture Architecture-specific data address and
size.

160/176 8 Global Ptr Relative virtual address of the value to
be stored in the global pointer register.
Size member of this structure must be
set to 0.

168/184 8 TLS Table Thread Local Storage (TLS) Table
address and size.

176/192 8 Load Config Table Load Configuration Table address and
size.

184/200 8 Bound Import Bound Import Table address and size.

192/208 8 IAT Import Address Table address and size.

200/216 8 Delay Import
Descriptor

Address and size of the Delay Import
Descriptor.

208/224 8 COM+ Runtime
Header

COM+ Runtime Header address and size

216/232 8 Reserved



The Certificate Table entry points to a table of attribute certificates. These certificates are not
loaded into memory as part of the image. As such, the first field of this entry, which is normally
an RVA, is a File Pointer instead.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


4. Section Table (Section Headers)
Each row of the Section Table, in effect, is a section header. This table immediately
follows the optional header, if any. This positioning is required because the file header
does not contain a direct pointer to the section table; the location of the section table is
determined by calculating the location of the first byte after the headers. Make sure to use
the size of the optional header as specified in the file header.

The number of entries in the Section Table is given by the NumberOfSections field in the
file header. Entries in the Section Table are numbered starting from one. The code and
data memory section entries are in the order chosen by the linker.

In an image file, the virtual addresses for sections must be assigned by the linker such that
they are in ascending order and adjacent, and they must be a multiple of the Section Align
value in the optional header.

Each section header (Section Table entry) has the following format, for a total of 40 bytes
per entry:

Offset Size Field Description

0 8 Name An 8-byte, null-padded ASCII
string. There is no terminating
null if the string is exactly eight
characters long. For longer
names, this field contains a
slash (/) followed by ASCII
representation of a decimal
number: this number is an
offset into the string table.
Executable images do not use a
string table and do not support
section names longer than eight
characters. Long names in
object files will be truncated if
emitted to an executable file.

8 4 VirtualSize Total size of the section when
loaded into memory. If this
value is greater than Size of
Raw Data, the section is
zero-padded. This field is valid
only for executable images and
should be set to 0 for object
files.



12 4 VirtualAddress For executable images this is
the address of the first byte of
the section, when loaded into
memory, relative to the image
base. For object files, this field
is the address of the first byte
before relocation is applied; for
simplicity, compilers should set
this to zero. Otherwise, it is an
arbitrary value that is
subtracted from offsets during
relocation.

16 4 SizeOfRawData Size of the section (object file)
or size of the initialized data on
disk (image files). For
executable image, this must be
a multiple of FileAlignment from
the optional header. If this is
less than VirtualSize the
remainder of the section is zero
filled. Because this field is
rounded while the VirtualSize
field is not it is possible for this
to be greater than VirtualSize as
well. When a section contains
only uninitialized data, this field
should be 0.

20 4 PointerToRawData File pointer to section’s first
page within the COFF file. For
executable images, this must be
a multiple of FileAlignment from
the optional header. For object
files, the value should be
aligned on a four-byte boundary
for best performance. When a
section contains only
uninitialized data, this field
should be 0.

24 4 PointerToRelocations File pointer to beginning of
relocation entries for the
section. Set to 0 for executable
images or if there are no
relocations.

28 4 PointerToLinenumbers File pointer to beginning of
line-number entries for the
section. Set to 0 if there are no
COFF line numbers.

32 2 NumberOfRelocations Number of relocation entries for
the section. Set to 0 for
executable images.



34 2 NumberOfLinenumbers Number of line-number entries
for the section.

36 4 Characteristics Flags describing section’s
characteristics. See Section 4.1,
“Section Flags,” for more
information.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


4.1. Section Flags
The Section Flags field indicates characteristics of the section.

Flag Value Description

IMAGE_SCN_TYPE_REG 0x00000000 Reserved for future use.

IMAGE_SCN_TYPE_DSECT 0x00000001 Reserved for future use.

IMAGE_SCN_TYPE_NOLOAD 0x00000002 Reserved for future use.

IMAGE_SCN_TYPE_GROUP 0x00000004 Reserved for future use.

IMAGE_SCN_TYPE_NO_PAD 0x00000008 Section should not be
padded to next boundary.
This is obsolete and replaced
by
IMAGE_SCN_ALIGN_1BYTES.
This is valid for object files
only.

IMAGE_SCN_TYPE_COPY 0x00000010 Reserved for future use.

IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable
code.

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized
data.

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized
data.

IMAGE_SCN_LNK_OTHER 0x00000100 Reserved for future use.

IMAGE_SCN_LNK_INFO 0x00000200 Section contains comments
or other information. The
.drectve section has this
type. This is valid for object
files only.

IMAGE_SCN_TYPE_OVER 0x00000400 Reserved for future use.

IMAGE_SCN_LNK_REMOVE 0x00000800 Section will not become part
of the image. This is valid for
object files only.

IMAGE_SCN_LNK_COMDAT 0x00001000 Section contains COMDAT
data. See Section 5.5.6,
“COMDAT Sections,” for
more information. This is
valid for object files only.

IMAGE_SCN_MEM_FARDATA 0x00008000 Reserved for future use.

IMAGE_SCN_MEM_PURGEABLE 0x00020000 Reserved for future use.

IMAGE_SCN_MEM_16BIT 0x00020000 Reserved for future use.

IMAGE_SCN_MEM_LOCKED 0x00040000 Reserved for future use.



IMAGE_SCN_MEM_PRELOAD 0x00080000 Reserved for future use.

IMAGE_SCN_ALIGN_1BYTES 0x00100000 Align data on a 1-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_2BYTES 0x00200000 Align data on a 2-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_4BYTES 0x00300000 Align data on a 4-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_8BYTES 0x00400000 Align data on a 8-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_16BYTES 0x00500000 Align data on a 16-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_32BYTES 0x00600000 Align data on a 32-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_64BYTES 0x00700000 Align data on a 64-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_128BYTES 0x00800000 Align data on a 128-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_256BYTES 0x00900000 Align data on a 256-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_512BYTES 0x00A00000 Align data on a 512-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 Align data on a 1024-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 Align data on a 2048-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_4096BYTES 0x00D00000 Align data on a 4096-byte
boundary. This is valid for
object files only.

IMAGE_SCN_ALIGN_8192BYTES 0x00E00000 Align data on a 8192-byte
boundary. This is valid for
object files only.

IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 Section contains extended
relocations.



IMAGE_SCN_MEM_DISCARDABLE 0x02000000 Section can be discarded as
needed.

IMAGE_SCN_MEM_NOT_CACHED 0x04000000 Section cannot be cached.

IMAGE_SCN_MEM_NOT_PAGED 0x08000000 Section is not pageable.

IMAGE_SCN_MEM_SHARED 0x10000000 Section can be shared in
memory.

IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as
code.

IMAGE_SCN_MEM_READ 0x40000000 Section can be read.

IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to.

IMAGE_SCN_LNK_NRELOC_OVFL indicates that the count of relocations for the section
exceeds the 16 bits reserved for it in section header. If the bit is set and the
NumberOfRelocations field in the section header is 0xffff, the actual relocation count is stored in
the 32-bit VirtualAddress field of the first relocation.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


4.2. Grouped Sections (Object
Only)
The “$” character (dollar sign) has a special interpretation in section names in object files.

When determining the image section that will contain the contents of an object section, the
linker discards the “$” and all characters following it. Thus, an object section named
.text$X will actually contribute to the .text section in the image.

However, the characters following the “$” determine the ordering of the contributions to
the image section. All contributions with the same object-section name will be allocated
contiguously in the image, and the blocks of contributions will be sorted in lexical order
by object-section name. Therefore, everything in object files with section name .text$X
will end up together, after the .text$W contributions and before the .text$Y contributions.

The section name in an image file will never contain a “$” character.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5. Other Contents of the File
The data structures described so far, up to and including the optional header, are all
located at a fixed offset from the beginning of the file (or from the PE header if the file is
an image containing an MS-DOS stub).

The remainder of a COFF object or image file contains blocks of data that are not
necessarily at any specific file offset. Instead the locations are defined by pointers in the
Optional Header or a section header.

An exception is for images with a Section Alignment value (see the Optional Header
description) of less than the page size of the architecture (4K for Intel x86 and for MIPS;
8K for Alpha). In this case there are constraints on the file offset of the section data, as
described in the next section. Another exception is that attribute certificate and debug
information must be placed at the very end of an image file (with the attribute certificate
table immediately preceding the debug section), because the loader does not map these
into memory. The rule on attribute certificate and debug information does not apply to
object files, however.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.1. Section Data
Initialized data for a section consists of simple blocks of bytes. However, for sections
containing all zeros, the section data need not be included.

The data for each section is located at the file offset given by the PointerToRawData field
in the section header, and the size of this data in the file is indicated by the
SizeOfRawData field. If the SizeOfRawData is less than the VirtualSize, the remainder is
padded with zeros.

In an image file, the section data must be aligned on a boundary as specified by the
FileAlignment field in the optional header. Section data must appear in order of the RVA
values for the corresponding sections (as do the individual section headers in the Section
Table).

There are additional restrictions on image files for which the Section Align value in the
Optional Header is less than the page size of the architecture. For such files, the location
of section data in the file must match its location in memory when the image is loaded, so
that the physical offset for section data is the same as the RVA.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.2. COFF Relocations (Object Only)
Object files contain COFF relocations, which specify how the section data should be modified
when placed in the image file and subsequently loaded into memory.

Image files do not contain COFF relocations, because all symbols referenced have already been
assigned addresses in a flat address space. An image contains relocation information in the form of
base relocations in the .reloc section (unless the image has the
IMAGE_FILE_RELOCS_STRIPPED attribute). See Section 6.5 for more information.

For each section in an object file, there is an array of fixed-length records that are the section’s
COFF relocations. The position and length of the array are specified in the section header. Each
element of the array has the following format:

Offset Size Field Description

0 4 VirtualAddress Address of the item to which relocation is
applied: this is the offset from the
beginning of the section, plus the value of
the section’s RVA/Offset field (see Section
4, “Section Table.”). For example, if the
first byte of the section has an address of
0x10, the third byte has an address of
0x12.

4 4 SymbolTableIndex A zero-based index into the symbol table.
This symbol gives the address to be used
for the relocation. If the specified symbol
has section storage class, then the symbol’s
address is the address with the first section
of the same name.

8 2 Type A value indicating what kind of relocation
should be performed. Valid relocation types
depend on machine type. See Section
5.2.1, “Type Indicators.”

If the symbol referred to (by the SymbolTableIndex field) has storage class
IMAGE_SYM_CLASS_SECTION, the symbol’s address is the beginning of the section. The
section is usually in the same file, except when the object file is part of an archive (library). In that
case, the section may be found in any other object file in the archive that has the same
archive-member name as the current object file. (The relationship with the archive-member name is
used in the linking of import tables, i.e. the .idata section.)

5.2.1. Type Indicators
The Type field of the relocation record indicates what kind of relocation should be performed.
Different relocation types are defined for each type of machine.



Intel 386™
The following relocation type indicators are defined for Intel386 and compatible processors:

Constant Value Description

IMAGE_REL_I386_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_I386_DIR16 0x0001 Not supported.

IMAGE_REL_I386_REL16 0x0002 Not supported.

IMAGE_REL_I386_DIR32 0x0006 The target’s 32-bit virtual address.

IMAGE_REL_I386_DIR32NB 0x0007 The target’s 32-bit relative virtual address.

IMAGE_REL_I386_SEG12 0x0009 Not supported.

IMAGE_REL_I386_SECTION 0x000A The 16-bit-section index of the section
containing the target. This is used to support
debugging information.

IMAGE_REL_I386_SECREL 0x000B The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well as
static thread local storage.

IMAGE_REL_I386_REL32 0x0014 The 32-bit relative displacement to the
target. This supports the x86 relative branch
and call instructions.

MIPS Processors
The following relocation type indicators are defined for MIPS processors:

Constant Value Description

IMAGE_REL_MIPS_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_MIPS_REFHALF 0x0001 The high 16 bits of the target’s 32-bit
virtual address.

IMAGE_REL_MIPS_REFWORD 0x0002 The target’s 32-bit virtual address.

IMAGE_REL_MIPS_JMPADDR 0x0003 The low 26 bits of the target’s virtual
address. This supports the MIPS J and JAL
instructions.

IMAGE_REL_MIPS_REFHI 0x0004 The high 16 bits of the target’s 32-bit
virtual address. Used for the first
instruction in a two-instruction sequence
that loads a full address. This relocation
must be immediately followed by a PAIR
relocations whose SymbolTableIndex
contains a signed 16-bit displacement
which is added to the upper 16 bits taken
from the location being relocated.



IMAGE_REL_MIPS_REFLO 0x0005 The low 16 bits of the target’s virtual
address.

IMAGE_REL_MIPS_GPREL 0x0006 16-bit signed displacement of the target
relative to the Global Pointer (GP)
register.

IMAGE_REL_MIPS_LITERAL 0x0007 Same as IMAGE_REL_MIPS_GPREL.

IMAGE_REL_MIPS_SECTION 0x000A The 16-bit section index of the section
containing the target. This is used to
support debugging information.

IMAGE_REL_MIPS_SECREL 0x000B The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well as
static thread local storage.

IMAGE_REL_MIPS_SECRELLO 0x000C The low 16 bits of the 32-bit offset of the
target from the beginning of its section.

IMAGE_REL_MIPS_SECRELHI 0x000D The high 16 bits of the 32-bit offset of the
target from the beginning of its section. A
PAIR relocation must immediately follow
this on. The SymbolTableIndex of the
PAIR relocation contains a signed 16-bit
displacement, which is added to the upper
16 bits taken from the location being
relocated.

IMAGE_REL_MIPS_JMPADDR16 0x0010 The low 26 bits of the target’s virtual
address. This supports the MIPS16 JAL
instruction.

IMAGE_REL_MIPS_REFWORDNB 0x0022 The target’s 32-bit relative virtual
address.

IMAGE_REL_MIPS_PAIR 0x0025 This relocation is only valid when it
immediately follows a REFHI or SECRELHI
relocation. Its SymbolTableIndex contains
a displacement and not an index into the
symbol table.

Alpha Processors
The following relocation Type indicators are defined for Alpha processors:

Constant Value Description

IMAGE_REL_ALPHA_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_ALPHA_REFLONG 0x0001 The target’s 32-bit virtual address. This
fixup is illegal in a PE32+ image unless
the image has been sandboxed by
clearing the
IMAGE_FILE_LARGE_ADDRESS_AWARE
bit in the File Header.

IMAGE_REL_ALPHA_REFQUAD 0x0002 The target’s 64-bit virtual address.



IMAGE_REL_ALPHA_GPREL32 0x0003 32-bit signed displacement of the
target relative to the Global Pointer
(GP) register.

IMAGE_REL_ALPHA_LITERAL 0x0004 16-bit signed displacement of the
target relative to the Global Pointer
(GP) register.

IMAGE_REL_ALPHA_LITUSE 0x0005 Reserved for future use.

IMAGE_REL_ALPHA_GPDISP 0x0006 Reserved for future use.

IMAGE_REL_ALPHA_BRADDR 0x0007 The 21-bit relative displacement to the
target. This supports the Alpha relative
branch instructions.

IMAGE_REL_ALPHA_HINT 0x0008 14-bit hints to the processor for the
target of an Alpha jump instruction.

IMAGE_REL_ALPHA_INLINE_REFLONG 0x0009 The target’s 32-bit virtual address split
into high and low 16-bit parts. Either
an ABSOLUTE or MATCH relocation
must immediately follow this
relocation. The high 16 bits of the
target address are stored in the
location identified by the
INLINE_REFLONG relocation. The low
16 bits are stored four bytes later if the
following relocation is of type
ABSOLUTE or at a signed displacement
given in the SymbolTableIndex if the
following relocation is of type MATCH.

IMAGE_REL_ALPHA_REFHI 0x000A The high 16 bits of the target’s 32-bit
virtual address. Used for the first
instruction in a two-instruction
sequence that loads a full address. This
relocation must be immediately
followed by a PAIR relocations whose
SymbolTableIndex contains a signed
16-bit displacement which is added to
the upper 16 bits taken from the
location being relocated.

IMAGE_REL_ALPHA_REFLO 0x000B The low 16 bits of the target’s virtual
address.

IMAGE_REL_ALPHA_PAIR 0x000C This relocation is only valid when it
immediately follows a REFHI , REFQ3,
REFQ2, or SECRELHI relocation. Its
SymbolTableIndex contains a
displacement and not an index into the
symbol table.

IMAGE_REL_ALPHA_MATCH 0x000D This relocation is only valid when it
immediately follows INLINE_REFLONG
relocation. Its SymbolTableIndex
contains the displacement in bytes of
the location for the matching low
address and not an index into the
symbol table.



IMAGE_REL_ALPHA_SECTION 0x000E The 16-bit section index of the section
containing the target.  This is used to
support debugging information.

IMAGE_REL_ALPHA_SECREL 0x000F The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well
as static thread local storage.

IMAGE_REL_ALPHA_REFLONGNB 0x0010 The target’s 32-bit relative virtual
address.

IMAGE_REL_ALPHA_SECRELLO 0x0011 The low 16 bits of the 32-bit offset of
the target from the beginning of its
section.

IMAGE_REL_ALPHA_SECRELHI 0x0012 The high 16 bits of the 32-bit offset of
the target from the beginning of its
section. A PAIR relocation must
immediately follow this on. The
SymbolTableIndex of the PAIR
relocation contains a signed 16-bit
displacement which is added to the
upper 16 bits taken from the location
being relocated.

IMAGE_REL_ALPHA_REFQ3 0x0013 The low 16 bits of the high 32 bits of
the target’s 64-bit virtual address. This
relocation must be immediately
followed by a PAIR relocations whose
SymbolTableIndex contains a signed
32-bit displacement which is added to
the 16 bits taken from the location
being relocated. The 16 bits in the
relocated location are shifted left by 32
before this addition.

IMAGE_REL_ALPHA_REFQ2 0x0014 The high 16 bits of the low 32 bits of
the target’s 64-bit virtual address. This
relocation must be immediately
followed by a PAIR relocations whose
SymbolTableIndex contains a signed
16-bit displacement which is added to
the upper 16 bits taken from the
location being relocated.

IMAGE_REL_ALPHA_REFQ1 0x0015 The low 16 bits of the target’s 64-bit
virtual address.

IMAGE_REL_ALPHA_GPRELLO 0x0016 The low 16 bits of the 32-bit signed
displacement of the target relative to
the Global Pointer (GP) register.

IMAGE_REL_ALPHA_GPRELHI 0x0017 The high 16 bits of the 32-bit signed
displacement of the target relative to
the Global Pointer (GP) register.



IBM PowerPC Processors
The following relocation Type indicators are defined for PowerPC processors:

Constant Value Description

IMAGE_REL_PPC_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_PPC_ADDR64 0x0001 The target’s 64-bit virtual address.

IMAGE_REL_PPC_ADDR32 0x0002 The target’s 32-bit virtual address.

IMAGE_REL_PPC_ADDR24 0x0003 The low 24 bits of the target’s virtual address.
This is only valid when the target symbol is
absolute and can be sign extended to its
original value.

IMAGE_REL_PPC_ADDR16 0x0004 The low 16 bits of the target’s virtual address.

IMAGE_REL_PPC_ADDR14 0x0005 The low 14 bits of the target’s virtual address.
This is only valid when the target symbol is
absolute and can be sign extended to its
original value.

IMAGE_REL_PPC_REL24 0x0006 A 24-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_REL14 0x0007 A 14-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_ADDR32NB 0x000A The target’s 32-bit relative virtual address.

IMAGE_REL_PPC_SECREL 0x000B The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well as
static thread local storage.

IMAGE_REL_PPC_SECTION 0x000C The 16-bit section index of the section
containing the target. This is used to support
debugging information.

IMAGE_REL_PPC_SECREL16 0x000F The 16-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well as
static thread local storage.

IMAGE_REL_PPC_REFHI 0x0010 The high 16 bits of the target’s 32-bit virtual
address. Used for the first instruction in a
two-instruction sequence that loads a full
address. This relocation must be immediately
followed by a PAIR relocations whose
SymbolTableIndex contains a signed 16-bit
displacement which is added to the upper 16
bits taken from the location being relocated.

IMAGE_REL_PPC_REFLO 0x0011 The low 16 bits of the target’s virtual address.

IMAGE_REL_PPC_PAIR 0x0012 This relocation is only valid when it
immediately follows a REFHI or SECRELHI
relocation. Its SymbolTableIndex contains a
displacement and not an index into the
symbol table.



IMAGE_REL_PPC_SECRELLO 0x0013 The low 16 bits of the 32-bit offset of the
target from the beginning of its section.

IMAGE_REL_PPC_SECRELHI 0x0014 The high 16 bits of the 32-bit offset of the
target from the beginning of its section. A
PAIR relocation must immediately follow this
on. The SymbolTableIndex of the PAIR
relocation contains a signed 16-bit
displacement which is added to the upper 16
bits taken from the location being relocated.

IMAGE_REL_PPC_GPREL 0x0015 16-bit signed displacement of the target
relative to the Global Pointer (GP) register.

Hitachi SuperH Processors
The following relocation type indicators are defined for SH3 and SH4 processors:

Constant Value Description

IMAGE_REL_SH3_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_SH3_DIRECT16 0x0001 Reference to the 16-bit location
that contains the virtual address of
the target symbol.

IMAGE_REL_SH3_DIRECT32 0x0002 The target’s 32-bit virtual address.

IMAGE_REL_SH3_DIRECT8 0x0003 Reference to the 8-bit location that
contains the virtual address of the
target symbol.

IMAGE_REL_SH3_DIRECT8_WORD 0x0004 Reference to the 8-bit instruction
that contains the effective 16-bit
virtual address of the target
symbol.

IMAGE_REL_SH3_DIRECT8_LONG 0x0005 Reference to the 8-bit instruction
that contains the effective 32-bit
virtual address of the target
symbol.

IMAGE_REL_SH3_DIRECT4 0x0006 Reference to the 8-bit location
whose low 4 bits contain the
virtual address of the target
symbol.

IMAGE_REL_SH3_DIRECT4_WORD 0x0007 Reference to the 8-bit instruction
whose low 4 bits contain the
effective 16-bit virtual address of
the target symbol.

IMAGE_REL_SH3_DIRECT4_LONG 0x0008 Reference to the 8-bit instruction
whose low 4 bits contain the
effective 32-bit virtual address of
the target symbol.



IMAGE_REL_SH3_PCREL8_WORD 0x0009 Reference to the 8-bit instruction
which contains the effective 16-bit
relative offset of the target
symbol.

IMAGE_REL_SH3_PCREL8_LONG 0x000A Reference to the 8-bit instruction
which contains the effective 32-bit
relative offset of the target
symbol.

IMAGE_REL_SH3_PCREL12_WORD 0x000B Reference to the 16-bit instruction
whose low 12 bits contain the
effective 16-bit relative offset of
the target symbol.

IMAGE_REL_SH3_STARTOF_SECTION 0x000C Reference to a 32-bit location that
is the virtual address of the
symbol’s section.

IMAGE_REL_SH3_SIZEOF_SECTION 0x000D Reference to the 32-bit location
that is the size of the symbol’s
section.

IMAGE_REL_SH3_SECTION 0x000E The 16-bit section index of the
section containing the target. This
is used to support debugging
information.

IMAGE_REL_SH3_SECREL 0x000F The 32-bit offset of the target
from the beginning of its section.
This is used to support debugging
information as well as static thread
local storage.

IMAGE_REL_SH3_DIRECT32_NB 0x0010 The target’s 32-bit relative virtual
address.

ARM Processors
The following relocation Type indicators are defined for ARM processors:

Constant Value Description

IMAGE_REL_ARM_ABSOLUTE 0x0000 This relocation is ignored.

IMAGE_REL_ARM_ADDR32 0x0001 The target’s 32-bit virtual address.

IMAGE_REL_ARM_ADDR32NB 0x0002 The target’s 32-bit relative virtual
address.

IMAGE_REL_ARM_BRANCH24 0x0003 The 24-bit relative displacement to the
target.

IMAGE_REL_ARM_BRANCH11 0x0004 Reference to a subroutine call, consisting
of two 16-bit instructions with 11-bit
offsets.



IMAGE_REL_ARM_SECTION 0x000E The 16-bit section index of the section
containing the target. This is used to
support debugging information.

IMAGE_REL_ARM_SECREL 0x000F The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information as well as
static thread local storage.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.3. COFF Line Numbers
COFF line numbers indicate the relationship between code and line-numbers in source
files. The Microsoft format for COFF line numbers is similar to standard COFF, but it has
been extended to allow a single section to relate to line numbers in multiple source files.

COFF line numbers consist of an array of fixed-length records. The location (file offset)
and size of the array are specified in the section header. Each line-number record is of the
following format:

Offset Size Field Description

0 4 Type (*) Union of two fields: Symbol Table Index
and RVA. Whether Symbol Table Index
or RVA is used depends on the value of
Linenumber.

4 2 Linenumber When nonzero, this field specifies a
one-based line number. When zero, the
Type field is interpreted as a Symbol
Table Index for a function.

The Type field is a union of two four-byte fields, Symbol Table Index, and RVA:

Offset Size Field Description

0 4 SymbolTableIndex Used when Linenumber is 0: index to
symbol table entry for a function. This
format is used to indicate the function
that a group of line-number records
refer to.

0 4 VirtualAddress Used when Linenumber is non-zero:
relative virtual address of the
executable code that corresponds to the
source line indicated. In an object file,
this contains the virtual address within
the section.

A line-number record, then, can either set the Linenumber field to 0 and point to a
function definition in the Symbol Table, or else it can work as a standard line-number
entry by giving a positive integer (line number) and the corresponding address in the
object code.

A group of line-number entries always begins with the first format: the index of a function
symbol. If this is the first line-number record in the section, then it is also the COMDAT
symbol name for the function if the section’s COMDAT flag is set. (See Section 5.5.6,
“COMDAT Sections.”) The function’s auxiliary record in the Symbol Table has a Pointer
to Linenumbers field that points to this same line-number record.



A record identifying a function is followed by any number of line-number entries that give
actual line-number information (Linenumber greater than zero). These entries are
one-based, relative to the beginning of the function, and represent every source line in the
function except for the first one.

For example, the first line-number record for the following example would specify the
ReverseSign function (Symbol Table Index of ReverseSign, Linenumber set to 0). Then
records with Linenumber values of 1, 2, and 3 would follow, corresponding to source lines
as shown:

// some code precedes ReverseSign function
   int   ReverseSign(int i)
1:   {
2:      return -1 * i;
3:   }

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.4. COFF Symbol Table
The Symbol Table described in this section is inherited from the traditional COFF format.
It is distinct from CodeView® information. A file may contain both a COFF Symbol
Table and CodeView debug information, and the two are kept separate. Some Microsoft
tools use the Symbol Table for limited but important purposes, such as communicating
COMDAT information to the linker. Section names and file names, as well as code and
data symbols, are listed in the Symbol Table.

The location of the Symbol Table is indicated in the COFF Header.

The Symbol Table is an array of records, each 18 bytes long. Each record is either a
standard or auxiliary symbol-table record. A standard record defines a symbol or name,
and has the following format:

Offset Size Field Description

0 8 Name (*) Name of the symbol, represented by
union of three structures. An array of
eight bytes is used if the name is not
more than eight bytes long. See
Section 5.4.1, “Symbol Name
Representation, ” for more
information.

8 4 Value Value associated with the symbol.
The interpretation of this field
depends on Section Number and
Storage Class. A typical meaning is
the relocatable address.

12 2 SectionNumber Signed integer identifying the
section, using a one-based index into
the Section Table. Some values have
special meaning defined in “Section
Number Values.”

14 2 Type A number representing type.
Microsoft tools set this field to 0x20
(function) or 0x0 (not a function).
See Section 5.4.3, “Type
Representation,” for more
information.

16 1 StorageClass Enumerated value representing
storage class. See Section 5.4.4,
“Storage Class,” for more
information.

17 1 NumberOfAuxSymbols Number of auxiliary symbol table
entries that follow this record.



Zero or more auxiliary symbol-table records immediately follow each standard
symbol-table record. However, typically not more than one auxiliary symbol-table record
follows a standard symbol-table record (except for .file records with long file names).
Each auxiliary record is the same size as a standard symbol-table record (18 bytes), but
rather than define a new symbol, the auxiliary record gives additional information on the
last symbol defined. The choice of which of several formats to use depends on the Storage
Class field. Currently defined formats for auxiliary symbol table records are shown in
“Auxiliary Symbol Records.”

Tools that read COFF symbol tables must ignore auxiliary symbol records whose
interpretation is unknown. This allows the symbol table format to be extended to add new
auxiliary records, without breaking existing tools.

5.4.1. Symbol Name Representation
The Name field in a symbol table consists of eight bytes that contain the name itself, if not
too long, or else give an offset into the String Table. To determine whether the name itself
or an offset is given, test the first four bytes for equality to zero.

Offset Size Field Description

0 8 Short Name An array of eight bytes. This array is
padded with nulls on the right if the
name is less than eight bytes long.

0 4 Zeroes Set to all zeros if the name is longer
than eight bytes.

4 4 Offset Offset into the String Table.

5.4.2. Section Number Values
Normally, the Section Value field in a symbol table entry is a one-based index into the
Section Table. However, this field is a signed integer and may take negative values. The
following values, less than one, have special meanings:

Constant Value Description

IMAGE_SYM_UNDEFINED 0 Symbol record is not yet assigned a
section. If the value is 0 this indicates a
references to an external symbol
defined elsewhere. If the value is
non-zero this is a common symbol with
a size specified by the value.

IMAGE_SYM_ABSOLUTE -1 The symbol has an absolute
(non-relocatable) value and is not an
address.



IMAGE_SYM_DEBUG -2 The symbol provides general type or
debugging information but does not
correspond to a section. Microsoft tools
use this setting along with .file records
(storage class FILE).

5.4.3. Type Representation
The Type field of a symbol table entry contains two bytes, each byte representing type
information. The least-significant byte represents simple (base) data type, and the
most-significant byte represents complex type, if any:

MSB LSB

Complex type: none, pointer, function,
array.

Base type: integer, floating-point, etc.

The following values are defined for base type, although Microsoft tools generally do not
use this field, setting the least-significant byte to 0. Instead, CodeView information is used
to indicate types. However, the possible COFF values are listed here for completeness.

Constant Value Description

IMAGE_SYM_TYPE_NULL 0 No type information or unknown base
type. Microsoft tools use this setting.

IMAGE_SYM_TYPE_VOID 1 No valid type; used with void pointers
and functions.

IMAGE_SYM_TYPE_CHAR 2 Character (signed byte).

IMAGE_SYM_TYPE_SHORT 3 Two-byte signed integer.

IMAGE_SYM_TYPE_INT 4 Natural integer type (normally four
bytes in Windows NT).

IMAGE_SYM_TYPE_LONG 5 Four-byte signed integer.

IMAGE_SYM_TYPE_FLOAT 6 Four-byte floating-point number.

IMAGE_SYM_TYPE_DOUBLE 7 Eight-byte floating-point number.

IMAGE_SYM_TYPE_STRUCT 8 Structure.

IMAGE_SYM_TYPE_UNION 9 Union.

IMAGE_SYM_TYPE_ENUM 10 Enumerated type.

IMAGE_SYM_TYPE_MOE 11 Member of enumeration (a specific
value).



IMAGE_SYM_TYPE_BYTE 12 Byte; unsigned one-byte integer.

IMAGE_SYM_TYPE_WORD 13 Word; unsigned two-byte integer.

IMAGE_SYM_TYPE_UINT 14 Unsigned integer of natural size
(normally, four bytes).

IMAGE_SYM_TYPE_DWORD 15 Unsigned four-byte integer.

The most significant byte specifies whether the symbol is a pointer to, function returning,
or array of the base type specified in the least significant byte. Microsoft tools use this
field only to indicate whether or not the symbol is a function, so that the only two
resulting values are 0x0 and 0x20 for the Type field. However, other tools can use this
field to communicate more information.

It is very important to specify the function attribute correctly. This information is required
for incremental linking to work correctly. For some architectures the information may be
required for other purposes.

Constant Value Description

IMAGE_SYM_DTYPE_NULL 0 No derived type; the symbol is a
simple scalar variable.

IMAGE_SYM_DTYPE_POINTER 1 Pointer to base type.

IMAGE_SYM_DTYPE_FUNCTION 2 Function returning base type.

IMAGE_SYM_DTYPE_ARRAY 3 Array of base type.

5.4.4. Storage Class
The Storage Class field of the Symbol Table indicates what kind of definition a symbol
represents. The following table shows possible values. Note that the Storage Class field is
an unsigned one-byte integer. The special value -1 should therefore be taken to mean its
unsigned equivalent, 0xFF.

Although traditional COFF format makes use of many storage-class values, Microsoft
tools rely on CodeView format for most symbolic information and generally use only four
storage-class values: EXTERNAL (2), STATIC (3), FUNCTION (101), and STATIC
(103). Except in the second column heading below, “Value” should be taken to mean the
Value field of the symbol record (whose interpretation depends on the number found as
the storage class).

Constant Value Description /
Interpretation of Value
Field



IMAGE_SYM_CLASS_END_OF_FUNCTION -1
(0xFF)

Special symbol
representing end of
function, for debugging
purposes.

IMAGE_SYM_CLASS_NULL 0 No storage class assigned.

IMAGE_SYM_CLASS_AUTOMATIC 1 Automatic (stack)
variable. The Value field
specifies stack frame
offset.

IMAGE_SYM_CLASS_EXTERNAL 2 Used by Microsoft tools for
external symbols. The
Value field indicates the
size if the section number
is
IMAGE_SYM_UNDEFINED
(0). If the section number
is not 0, then the Value
field specifies the offset
within the section.

IMAGE_SYM_CLASS_STATIC 3 The Value field specifies
the offset of the symbol
within the section. If the
Value is 0, then the
symbol represents a
section name.

IMAGE_SYM_CLASS_REGISTER 4 Register variable. The
Value field specifies
register number.

IMAGE_SYM_CLASS_EXTERNAL_DEF 5 Symbol is defined
externally.

IMAGE_SYM_CLASS_LABEL 6 Code label defined within
the module. The Value
field specifies the offset of
the symbol within the
section.

IMAGE_SYM_CLASS_UNDEFINED_LABEL 7 Reference to a code label
not defined.

IMAGE_SYM_CLASS_MEMBER_OF_STRUCT 8 Structure member. The
Value field specifies nth
member.

IMAGE_SYM_CLASS_ARGUMENT 9 Formal argument
(parameter)of a function.
The Value field specifies
nth argument.

IMAGE_SYM_CLASS_STRUCT_TAG 10 Structure tag-name entry.



IMAGE_SYM_CLASS_MEMBER_OF_UNION 11 Union member. The Value
field specifies nth
member.

IMAGE_SYM_CLASS_UNION_TAG 12 Union tag-name entry.

IMAGE_SYM_CLASS_TYPE_DEFINITION 13 Typedef entry.

IMAGE_SYM_CLASS_UNDEFINED_STATIC 14 Static data declaration.

IMAGE_SYM_CLASS_ENUM_TAG 15 Enumerated type tagname
entry.

IMAGE_SYM_CLASS_MEMBER_OF_ENUM 16 Member of enumeration.
Value specifies nth
member.

IMAGE_SYM_CLASS_REGISTER_PARAM 17 Register parameter.

IMAGE_SYM_CLASS_BIT_FIELD 18 Bit-field reference. Value
specifies nth bit in the bit
field.

IMAGE_SYM_CLASS_BLOCK 100 A .bb (beginning of block)
or .eb (end of block)
record. Value is the
relocatable address of the
code location.

IMAGE_SYM_CLASS_FUNCTION 101 Used by Microsoft tools for
symbol records that define
the extent of a function:
begin function (named
.bf), end function (.ef),
and lines in function (.lf).
For .lf records, Value gives
the number of source lines
in the function. For .ef
records, Value gives the
size of function code.

IMAGE_SYM_CLASS_END_OF_STRUCT 102 End of structure entry.

IMAGE_SYM_CLASS_FILE 103 Used by Microsoft tools, as
well as traditional COFF
format, for the source-file
symbol record. The symbol
is followed by auxiliary
records that name the file.

IMAGE_SYM_CLASS_SECTION 104 Definition of a section
(Microsoft tools use
STATIC storage class
instead).



IMAGE_SYM_CLASS_WEAK_EXTERNAL 105 Weak external. See
Section 5.5.3, “Auxiliary
Format 3: Weak
Externals,” for more
information.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.5. Auxiliary Symbol Records
Auxiliary Symbol Table records always follow and apply to some standard Symbol Table
record. An auxiliary record can have any format that the tools are designed to recognize,
but 18 bytes must be allocated for them so that Symbol Table is maintained as an array of
regular size. Currently, Microsoft tools recognize auxiliary formats for the following kinds
of records: function definitions, function begin and end symbols (.bf and .ef), weak
externals, filenames, and section definitions.

The traditional COFF design also includes auxiliary-record formats for arrays and
structures. Microsoft tools do not use these, and instead place that symbolic information in
CodeView format in the debug sections.

5.5.1. Auxiliary Format 1: Function
Definitions
A symbol table record marks the beginning of a function definition if all of the following
are true: it has storage class EXTERNAL (2), a Type value indicating it is a function
(0x20), and a section number greater than zero. Note that a symbol table record that has a
section number of UNDEFINED (0) does not define the function and does not have an
auxiliary record. Function-definition symbol records are followed by an auxiliary record
with the format described below.

Offset Size Field Description

0 4 TagIndex Symbol-table index of the
corresponding .bf (begin
function) symbol record.

4 4 TotalSize Size of the executable code for
the function itself. If the function
is in its own section, the Size of
Raw Data in the section header
will be greater or equal to this
field, depending on alignment
considerations.

8 4 PointerToLinenumber File offset of the first COFF
line-number entry for the
function, or zero if none exists.
See Section 5.3, “COFF Line
Numbers,” for more information.

12 4 PointerToNextFunction Symbol-table index of the record
for the next function. If the
function is the last in the symbol
table, this field is set to zero.

16 2 Unused.



 

5.5.2. Auxiliary Format 2: .bf and .ef
Symbols
For each function definition in the Symbol Table, there are three contiguous items that
describe the beginning, ending, and number of lines. Each of these symbols has storage
class FUNCTION (101):

A symbol record named .bf (begin function). The Value field is unused.1.  

A symbol record named .lf (lines in function). The Value field gives the number of
lines in the function.

2.  

A symbol record named .ef (end of function). The Value field has the same number
as the Total Size field in the function-definition symbol record.

3.  

The .bf and .ef symbol records (but not .lf records) are followed by an auxiliary record
with the following format:

Offset Size Field Description

0 4 Unused.

4 2 Linenumber Actual ordinal line number (1, 2,
3, etc.) within source file,
corresponding to the .bf or .ef
record.

6 6 Unused.

12 4 PointerToNextFunction
(.bf only)

Symbol-table index of the next
.bf symbol record. If the function
is the last in the symbol table,
this field is set to zero. Not used
for .ef records.

16 2 Unused.

5.5.3. Auxiliary Format 3: Weak Externals
“Weak externals” are a mechanism for object files allowing flexibility at link time. A
module can contain an unresolved external symbol (sym1), but it can also include an
auxiliary record indicating that if sym1 is not present at link time, another external symbol
(sym2) is used to resolve references instead.



If a definition of sym1 is linked, then an external reference to the symbol is resolved
normally. If a definition of sym1 is not linked, then all references to the weak external for
sym1 refer to sym2 instead. The external symbol, sym2, must always be linked; typically
it is defined in the module containing the weak reference to sym1.

Weak externals are represented by a Symbol Table record with EXTERNAL storage class,
UNDEF section number, and a value of 0. The weak-external symbol record is followed
by an auxiliary record with the following format:

Offset Size Field Description

0 4 TagIndex Symbol-table index of sym2, the symbol to
be linked if sym1 is not found.

4 4 Characteristics A value of
IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY
indicates that no library search for sym1
should be performed.

A value of
IMAGE_WEAK_EXTERN_SEARCH_LIBRARY
indicates that a library search for sym1
should be performed.

A value of
IMAGE_WEAK_EXTERN_SEARCH_ALIAS
indicates that sym1 is an alias for sym2.

8 10 Unused.

Note that the Characteristics field is not defined in WINNT.H; instead, the Total Size field
is used.

5.5.4. Auxiliary Format 4: Files
This format follows a symbol-table record with storage class FILE (103). The symbol
name itself should be .file, and the auxiliary record that follows it gives the name of a
source-code file.

Offset Size Field Description

0 18 File Name ASCII string giving the name of the
source file; padded with nulls if less
than maximum length.



5.5.5. Auxiliary Format 5: Section Definitions
This format follows a symbol-table record that defines a section: such a record has a
symbol name that is the name of a section (such as .text or .drectve) and has storage class
STATIC (3). The auxiliary record provides information on the section referred to. Thus it
duplicates some of the information in the section header.

Offset Size Field Description

0 4 Length Size of section data; same as Size
of Raw Data in the section header.

4 2 NumberOfRelocations Number of relocation entries for the
section.

6 2 NumberOfLinenumbers Number of line-number entries for
the section.

8 4 Check Sum Checksum for communal data.
Applicable if the
IMAGE_SCN_LNK_COMDAT flag is
set in the section header. See
“COMDAT Sections” below, for
more information.

12 2 Number One-based index into the Section
Table for the associated section;
used when the COMDAT Selection
setting is 5.

14 1 Selection COMDAT selection number.
Applicable if the section is a
COMDAT section.

15 3 Unused.

5.5.6. COMDAT Sections (Object Only)
The Selection field of the Section Definition auxiliary format is applicable if the section is
a COMDAT section: a section that can be defined by more than one object file. (The flag
IMAGE_SCN_LNK_COMDAT is set in the Section Flags field of the section header.)
The Selection field determines the way that the linker resolves the multiple definitions of
COMDAT sections.

The first symbol having the section value of the COMDAT section must be the section
symbol. This symbol has the name of the section, Value field equal to 0, the section
number of the COMDAT section in question, Type field equal to
IMAGE_SYM_TYPE_NULL, Class field equal to IMAGE_SYM_CLASS_STATIC, and
one auxiliary record. The second symbol is called “the COMDAT symbol” and is used by
the linker in conjunction with the Selection field.



Values for the Selection field are shown below.

 Constant Value Description

IMAGE_COMDAT_SELECT_NODUPLICATES 1 The linker issues a
multiply defined symbol
error if this symbol is
already defined.

IMAGE_COMDAT_SELECT_ANY 2 Any section defining the
same COMDAT symbol
may be linked; the rest
are removed.

IMAGE_COMDAT_SELECT_SAME_SIZE 3 The linker chooses an
arbitrary section among
the definitions for this
symbol. A multiply
defined symbol error is
issued if all definitions
don’t have the same
size.

IMAGE_COMDAT_SELECT_EXACT_MATCH 4 The linker chooses an
arbitrary section among
the definitions for this
symbol. A multiply
defined symbol error is
issued if all definitions
don’t match exactly.

IMAGE_COMDAT_SELECT_ASSOCIATIVE 5 The section is linked if a
certain other COMDAT
section is linked. This
other section is indicated
by the Number field of
the auxiliary symbol
record for the section
definition. Use of this
setting is useful for
definitions that have
components in multiple
sections (for example,
code in one and data in
another), but where all
must be linked or
discarded as a set.

IMAGE_COMDAT_SELECT_LARGEST 6 The linker chooses the
largest from the
definitions for this
symbol. If multiple
definitions have this size
the choice between them
is arbitrary.



Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.6. COFF String Table
Immediately following the COFF symbol table is the COFF string table. The position of
this table is found by taking the symbol table address in the COFF header, and adding the
number of symbols multiplied by the size of a symbol.

At the beginning of the COFF string table are 4 bytes containing the total size (in bytes) of
the rest of the string table. This size includes the size field itself, so that the value in this
location would be 4 if no strings were present.

Following the size are null-terminated strings pointed to by symbols in the COFF symbol
table.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.7. The Attribute Certificate Table
(Image Only)
Attribute Certificates may be associated with an image by adding an Attribute Certificate
Table. There are a number of different types of Attribute Certificates. The meaning and
use of each certificate type is not covered in this document. For this information see the
Microsoft Distributed System Architecture, Attribute Certificate Architecture
Specification.

An Attribute Certificate Table is added at the end of the image, with only a .debug section
following (if a .debug section is present). The Attribute Certificate Table contains one or
more fixed length table entries which can be found via the Certificate Table field of the
Optional Header Data Directories list (offset 128). Each entry of this table identifies the
beginning location and length of a corresponding certificate. There is one Certificate Table
entry for each certificate stored in this section. The number of entries in the certificate
table can be calculated by dividing the size of the certificate table (found in offset 132) by
the size of an entry in the certificate table (8). Note that the size of the certificate table
includes only the table entries, not the actual certificates which the table entries, in turn,
point to.

The format of each table entry is:

Offset Size Field Description

0 4 Certificate Data File pointer to the certificate data.
This will always point to an address
that is octaword aligned (i.e., is a
multiple of 8 bytes and so the
low-order 3 bits are zero).

0 4 Size of Certificate Unsigned integer identifying the size
(in bytes) of the certificate.

Notice that certificates always start on an octaword boundary. If a certificate is not an
even number of octawords long, it is zero padded to the next octaword boundary.
However, the length of the certificate does not include this padding and so any certificate
navigation software must be sure to round up to the next octaword to locate another
certificate.

5.7.1. Certificate Data
This is the binary data representing an Attribute Certificate. The format and meaning of
each certificate is defined in Attribute Certificate Architecture Specification. The
certificate starting location and length is specified by an entry in the Certificate Table.
Each certificate is represented by a single Certificate Table entry.



Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


5.8 Delay-Load Import Tables
(Image Only)
These tables were added to the image in order to support a uniform mechanism for
applications to delay the loading of a DLL until the first call into that DLL. The layout of
the tables matches that of the traditional import tables (see Section “6.4. The .idata
Section“ for details), so only a few details will be discussed here.

5.8.1. The Delay-Load Directory Table
The Delay-Load Directory Table is the counterpart to the Import Directory Table, and can
be retrieved via the Delay Import Descriptor entry in the Optional Header Data Directories
list (offset 200). The Table is arranged as follows:

Offset Size Field Description

0 4 Attributes Must be zero.

4 4 Name Relative virtual address of the name
of the DLL to be loaded. The name
resides in the read-only data section
of the image.

8 4 Module Handle Relative virtual address of the module
handle (in the data section of the
image) of the DLL to be delay-loaded.
Used for storage by the routine
supplied to manage delay-loading.

12 4 Delay Import
Address Table

Relative virtual address of the
delay-load import address table. See
below for further details.

16 4 Delay Import Name
Table

Relative virtual address of the
delay-load name table, which
contains the names of the imports
that may need to be loaded. Matches
the layout of the Import Name Table,
Section 6.4.3. Hint/Name Table.

20 4 Bound Delay Import
Table

Relative virtual address of the bound
delay-load address table, if it exists.



24 4 Unload Delay Import
Table

Relative virtual address of the unload
delay-load address table, if it exists.
This is an exact copy of the Delay
Import Address Table. In the event
that the caller unloads the DLL, this
table should be copied back over the
Delay IAT such that subsequent calls
to the DLL continue to use the
thunking mechanism correctly.

28 4 Time Stamp Time stamp of DLL to which this
image has been bound.

The tables referenced in this data structure are organized and sorted just as their
counterparts are for traditional imports. See Section 6.4. The idata Section for details.

5.8.2. Attributes
As yet, there are no attribute flags defined. This field is currently set to zero by the linker
in the image. This field can be used to extend the record by indicating the presence of new
fields or for indicating behaviors to the delay and/or unload helper functions.

5.8.3. Name
The name of the DLL to be delay loaded resides in the read-only data section of the image
and is referenced via the szName field.

5.8.4. Module handle
The handle of the DLL to be delay loaded is located in the data section of the image and
pointed to via the phmod field. The supplied delay load helper uses this location to store
the handle to the loaded DLL.

5.8.5. Delay Import Address Table (IAT)
The delay IAT is referenced by the delay import descriptor via the pIAT field. This is the
working copy of the entry point function pointers that resides in the data section of the
image and initially refer to the delay load thunks. The delay load helper is responsible for
updating these pointers with the real entry points so that the thunks are no longer in the
calling loop. The function pointers are access via the expression
pINT->u1.Function.



5.8.6. Delay Import Name Table (INT)
The delay INT has the names of the imports that may need to be loaded. They are ordered
in the same fashion as the function pointers in the IAT. They consist of the same structures
as the standard INT and are accessed via the expression
pINT->u1.AddressOfData->Name[0].

5.8.7. Delay Bound Import Address Table
(BIAT) and Time Stamp
The delay BIAT is an optional table of IMAGE_THUNK_DATA items that is used along
with the timestamp field by a post process binding phase.

5.8.8. Delay Unload Import Address Table
(UIAT)
The delay UIAT is an optional table of IMAGE_THUNK_DATA items that is used by the
unload code to handle an explicit unload request. It is initialized data in the read-only
section that is an exact copy of the original IAT that referred the code to the delay load
thunks. On the unload request, the library can be freed, the *phmod cleared, and the
UIAT written over the IAT to restore everything to its pre-load state.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6. Special Sections
Typical COFF sections contain code or data that linkers and Win32 loaders process
without special knowledge of the sections’ contents. The contents are relevant only to the
application being linked or executed.

However, some COFF sections have special meanings when found in object files and/or
image files. Tools and loaders recognize these sections because they have special flags set
in the section header, or because they are pointed to from special locations in the image
optional header, or because the section name is “magic”: that is, the name indicates a
special function of the section. (Even where the section name is not magic, the name is
dictated by convention, so we will refer to a name.)

The reserved sections and their attributes are described in the table below, followed by
detailed descriptions for a subset of them.

Section
Name

Content Characteristics

.arch Alpha
architecture
information

IMAGE_SCN_MEM_READ |
IMAGE_SCN_CNT_INITIALIZED_DATA |         
IMAGE_SCN_ALIGN_8BYTES |
IMAGE_SCN_MEM_DISCARDABLE

.bss Uninitialized
data

IMAGE_SCN_CNT_UNINITIALIZED_DATA |
IMAGE_SCN_MEM_READ |                
IMAGE_SCN_MEM_WRITE

.data Initialized data IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |         
IMAGE_SCN_MEM_WRITE

.edata Export tables IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ

.idata Import tables IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.pdata Exception
information

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ

.rdata Read-only
initialized data

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ

.reloc Image
relocations

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |               
IMAGE_SCN_MEM_DISCARDABLE

.rsrc Resource
directory

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |                
IMAGE_SCN_MEM_WRITE



.text Executable code IMAGE_SCN_CNT_CODE |
IMAGE_SCN_MEM_EXECUTE |                
IIMAGE_SCN_MEM_READ

.tls Thread-local
storage

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |               
IMAGE_SCN_MEM_WRITE

.xdata Exception
information

IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ

Some of the sections listed here are marked “(object only)” or “(image only)” to indicate
that their special semantics are relevant only for object files or image files, respectively. A
section that says “(image only)” may still appear in an object file as a way of getting into
the image file, but the section has no special meaning to the linker, only to the image file
loader.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.1. The .debug Section
The .debug section is used in object files to contain compiler-generated debug information, and in image files
to contain the total debug information generated. This section describes the packaging of debug information in
object and image files. The actual format of CodeView debug information is not described here. See the
document CV4 Symbolic Debug Information Specification.

The next section describes the format of the debug directory, which can be anywhere in the image. Subsequent
sections describe the “groups” in object files that contain debug information.

The default for the linker is that debug information is not mapped into the address space of the image. A
.debug section exists only when debug information is mapped in the address space.

6.1.1. Debug Directory (Image Only)
Image files contain an optional “debug directory” indicating what form of debug information is present and
where it is. This directory consists of an array of “debug directory entries” whose location and sizes are
indicated in the image optional header.

The debug directory may be in a discardable .debug section (if one exists) or it may be included in any other
section in the image file, or not in a section at all.

Each debug directory entry identifies the location and size of a block of debug information. The RVA
specified may be 0 if the debug information is not covered by a section header (i.e., it resides in the image file
and is not mapped into the run-time address space). If it is mapped, the RVA is its address.

Here is the format of a debug directory entry:

Offset Size Field Description

0 4 Characteristics A reserved field intended to be used for flags,
set to zero for now.

4 4 TimeDateStamp Time and date the debug data was created.

8 2 MajorVersion Major version number of the debug data
format.

10 2 MinorVersion Minor version number of the debug data
format.

12 4 Type Format of debugging information: this field
enables support of multiple debuggers. See
Section 6.1.2, “Debug Type,” for more
information.

16 4 SizeOfData Size of the debug data (not including the
debug directory itself).

20 4 AddressOfRawData Address of the debug data when loaded,
relative to the image base.

24 4 PointerToRawData File pointer to the debug data.

6.1.2. Debug Type
The following values are defined for the Debug Type field of the debug directory:

Constant Value Description



IMAGE_DEBUG_TYPE_UNKNOWN 0 Unknown value, ignored by all tools.

IMAGE_DEBUG_TYPE_COFF 1 COFF debug information (line numbers,
symbol table, and string table). This
type of debug information is also
pointed to by fields in the file headers.

IMAGE_DEBUG_TYPE_CODEVIEW 2 CodeView debug information. The
format of the data block is described by
the CV4 specification.

IMAGE_DEBUG_TYPE_FPO 3 Frame Pointer Omission (FPO)
information. This information tells the
debugger how to interpret
non-standard stack frames, which use
the EBP register for a purpose other
than as a frame pointer.

IMAGE_DEBUG_TYPE_MISC 4  

IMAGE_DEBUG_TYPE_EXCEPTION 5

IMAGE_DEBUG_TYPE_FIXUP 6

IMAGE_DEBUG_TYPE_OMAP_TO_SRC 7

IMAGE_DEBUG_TYPE_OMAP_FROM_SRC 8

IMAGE_DEBUG_TYPE_BORLAND 9

If Debug Type is set to IMAGE_DEBUG_TYPE_FPO, the debug raw data is an array in which each member
describes the stack frame of a function. Not every function in the image file need have FPO information
defined for it, even though debug type is FPO. Those functions that do not have FPO information are assumed
to have normal stack frames. The format for FPO information is defined as follows:

#define FRAME_FPO   0
#define FRAME_TRAP  1
#define FRAME_TSS   2

typedef struct _FPO_DATA {
    DWORD       ulOffStart;            // offset 1st byte of function code
    DWORD       cbProcSize;            // # bytes in function
    DWORD       cdwLocals;             // # bytes in locals/4
    WORD        cdwParams;             // # bytes in params/4

    WORD        cbProlog : 8;          // # bytes in prolog
    WORD        cbRegs   : 3;          // # regs saved
    WORD        fHasSEH  : 1;          // TRUE if SEH in func
    WORD        fUseBP   : 1;          // TRUE if EBP has been allocated
    WORD        reserved : 1;          // reserved for future use
    WORD        cbFrame  : 2;          // frame type
} FPO_DATA;

6.1.3. .debug$F (Object Only)
Object files can contain .debug$F sections whose contents are one or more FPO_DATA
records (Frame Pointer Omission information). See “IMAGE_DEBUG_TYPE_FPO” in table above.

The linker recognizes these .debug$F records. If debug information is being generated, the linker sorts the
FPO_DATA records by procedure RVA, and generates a debug directory entry for them.



The compiler should not generate FPO records for procedures that have a standard frame format.

6.1.4. .debug$S (Object Only)
This section contains CV4 symbolic information: a stream of CV4 symbol records as described in the CV4
spec.

6.1.5. .debug$T (Object Only)
This section contains CV4 type information: a stream of CV4 type records as described in the CV4 spec.

6.1.6. Linker Support for Microsoft CodeView® Debug
Information
To support CodeView debug information, the linker:

Generates the header and “NB05” signature.4.  

Packages the header with .debug$S and .debug$T sections from object files and synthetic
(linker-generated) CV4 information, and creates a debug directory entry.

5.  

Generates the subsection directory containing a pointer to each known subsection, including subsections
that are linker-generated.

6.  

Generates the sstModules subsection, which specifies the address and size of each module’s
contribution(s) to the image address space.

7.  

Generates the sstSegMap subsection, which specifies the address and size of each section in the image.8.  

Generates the sstPublicSym subsection, which contains the name and address of all externally defined
symbols. (A symbol may be represented both by .debug$S information and by an sstPublicSym entry.)

9.  

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.2. The .drectve Section (Object
Only)
A section is a “directive” section if it has the IMAGE_SCN_LNK_INFO flag set in the
section header. By convention, such a section also has the name .drectve. The linker
removes a .drectve section after processing the information, so the section does not appear
in the image file being linked. Note that a section marked with IMAGE_SCN_LNK_INFO
that is not named .drectve is ignored and discarded by the linker.

A .drectve section consists of a string of ASCII text. This string is a series of linker
options (each option containing hyphen, option name, and any appropriate attribute)
separated by spaces. The .drectve section must not have relocations or line numbers.

In a .drectve section, if the hyphen preceding an option is followed by a question mark
(for example, “-?export”), and the option is not recognized as a valid directive, the linker
must ignore it. This allows compilers and linkers to add new directives while maintaining
compatibility with existing linkers, as long as the new directives are not required for the
correct linking of the application. For example, if the directive enables a link-time
optimization, it is acceptable if some linkers cannot recognize it.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.3. The .edata Section (Image
Only)
The export data section, named .edata, contains information about symbols that other
images can access through dynamic linking. Exports are generally found in DLLs, but
DLLs can import symbols as well.

An overview of the general structure of the export section is described below. The tables
described are generally contiguous in the file and present in the order shown (though this
is not strictly required). Only the Directory Table and Address Table are necessary for
exporting symbols as ordinals. (An ordinal is an export accessed directly as an Export
Address Table index.) The Name Pointer Table, Ordinal Table, and Export Name Table
all exist to support use of export names.

Table Name Description

Export Directory Table A table with just one row (unlike the debug directory).
This table indicates the locations and sizes of the
other export tables.

Export Address Table An array of RVAs of exported symbols. These are the
actual addresses of the exported functions and data
within the executable code and data sections. Other
image files can import a symbol by using an index to
this table (an ordinal) or, optionally, by using the
public name that corresponds to the ordinal if one is
defined.

Name Pointer Table Array of pointers to the public export names, sorted in
ascending order.

Ordinal Table Array of the ordinals that correspond to members of
the Name Pointer Table. The correspondence is by
position; therefore, the Name Pointer Table and the
Ordinal Table must have the same number of
members. Each ordinal is an index into the Export
Address Table.

Export Name Table A series of null-terminated ASCII strings. Members of
the Name Pointer Table point into this area. These
names are the public names through which the
symbols are imported and exported; they do not
necessarily have to be the same as the private names
used within the image file.

When another image file imports a symbol by name, the Name Pointer Table is searched
for a matching string. If one is found, the associated ordinal is then determined by looking
at the corresponding member in the Ordinal Table (that is, the member of the Ordinal
Table with the same index as the string pointer found in the Name Pointer Table). The



resulting ordinal is an index into the Export Address Table, which gives the actual location
of the desired symbol. Every export symbol can be accessed by an ordinal.

Direct use of an ordinal is therefore more efficient, because it avoids the need to search the
Name Pointer Table for a matching string. However, use of an export name is more
mnemonic and does not require the user to know the table index for the symbol.

6.3.1. Export Directory Table
The export information begins with the Export Directory Table, which describes the
remainder of the export information. The Export Directory Table contains address
information that is used to resolve fix-up references to the entry points within this image.

Offset Size Field Description

0 4 Export Flags A reserved field, set to zero for now.

4 4 Time/Date Stamp Time and date the export data was
created.

8 2 Major Version Major version number. The
major/minor version number can be
set by the user.

10 2 Minor Version Minor version number.

12 4 Name RVA Address of the ASCII string
containing the name of the DLL.
Relative to image base.

16 4 Ordinal Base Starting ordinal number for exports
in this image. This field specifies the
starting ordinal number for the
Export Address Table. Usually set to
1.

20 4 Address Table
Entries

Number of entries in the Export
Address Table.

24 4 Number of Name
Pointers

Number of entries in the Name
Pointer Table (also the number of
entries in the Ordinal Table).

28 4 Export Address
Table RVA

Address of the Export Address Table,
relative to the image base.

32 4 Name Pointer RVA Address of the Export Name Pointer
Table, relative to the image base.
The table size is given by Number of
Name Pointers.

36 4 Ordinal Table RVA Address of the Ordinal Table, relative
to the image base.



6.3.2. Export Address Table
The Export Address Table contains the address of exported entry points and exported data
and absolutes. An ordinal number is used to index the Export Address Table, after
subtracting the value of the Ordinal Base field to get a true, zero-based index. (Thus, if the
Ordinal Base is set to 1, a common value, an ordinal of 6 is the same as a zero-based index
of 5.)

Each entry in the Export Address Table is a field that uses one of two formats, as shown in
the following table. If the address specified is not within the export section (as defined by
the address and length indicated in the Optional Header), the field is an Export RVA: an
actual address in code or data. Otherwise, the field is a Forwarder RVA, which names a
symbol in another DLL.

Offset Size Field Description

0 4 Export RVA Address of the exported symbol
when loaded into memory, relative
to the image base. For example, the
address of an exported function.

0 4 Forwarder RVA Pointer to a null-terminated ASCII
string in the export section, giving
the DLL name and the name of the
export (for example,
“MYDLL.expfunc”) or the DLL name
and an export (for example,
“MYDLL.#27”).

A Forwarder RVA exports a definition from some other image, making it appear as if it
were being exported by the current image. Thus the symbol is simultaneously imported
and exported.

For example, in KERNEL32.DLL in Windows NT, the export named “HeapAlloc” is
forwarded to the string “NTDLL.RtlAllocateHeap”. This allows applications to use the
Windows NT-specific module “NTDLL.DLL” without actually containing import
references to it. The application’s import table references only “KERNEL32.DLL.”
Therefore, the application is not specific to Windows NT and can run on any Win32
system.

6.3.3. Export Name Pointer Table
The Export Name Pointer Table is an array of addresses (RVAs) into the Export Name
Table. The pointers are 32 bits each and are relative to the Image Base. The pointers are
ordered lexically to allow binary searches.

An export name is defined only if the Export Name Pointer Table contains a pointer to it.



6.3.4. Export Ordinal Table
The Export Ordinal Table is an array of 16-bit indexes into the Export Address Table. The
ordinals are biased by the Ordinal Base field of the Export Directory Table. In other
words, the Ordinal Base must be subtracted from the ordinals to obtain true indexes into
the Export Address Table.

The Export Name Pointer Table and the Export Ordinal Table form two parallel arrays,
separated to allow natural field alignment. These two tables, in effect, operate as one table,
in which the Export Name Pointer “column” points to a public (exported) name, and the
Export Ordinal “column” gives the corresponding ordinal for that public name. A member
of the Export Name Pointer Table and a member of the Export Ordinal Table are
associated by having the same position (index) in their respective arrays.

Thus, when the Export Name Pointer Table is searched and a matching string is found at
position i, the algorithm for finding the symbol’s address is:

i = Search_ExportNamePointerTable (ExportName);
ordinal = ExportOrdinalTable [i];
SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

6.3.5. Export Name Table
The Export Name Table contains the actual string data pointed to by the Export Name
Pointer Table. The strings in this table are public names that can be used by other images
to import the symbols; these public export names are not necessarily the same as the
(private) symbol names that the symbols have in their own image file and source code,
although they can be.

Every exported symbol has an ordinal value, which is just the index into the Export
Address Table (plus the Ordinal Base value). Use of export names, however, is optional.
Some, all, or none of the exported symbols can have export names. For those exported
symbols that do have export names, corresponding entries in the Export Name Pointer
Table and Export Ordinal Table work together to associate each name with an ordinal.

The structure of the Export Name Table is a series of ASCII strings, of variable length,
each null terminated.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.4. The .idata Section
All image files that import symbols, including virtually all .EXE files, have an .idata
section. A typical file layout for the import information follows:

Directory Table

Null Directory Entry

DLL1 Import Lookup Table

Null

DLL2 Import Lookup Table

Null

DLL3 Import Lookup Table

Null

Hint-Name Table

Figure 3. Typical Import Section Layout

6.4.1. Import Directory Table
The import information begins with the Import Directory Table, which describes the
remainder of the import information. The Import Directory Table contains address
information that is used to resolve fix-up references to the entry points within a DLL
image. The Import Directory Table consists of an array of Import Directory Entries, one
entry for each DLL the image references. The last directory entry is empty (filled with null
values), which indicates the end of the directory table.

Each Import Directory entry has the following format:

Offset Size Field Description



0 4 Import Lookup
Table RVA
(Characteristics)

Relative virtual address of the Import
Lookup Table; this table contains a
name or ordinal for each import.
(The name “Characteristics” is used
in WINNT.H but is no longer
descriptive of this field.)

4 4 Time/Date Stamp Set to zero until bound; then this
field is set to the time/data stamp of
the DLL.

8 4 Fowarder Chain Index of first forwarder reference.

12 4 Name RVA Address of ASCII string containing
the DLL name. This address is
relative to the image base.

16 4 Import Address
Table RVA (Thunk
Table)

Relative virtual address of the Import
Address Table: this table is identical
in contents to the Import Lookup
Table until the image is bound.

6.4.2. Import Lookup Table
An Import Lookup Table is an array of 32-bit numbers for PE32, 64-bit for PE32+. Each
entry uses the bit-field format described below, in which bit 31 (63) is the most significant
bit. The collection of these entries describes all imports from the image to a given DLL.
The last entry is set to zero (NULL) to indicate end of the table.

Bit(s) Size Bit Field Description

31 / 63 1 Ordinal/Name Flag If bit is set, import by ordinal.
Otherwise, import by name. Bit is
masked as 0x80000000 for PE32,
0x8000000000000000 for PE32+.

30 – 0 /
62 – 0

31 / 63 Ordinal Number Ordinal/Name Flag is 1: import by
ordinal. This field is a 31-bit
(63-bit) ordinal number.

30 – 0 /
62 – 0

31 / 63 Hint/Name Table
RVA

Ordinal/Name Flag is 0: import by
name. This field is a 31-bit (63-bit)
address of a Hint/Name Table
entry, relative to image base.

In a PE32 image, the lower 31 bits can be masked as 0x7FFFFFFF. In either case, the
resulting number is a 32-bit integer or pointer in which the high bit is always zero (zero
extension to 32 bits). Similarly for a PE32+ image, the lower 63 bits can be masked as
0x7FFFFFFFFFFFFFFF.



6.4.3. Hint/Name Table
One Hint/Name Table suffices for the entire import section. Each entry in the Hint/Name
Table has the following format:

Offset Size Field Description

0 2 Hint Index into the Export Name Pointer
Table. A match is attempted first
with this value. If it fails, a binary
search is performed on the DLL’s
Export Name Pointer Table.

2 variable Name ASCII string containing name to
import. This is the string that must
be matched to the public name in
the DLL. This string is case
sensitive and terminated by a null
byte.

* 0 or 1 Pad A trailing zero pad byte appears
after the trailing null byte, if
necessary, to align the next entry
on an even boundary.

6.4.4. Import Address Table
The structure and content of the Import Address Table are identical to that of the Import
Lookup Table, until the file is bound. During binding, the entries in the Import Address
Table are overwritten with the 32-bit (or 64-bit for PE32+) addresses of the symbols being
imported: these addresses are the actual memory addresses of the symbols themselves
(although technically, they are still called “virtual addresses”). The processing of binding
is typically performed by the loader.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.5. The .pdata Section
The .pdata section contains an array of function table entries used for exception handling
and is pointed to by the exception table entry in the image data directory. The entries must
be sorted according to the function addresses (the first field in each structure) before being
emitted into the final image. The target platform determines which of the three variations
described below is used.

For 32-bit MIPS and Alpha images the following structure is used:

Offset Size Field Description

0 4 Begin Address Virtual address of the corresponding
function.

4 4 End Address Virtual address of the end of the
function.

8 4 Exception Handler Pointer to the exception handler to
be executed.

12 4 Handler Data Pointer to additional information to
be passed to the handler.

16 4 Prolog End Address Virtual address of the end of the
function’s prolog.

For the ARM, PowerPC, SH3 and SH4 WindowsCE platforms, this function table entry
format is used:

Offset Size Field Description

0 4 Begin Address Virtual address of the corresponding
function.

4 8 bits Prolog Length Number of instructions in the
function’s prolog.

4 22 bits Function Length Number of instructions in the
function.

4 1 bit 32-bit Flag Set if the function is comprised of
32-bit instructions, cleared for a
16-bit function.

4 1 bit Exception Flag Set if an exception handler exists for
the function.

Finally, for ALPHA64 the pdata entry format is as follows:



Offset Size Field Description

0 8 Begin Address Virtual address of the corresponding
function.

8 8 End Address Virtual address of the end of the
function.

16 8 Exception Handler Pointer to the exception handler to
be executed.

24 8 Handler Data Pointer to additional information to
be passed to the handler.

32 8 Prolog End Address Virtual address of the end of the
function’s prolog.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.6. The .reloc Section (Image Only)
The Fix-Up Table contains entries for all fixups in the image. The Total Fix-Up Data Size
in the Optional Header is the number of bytes in the fixup table. The fixup table is broken
into blocks of fixups. Each block represents the fixups for a 4K page. Each block must
start on a 32-bit boundary.

Fixups that are resolved by the linker do not need to be processed by the loader, unless the
load image can’t be loaded at the Image Base specified in the PE Header.

6.6.1. Fixup Block
Each fixup block starts with the following structure:

Offset Size Field Description

0 4 Page RVA The image base plus the page RVA is
added to each offset to create the
virtual address of where the fixup
needs to be applied.

4 4 Block Size Total number of bytes in the fixup
block, including the Page RVA and
Block Size fields, as well as the
Type/Offset fields that follow.

The Block Size field is then followed by any number of Type/Offset entries. Each entry is
a word (2 bytes) and has the following structure:

Offset Size Field Description

0 4 bits Type Stored in high 4 bits of word. Value
indicating which type of fixup is to be
applied. These fixups are described
in “Fixup Types.”

0 12 bits Offset Stored in remaining 12 bits of word.
Offset from starting address
specified in the Page RVA field for
the block. This offset specifies where
the fixup is to be applied.

To apply a fixup, a delta is calculated as the difference between the preferred base address,
and the base where the image is actually loaded. If the image is loaded at its preferred
base, the delta would be zero, and thus the fixups would not have to be applied.



6.6.2. Fixup Types

 Constant Value Description

IMAGE_REL_BASED_ABSOLUTE 0 The fixup is skipped. This
type can be used to pad a
block.

IMAGE_REL_BASED_HIGH 1 The fixup adds the high 16
bits of the delta to the
16-bit field at Offset. The
16-bit field represents the
high value of a 32-bit word.

IMAGE_REL_BASED_LOW 2 The fixup adds the low 16
bits of the delta to the
16-bit field at Offset. The
16-bit field represents the
low half of a 32-bit word.

IMAGE_REL_BASED_HIGHLOW 3 The fixup applies the delta
to the 32-bit field at Offset.

IMAGE_REL_BASED_HIGHADJ 4 The fixup adds the high 16
bits of the delta to the
16-bit field at Offset. The
16-bit field represents the
high value of a 32-bit word.
The low 16 bits of the
32-bit value are stored in
the 16-bit word that follows
this base relocation. This
means that this base
relocation occupies two
slots.

IMAGE_REL_BASED_MIPS_JMPADDR 5 Fixup applies to a MIPS
jump instruction.

IMAGE_REL_BASED_SECTION 6 Reserved for future use

IMAGE_REL_BASED_REL32 7 Reserved for future use

IMAGE_REL_BASED_MIPS_JMPADDR16 9 Fixup applies to a MIPS16
jump instruction.

IMAGE_REL_BASED_DIR64 10 This fixup applies the delta
to the 64-bit field at Offset



IMAGE_REL_BASED_HIGH3ADJ 11 The fixup adds the high 16
bits of the delta to the
16-bit field at Offset. The
16-bit field represents the
high value of a 48-bit word.
The low 32 bits of the
48-bit value are stored in
the 32-bit word that follows
this base relocation. This
means that this base
relocation occupies three
slots.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.7. The .tls Section
The .tls section provides direct PE/COFF support for static Thread Local Storage (TLS).
TLS is a special storage class supported by Windows NT, in which a data object is not an
automatic (stack) variable, yet it is local to each individual thread that runs the code. Thus,
each thread can maintain a different value for a variable declared using TLS.

Note that any amount of TLS data can be supported by using the API calls TlsAlloc,
TlsFree, TlsSetValue, and TlsGetValue. The PE/COFF implementation is an alternative
approach to using the API, and it has the advantage of being simpler from the
high-level-language programmer’s point of view. This implementation enables TLS data
to be defined and initialized in a manner similar to ordinary static variables in a program.
For example, in Microsoft Visual C++, a static TLS variable can be defined as follows,
without using the Windows API:

__declspec (thread) int tlsFlag = 1;

To support this programming construct, the PE/COFF .tls section specifies the following
information: initialization data, callback routines for per-thread initialization and
termination, and the TLS index explained in the following discussion.

Note   Statically declared TLS data objects can be used only in statically loaded image
files. This fact makes it unreliable to use static TLS data in a DLL unless you know that
the DLL, or anything statically linked with it, will never be loaded dynamically with the
LoadLibrary API function.

Executable code accesses a static TLS data object through the following steps:

1.At link time, the linker sets the Address of Index field of the TLS Directory. This field
points to a location where the program will expect to receive the TLS index.

The Microsoft run-time library facilitates this process by defining a memory image of the
TLS Directory and giving it the special name “__tls_used” (Intel x86 platforms) or
“_tls_used” (other platforms). The linker looks for this memory image and uses the data
there to create the TLS Directory. Other compilers that support TLS and work with the
Microsoft linker must use this same technique.

2.When a thread is created, the loader communicates the address of the thread’s TLS array
by placing the address of the Thread Environment Block (TEB) in the FS register. A
pointer to the TLS array is at the offset of 0x2C from the beginning of TEB. This behavior
is Intel x86 specific.

3.The loader assigns the value of the TLS index to the place indicated by the Address of
Index field.

4.The executable code retrieves the TLS index and also the location of the TLS array.

5.The code uses the TLS index and the TLS array location (multiplying the index by four
and using it as an offset to the array) to get the address of the TLS data area for the given
program and module. Each thread has its own TLS data area, but this is transparent to the



program, which doesn’t need to know how data is allocated for individual threads.

6.An individual TLS data object is accessed as some fixed offset into the TLS data area.

The TLS array is an array of addresses that the system maintains for each thread. Each
address in this array gives the location of TLS data for a given module (.EXE or DLL)
within the program. The TLS index indicates which member of the array to use. (The
index is a number, meaningful only to the system that identifies the module).

6.7.1. The TLS Directory
The TLS Directory has the following format:

Offset
(PE32/PE32+)

Size
(PE32/PE32+)

Field Description

0 4/8 Raw Data Start
VA (Virtual
Address)

Starting address of
the TLS template.
The template is a
block of data used to
initialize TLS data.
The system copies all
this data each time a
thread is created, so
it must not be
corrupted. Note that
this address is not
an RVA; it is an
address for which
there should be a
base relocation in
the .reloc section.

4/8 4/8 Raw Data End VA Address of the last
byte of the TLS,
except for the zero
fill. As with the Raw
Data Start VA, this is
a virtual address, not
an RVA.

8/16 4/8 Address of Index Location to receive
the TLS index, which
the loader assigns.
This location is in an
ordinary data
section, so it can be
given a symbolic
name accessible to
the program.



12/24 4/8 Address of
Callbacks

Pointer to an array of
TLS callback
functions. The array
is null-terminated, so
if there is no callback
function supported,
this field points to
four bytes set to
zero. The prototype
for these functions is
given below, in “TLS
Callback Functions.”

16/32 4 Size of Zero Fill The size in bytes of
the template,
beyond the initialized
data delimited by
Raw Data Start VA
and Raw Data End
VA. The total
template size should
be the same as the
total size of TLS data
in the image file. The
zero fill is the
amount of data that
comes after the
initialized nonzero
data.

20/36 4 Characteristics Reserved for possible
future use by TLS
flags.

6.7.2. TLS Callback Functions
The program can provide one or more TLS callback functions (though Microsoft
compilers do not currently use this feature) to support additional initialization and
termination for TLS data objects. A typical reason to use such a callback function would
be to call constructors and destructors for objects.

Although there is typically no more than one callback function, a callback is implemented
as an array to make it possible to add additional callback functions if desired. If there is
more than one callback function, each function is called in the order its address appears in
the array. A null pointer terminates the array. It is perfectly valid to have an empty list (no
callback supported), in which case the callback array has exactly one member—a null
pointer.

The prototype for a callback function (pointed to by a pointer of type
PIMAGE_TLS_CALLBACK) has the same parameters as a DLL entry-point function:

typedef VOID



(NTAPI *PIMAGE_TLS_CALLBACK) (
PVOID DllHandle,
DWORD Reason,
PVOID Reserved
    );

The Reserved parameter should be left set to 0. The Reason parameter can take the
following values:

Setting Value Description

DLL_PROCESS_ATTACH 1 New process has started, including the
first thread.

DLL_THREAD_ATTACH 2 New thread has been created (this
notification sent for all but the first
thread).

DLL_THREAD_DETACH 3 Thread is about to be terminated (this
notification sent for all but the first
thread).

DLL_PROCESS_DETACH 0 Process is about to terminate, including
the original thread.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


6.8. The .rsrc Section
Resources are indexed by a multiple level binary-sorted tree structure. The general design can incorporate
2**31 levels. By convention, however, Windows NT uses three levels:

Type10.  

Name11.  

Language12.  

A series of Resource Directory Tables relate all the levels in the following way: each directory table is
followed by a series of directory entries, which give the name or ID for that level (Type, Name, or Language
level) and an address of either a data description or another directory table. If a data description is pointed to,
then the data is a leaf in the tree. If another directory table is pointed to, then that table lists directory entries
at the next level down.

A leaf’s Type, Name, and Language IDs are determined by the path taken, through directory tables, to reach
the leaf. The first table determines Type ID, the second table (pointed to by the directory entry in the first
table) determines Name ID, and the third table determines Language ID.

The general structure of the .rsrc section is:

Data Description

Resource Directory Tables (and
Resource Directory Entries)

A series of tables, one for each group of nodes in the tree.
All top-level (Type) nodes are listed in the first table.
Entries in this table point to second-level tables. Each
second-level tree has the same Type identifier but different
Name identifiers. Third-level trees have the same Type and
Name identifiers but different Language identifiers.

Each individual table is immediately followed by directory
entries, in which each entry has: 1) a name or numeric
identifier, and 2) a pointer to a data description or a table
at the next lower level.

Resource Directory Strings Two-byte-aligned Unicode™ strings, which serve as string
data pointed to by directory entries.

Resource Data Description An array of records, pointed to by tables, which describe
the actual size and location of the resource data. These
records are the leaves in the resource-description tree.

Resource Data Raw data of the resource section. The size and location
information in the Resource Data Descriptions delimit the
individual regions of resource data.

6.8.1. Resource Directory Table
Each Resource Directory Table has the following format. This data structure should be considered the
heading of a table, because the table actually consists of directory entries (see next section) as well as this
structure:

Offset Size Field Description

0 4 Characteristics Resource flags, reserved for future use;
currently set to zero.



4 4 Time/Date Stamp Time the resource data was created by the
resource compiler.

8 2 Major Version Major version number, set by the user.

10 2 Minor Version Minor version number.

12 2 Number of Name Entries Number of directory entries, immediately
following the table, that use strings to
identify Type, Name, or Language (depending
on the level of the table).

14 2 Number of ID Entries Number of directory entries, immediately
following the Name entries, that use numeric
identifiers for Type, Name, or Language.

6.8.2. Resource Directory Entries
The directory entries make up the rows of a table. Each Resource Directory Entry has the following format.
Note that whether the entry is a Name or ID entry is indicated by the Resource Directory Table, which
indicates how many Name and ID entries follow it (remember that all the Name entries precede all the ID
entries for the table). All entries for the table are sorted in ascending order: the Name entries by
case-insensitive string, and the ID entries by numeric value.

Offset Size Field Description

0 4 Name RVA Address of string that gives the Type, Name,
or Language identifier, depending on level of
table.

0 4 Integer ID 32-bit integer that identifies Type, Name, or
Language.

4 4 Data Entry RVA High bit 0. Address of a Resource Data Entry
(a leaf).

4 4 Subdirectory RVA High bit 1. Lower 31 bits are the address of
another Resource Directory Table (the next
level down).

6.8.3. Resource Directory String
The Resource Directory String area consists of Unicode strings, which are word aligned. These strings are
stored together after the last Resource Directory Entry and before the first Resource Data Entry. This
minimizes the impact of these variable length strings on the alignment of the fixed-size directory entries.
Each Resource Directory String has the following format:

Offset Size Field Description

0 2 Length Size of string, not including length field itself.

2 Variable Unicode String Variable-length Unicode string data, word
aligned.



6.8.4. Resource Data Entry
Each Resource Data Entry describes an actual unit of raw data in the Resource Data area, and has the
following format:

Offset Size Field Description

0 4 Data RVA Address of a unit of resource data in the
Resource Data area.

4 4 Size Size, in bytes, of the resource data pointed to
by the Data RVA field.

8 4 Codepage Code page used to decode code point values
within the resource data. Typically, the code
page would be the Unicode code page.

12 4 Reserved (must be set to 0)

6.8.5. Resource Example
The resource example shows the PE/COFF representation of the following resource data:

TypeId#      NameId#      Language ID    Resource Data
   1            1            0            00010001
   1            1            1            10010001
   1            2            0            00010002
   1            3            0            00010003
   2            1            0            00020001
   2            2            0            00020002
   2            3            0            00020003
   2            4            0            00020004
   9            1            0            00090001
   9            9            0            00090009
   9            9            1            10090009
   9            9            2            20090009

When this data is encoded, a dump of the PE/COFF Resource Directory results in the following output:

Offset   Data
0000:   00000000 00000000 00000000 00030000 (3 entries in this directory)
0010:   00000001 80000028   (TypeId #1, Subdirectory at offset 0x28)
0018:   00000002 80000050   (TypeId #2, Subdirectory at offset 0x50)
0020:   00000009 80000080   (TypeId #9, Subdirectory at offset 0x80)
0028:   00000000 00000000 00000000 00030000 (3 entries in this directory)
0038:   00000001 800000A0   (NameId #1, Subdirectory at offset 0xA0)
0040:   00000002 00000108   (NameId #2, data desc at offset 0x108)
0048:   00000003 00000118   (NameId #3, data desc at offset 0x118)
0050:   00000000 00000000 00000000 00040000 (4 entries in this directory)
0060:   00000001 00000128   (NameId #1, data desc at offset 0x128)
0068:   00000002 00000138   (NameId #2, data desc at offset 0x138)
0070:   00000003 00000148   (NameId #3, data desc at offset 0x148)
0078:   00000004 00000158   (NameId #4, data desc at offset 0x158)
0080:   00000000 00000000 00000000 00020000 (2 entries in this directory)
0090:   00000001 00000168   (NameId #1, data desc at offset 0x168)
0098:   00000009 800000C0   (NameId #9, Subdirectory at offset 0xC0)
00A0:   00000000 00000000 00000000 00020000 (2 entries in this directory)
00B0:   00000000 000000E8   (Language ID 0, data desc at offset 0xE8



00B8:   00000001 000000F8   (Language ID 1, data desc at offset 0xF8
00C0:   00000000 00000000 00000000 00030000 (3 entries in this directory)
00D0:   00000001 00000178   (Language ID 0, data desc at offset 0x178
00D8:   00000001 00000188   (Language ID 1, data desc at offset 0x188
00E0:   00000001 00000198   (Language ID 2, data desc at offset 0x198
00E8:   000001A8   (At offset 0x1A8, for TypeId #1, NameId #1,
Language id #0
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
00F8:   000001AC   (At offset 0x1AC, for TypeId #1, NameId #1,
Language id #1
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0108:   000001B0   (At offset 0x1B0, for TypeId #1, NameId #2,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0118:   000001B4   (At offset 0x1B4, for TypeId #1, NameId #3,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0128:   000001B8   (At offset 0x1B8, for TypeId #2, NameId #1,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0138:   000001BC   (At offset 0x1BC, for TypeId #2, NameId #2,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0148:   000001C0   (At offset 0x1C0, for TypeId #2, NameId #3,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0158:   000001C4   (At offset 0x1C4, for TypeId #2, NameId #4,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0168:   000001C8   (At offset 0x1C8, for TypeId #9, NameId #1,
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0178:   000001CC   (At offset 0x1CC, for TypeId #9, NameId #9,
Language id #0
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0188:   000001D0   (At offset 0x1D0, for TypeId #9, NameId #9,
Language id #1
   00000004   (4 bytes of data)
   00000000   (codepage)
   00000000   (reserved)
0198:   000001D4   (At offset 0x1D4, for TypeId #9, NameId #9,
Language id #2
   00000004   (4 bytes of data)



   00000000   (codepage)
   00000000   (reserved)

The raw data for the resources follows:

01A8:   00010001
01AC:   10010001
01B0:   00010002
01B4:   00010003
01B8:   00020001
01BC:   00020002
01C0:   00020003
01C4:   00020004
01C8:   00090001
01CC:   00090009
01D0:   10090009
01D4:   20090009

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7. Archive (Library) File Format
The COFF archive format provides a standard mechanism for storing collections of object
files. These collections are frequently referred to as “libraries” in programming
documentation.

The first eight bytes of an archive consist of the file signature. The rest of the archive
consists of a series of archive members, as follows:

The first and second members are “linker members.” Each has of these members
has its own format as described in Section 8.3. Typically, a linker places
information into these archive members. The linker members contain the directory
of the archive.

13.  

The third member is the longnames member. This member consists of a series of
null-terminated ASCII strings, in which each string is the name of another archive
member.

14.  

The rest of the archive consists of standard (object-file) members. Each of these
members contains the contents of one object file in its entirety.

15.  

An archive member header precedes each member. The following illustration shows the
general structure of an archive:

Signature :”!<arch>\n”

Header

1st Linker Member

Header

2nd Linker Member

Header

Longnames Member

Header

Contents of OBJ File 1

(COFF format)



Header

Contents of OBJ File 2

(COFF format)

.

Header

Contents of OBJ File N

(COFF format)

Figure 4. Archive File Structure

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7.1. Archive File Signature
The archive file signature identifies the file type. Any utility (for example, a linker)
expecting an archive file as input can check the file type by reading this signature. The
signature consists of the following ASCII characters, in which each character below is
represented literally, except for the newline (\n) character:

S!<arch>\n

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7.2. Archive Member Headers
Each member (linker, longnames, or object-file member) is preceded by a header. An
archive member header has the following format, in which each field is an ASCII text
string that is left justified and padded with spaces to the end of the field. There is no
terminating null character in any of these fields.

Each member header starts on the first even address after the end of the previous archive
member.

Offset Size Field Description

0 16 Name Name of archive member, with a
slash (/) appended to terminate the
name. If the first character is a
slash, the name has a special
interpretation, as described below.

16 12 Date Date and time the archive member
was created: ASCII decimal
representation of the number of
seconds since 1/1/1970 UCT.

28 6 User ID ASCII decimal representation of the
user ID.

34 6 Group ID ASCII group representation of the
group ID.

40 8 Mode ASCII octal representation of the
member’s file mode.

48 10 Size ASCII decimal representation of the
total size of the archive member, not
including the size of the header.

58 2 End of Header The two bytes in the C string “‘\n”.

The Name field has one of the formats shown in the following table. As mentioned above,
each of these strings is left justified and padded with trailing spaces within a field of 16
bytes:

Contents of Name
Field

Description

Name/ The field gives the name of the archive member
directly.

/ The archive member is one of the two linker
members. Both of the linker members have this
name.



// The archive member is the longname member, which
consists of a series of null-terminated ASCII strings.
The longnames member is the third archive member,
and must always be present even if the contents are
empty.

  The name of the archive member is located at offset n
within the longnames member. The number n is the
decimal representation of the offset. For example:
“\26” indicates that the name of the archive member
is located 26 bytes beyond the beginning of
longnames member contents.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7.3. First Linker Member
The name of the first linker member is “\”. The first linker member, which is included for
backward compatibility, is not used by current linkers but its format must be correct. This
linker member provides a directory of symbol names, as does the second linker member.
For each symbol, the information indicates where to find the archive member that contains
the symbol.

The first linker member has the following format. This information appears after the
header:

Offset Size Field Description

0 4 Number of Symbols Unsigned long containing the
number of symbols indexed. This
number is stored in big-endian
format. Each object-file member
typically defines one or more
external symbols.

4 4 * n Offsets Array of file offsets to archive
member headers, in which n is
equal to Number of Symbols. Each
number in the array is an unsigned
long stored in big-endian format.
For each symbol named in the
String Table, the corresponding
element in the Offsets array gives
the location of the archive member
that contains the symbol.

* * String Table Series of null-terminated strings
that name all the symbols in the
directory. Each string begins
immediately after the null character
in the previous string. The number
of strings must be equal to the
value of the Number of Symbols
fields.

The elements in the Offsets array must be arranged in ascending order. This fact implies
that the symbols listed in the String Table must be arranged according to the order of
archive members. For example, all the symbols in the first object-file member would have
to be listed before the symbols in the second object file.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7.4. Second Linker Member
The second linker member has the name “\” as does the first linker member. Although
both the linker members provide a directory of symbols and archive members that contain
them, the second linker member is used in preference to the first by all current linkers. The
second linker member includes symbol names in lexical order, which enables faster
searching by name.

The first second member has the following format. This information appears after the
header:

Offset Size Field Description

0 4 Number of
Members

Unsigned long containing the number
of archive members.

4 4 * m Offsets Array of file offsets to archive
member headers, arranged in
ascending order. Each offset is an
unsigned long. The number m is
equal to the value of the Number of
Members field.

* 4 Number of Symbols Unsigned long containing the number
of symbols indexed. Each object-file
member typically defines one or
more external symbols.

* 2 * n Indices Array of 1-based indices (unsigned
short) which map symbol names to
archive member offsets. The number
n is equal to Number of Symbols. For
each symbol named in the String
Table, the corresponding element in
the Indices array gives an index into
the Offsets array. The Offsets array,
in turn, gives the location of the
archive member that contains the
symbol.

* * String Table Series of null-terminated strings that
name all the symbols in the
directory. Each string begins
immediately after the null byte in the
previous string. The number of
strings must be equal to the value of
the Number of Symbols fields. This
table lists all the symbol names in
ascending lexical order.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


7.5. Longnames Member
The name of the longnames member is “\\”. The longnames member is a series of strings
of archive member names. A name appears here only when there is insufficient room in
the Name field (16 bytes). The longnames member can be empty, though its header must
appear.

The strings are null-terminated. Each string begins immediately after the null byte in the
previous string.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


8. Import Library Format
Traditional import libraries, i.e., libraries that describe the exports from one image for use
by another, typically follow the layout described in 7. Archive (Library) File Format. The
primary difference is that import library members contain pseudo-object files instead of
real ones, where each member includes the section contributions needed to build the
Import Tables described in Section 6.4 The .idata Section. The linker generates this
archive while building the exporting application.

The section contributions for an import can be inferred from a small set of information.
The linker can either generate the complete, verbose information into the import library
for each member at the time of the library’s creation, or it can write only the canonical
information to the library and let the application that later uses it generate the necessary
data on-the-fly.

In an import library with the long format, a single member contains the following
information:

Archive member header
File header
Section headers
Data corresponding to each of the section headers
COFF symbol table
Strings

In contrast a short import library is written as follows:

Archive member header
Import header
Null-terminated import name string
Null-terminated DLL name string

This is sufficient information to accurately reconstruct the entire contents of the member
at the time of its use.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


8.1. Import Header
The import header contains the following fields and offsets:

Offset Size Field Description

0 2 Sig1 Must be
IMAGE_FILE_MACHINE_UNKNOWN.
See Section 3.3.1, “Machine Types, ”
for more information.

2 2 Sig2 Must be 0xFFFF.

4 2 Version  

6 2 Machine Number identifying type of target
machine. See Section 3.3.1,
“Machine Types, ” for more
information.

8 4 Time-Date Stamp Time and date the file was created.

12 4 Size Of Data Size of the strings following the
header.

16 2 Ordinal/Hint Either the ordinal or the hint for the
import, determined by the value in
the Name Type field.

18 2 bits Type The import type. See Section 8.2
Import Type for specific values and
descriptions.

  3 bits Name Type The Import Name Type. See Section
8.3. Import Name Type for specific
values and descriptions.

11 bits Reserved Reserved. Must be zero.

This structure is followed by two null-terminated strings describing the imported symbol’s
name, and the DLL from which it came.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


8.2. Import Type
The following values are defined for the Type field in the Import Header:

Constant Value Description

IMPORT_CODE 0 The import is executable code.

IMPORT_DATA 1 The import is data.

IMPORT_CONST 2 The import was specified as CONST in
the .def file.

These values are used to determine which section contributions must be generated by the
tool using the library if it must access that data.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


8.3. Import Name Type
The null-terminated import symbol name immediately follows its associated Import
Header. The following values are defined for the Name Type field in the Import Header,
indicating how the name is to be used to generate the correct symbols representing the
import:

Constant Value Description

IMPORT_ORDINAL 0 The import is by ordinal. This indicates
that the value in the Ordinal/Hint field
of the Import Header is the import’s
ordinal. If this constant is not
specified, then the Ordinal/Hint field
should always be interpreted as the
import’s hint.

IMPORT_NAME 1 The import name is identical to the
public symbol name.

IMPORT_NAME_NOPREFIX 2 The import name is the public symbol
name, but skipping the leading ?, @,
or optionally _.

IMPORT_NAME_UNDECORATE 3 The import name is the public symbol
name, but skipping the leading ?, @,
or optionally _, and truncating at the
first @.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


Appendix: Example Object File
This section describes the PE/COFF object file produced by compiling the file HELLO2.C, which contains the following small
C program:

main()
{
foo();
}

foo()
{
}

The commands used to compile HELLO.C (with debug information) and generate this example were the following (the -Gy
option to the compiler is used, which causes each procedure to be generated as a separate COMDAT section):

cl -c -Zi -Gy hello2.c
link -dump -all hello2.obj >hello2.dmp

Here is the resulting file HELLO2.DMP: (The reader is encouraged to experiment with various other examples, in order to
clarify the concepts described in this specification.)

Dump of file hello2.obj

File Type: COFF OBJECT

FILE HEADER VALUES
     14C machine (i386)
       7 number of sections
3436E157 time date stamp Sat Oct 04 17:37:43 1997
     2A0 file pointer to symbol table
      1E number of symbols
       0 size of optional header
       0 characteristics

SECTION HEADER #1
.drectve name
       0 physical address
       0 virtual address
      26 size of raw data
     12C file pointer to raw data
       0 file pointer to relocation table
       0 file pointer to line numbers
       0 number of relocations
       0 number of line numbers
  100A00 flags
         Info
         Remove
         1 byte align

RAW DATA #1
00000000  2D 64 65 66 61 75 6C 74 | 6C 69 62 3A 4C 49 42 43 -default|lib:LIBC
00000010  20 2D 64 65 66 61 75 6C | 74 6C 69 62 3A 4F 4C 44  -defaul|tlib:OLD
00000020  4E 41 4D 45 53 20                                 NAMES 

   Linker Directives
   -----------------
   -defaultlib:LIBC
   -defaultlib:OLDNAMES

SECTION HEADER #2
.debug$S name
       0 physical address
       0 virtual address
      5C size of raw data
     152 file pointer to raw data



       0 file pointer to relocation table
       0 file pointer to line numbers
       0 number of relocations
       0 number of line numbers
42100048 flags
         No Pad
         Initialized Data
         Discardable
         1 byte align
         Read Only

RAW DATA #2
00000000  02 00 00 00 11 00 09 00 | 00 00 00 00 0A 68 65 6C ........|.....hel
00000010  6C 6F 32 2E 6F 62 6A 43 | 00 01 00 05 00 00 00 3C lo2.objC|.......<
00000020  4D 69 63 72 6F 73 6F 66 | 74 20 28 52 29 20 33 32 Microsof|t (R) 32
00000030  2D 62 69 74 20 43 2F 43 | 2B 2B 20 4F 70 74 69 6D -bit C/C|++ Optim
00000040  69 7A 69 6E 67 20 43 6F | 6D 70 69 6C 65 72 20 56 izing Co|mpiler V
00000050  65 72 73 69 6F 6E 20 31 | 31 2E 30 30             ersion 1|1.00

SECTION HEADER #3
   .text name
       0 physical address
       0 virtual address
       A size of raw data
     1AE file pointer to raw data
     1B8 file pointer to relocation table
     1C2 file pointer to line numbers
       1 number of relocations
       3 number of line numbers
60501020 flags
         Code
         Communal; sym= _main
         16 byte align
         Execute Read

RAW DATA #3
00000000  55 8B EC E8 00 00 00 00 | 5D C3                   U‹ìè....|].

RELOCATIONS #3
                                                Symbol    Symbol
 Offset    Type              Applied To         Index     Name
 --------  ----------------  -----------------  --------  ------
 00000004  REL32                      00000000        13  _foo

LINENUMBERS #3

 Symbol index:        8 Base line number:     2
 Symbol name = _main
 00000003(    3)  00000008(    4)

SECTION HEADER #4
.debug$S name
       0 physical address
       0 virtual address
      30 size of raw data
     1D4 file pointer to raw data
     204 file pointer to relocation table
       0 file pointer to line numbers
       2 number of relocations
       0 number of line numbers
42101048 flags
         No Pad
         Initialized Data
         Communal (no symbol)
         Discardable



         1 byte align
         Read Only

RAW DATA #4
00000000  2A 00 0B 10 00 00 00 00 | 00 00 00 00 00 00 00 00 *.......|........
00000010  0A 00 00 00 03 00 00 00 | 08 00 00 00 01 10 00 00 ........|........
00000020  00 00 00 00 00 00 01 04 | 6D 61 69 6E 02 00 06 00 ........|main....

RELOCATIONS #4
                                                Symbol    Symbol
 Offset    Type              Applied To         Index     Name
 --------  ----------------  -----------------  --------  ------
 00000020  SECREL                     00000000         8  _main
 00000024  SECTION                        0000         8  _main

SECTION HEADER #5
   .text name
       0 physical address
       0 virtual address
       5 size of raw data
     218 file pointer to raw data
       0 file pointer to relocation table
     21D file pointer to line numbers
       0 number of relocations
       2 number of line numbers
60501020 flags
         Code
         Communal; sym= _foo
         16 byte align
         Execute Read

RAW DATA #5
00000000  55 8B EC 5D C3                                    U‹ì].

LINENUMBERS #5

 Symbol index:       13 Base line number:     7
 Symbol name = _foo
 00000003(    8)

SECTION HEADER #6
.debug$S name
       0 physical address
       0 virtual address
      2F size of raw data
     229 file pointer to raw data
     258 file pointer to relocation table
       0 file pointer to line numbers
       2 number of relocations
       0 number of line numbers
42101048 flags
         No Pad
         Initialized Data
         Communal (no symbol)
         Discardable
         1 byte align
         Read Only

RAW DATA #6
00000000  29 00 0B 10 00 00 00 00 | 00 00 00 00 00 00 00 00 ).......|........
00000010  05 00 00 00 03 00 00 00 | 03 00 00 00 01 10 00 00 ........|........
00000020  00 00 00 00 00 00 01 03 | 66 6F 6F 02 00 06 00    ........|foo....

RELOCATIONS #6
                                                Symbol    Symbol



 Offset    Type              Applied To         Index     Name
 --------  ----------------  -----------------  --------  ------
 00000020  SECREL                     00000000        13  _foo
 00000024  SECTION                        0000        13  _foo

SECTION HEADER #7
.debug$T name
       0 physical address
       0 virtual address
      34 size of raw data
     26C file pointer to raw data
       0 file pointer to relocation table
       0 file pointer to line numbers
       0 number of relocations
       0 number of line numbers
42100048 flags
         No Pad
         Initialized Data
         Discardable
         1 byte align
         Read Only

RAW DATA #7
00000000  02 00 00 00 2E 00 16 00 | 33 E1 36 34 01 00 00 00 ........|3á64....
00000010  22 65 3A 5C 62 62 74 5C | 74 6F 6F 6C 73 5C 76 63 "e:\bbt\|tools\vc
00000020  35 30 5C 62 69 6E 5C 78 | 38 36 5C 76 63 35 30 2E 50\bin\x|86\vc50.
00000030  70 64 62 F1                                       pdb.

COFF SYMBOL TABLE
000 00000000 DEBUG  notype       Filename     | .file
    hello2.c
002 00000000 SECT1  notype       Static       | .drectve
    Section length   26, #relocs    0, #linenums    0, checksum        0
004 00000000 SECT2  notype       Static       | .debug$S
    Section length   5C, #relocs    0, #linenums    0, checksum        0
006 00000000 SECT3  notype       Static       | .text
    Section length    A, #relocs    1, #linenums    3, checksum        0, selection   
1 (pick no duplicates)
008 00000000 SECT3  notype ()    External     | _main
    tag index 0000000A size 0000000A lines 000001C2 next function 00000013
00A 00000000 SECT3  notype       BeginFunction | .bf
    line# 0002 end 00000015
00C 00000003 SECT3  notype       .bf or.ef    | .lf
00D 0000000A SECT3  notype       EndFunction  | .ef
    line# 0004
00F 00000000 SECT4  notype       Static       | .debug$S
    Section length   30, #relocs    2, #linenums    0, checksum        0, selection   
5 (pick associative Section 3)
011 00000000 SECT5  notype       Static       | .text
    Section length    5, #relocs    0, #linenums    2, checksum        0, selection   
1 (pick no duplicates)
013 00000000 SECT5  notype ()    External     | _foo
    tag index 00000015 size 00000005 lines 0000021D next function 00000000
015 00000000 SECT5  notype       BeginFunction | .bf
    line# 0007 end 00000000
017 00000002 SECT5  notype       .bf or.ef    | .lf
018 00000005 SECT5  notype       EndFunction  | .ef
    line# 0008
01A 00000000 SECT6  notype       Static       | .debug$S
   Section length   2F, #relocs    2, #linenums    0, checksum        0, selection   
5 (pick associative Section 5)
01C 00000000 SECT7  notype       Static       | .debug$T
    Section length   34, #relocs    0, #linenums    0, checksum        0

String Table Size = 0x0 bytes



     Summary

          BB .debug$S
          34 .debug$T
          26 .drectve
           F .text

Here is a hexadecimal dump of HELLO2.OBJ:

hello2.obj: 
00000000   4c 01 07 00 57 e1 36 34 a0 02 00 00 1e 00 00 00  L...W.64........
00000010   00 00 00 00 2e 64 72 65 63 74 76 65 00 00 00 00  .....drectve....
00000020   00 00 00 00 26 00 00 00 2c 01 00 00 00 00 00 00  ....&...,.......
00000030   00 00 00 00 00 00 00 00 00 0a 10 00 2e 64 65 62  .............deb
00000040   75 67 24 53 00 00 00 00 00 00 00 00 5c 00 00 00  ug$S........\...
00000050   52 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00  R...............
00000060   48 00 10 42 2e 74 65 78 74 00 00 00 00 00 00 00  H..B.text.......
00000070   00 00 00 00 0a 00 00 00 ae 01 00 00 b8 01 00 00  ................
00000080   c2 01 00 00 01 00 03 00 20 10 50 60 2e 64 65 62  ........ .P`.deb
00000090   75 67 24 53 00 00 00 00 00 00 00 00 30 00 00 00  ug$S........0...
000000a0   d4 01 00 00 04 02 00 00 00 00 00 00 02 00 00 00  ................
000000b0   48 10 10 42 2e 74 65 78 74 00 00 00 00 00 00 00  H..B.text.......
000000c0   00 00 00 00 05 00 00 00 18 02 00 00 00 00 00 00  ................
000000d0   1d 02 00 00 00 00 02 00 20 10 50 60 2e 64 65 62  ........ .P`.deb
000000e0   75 67 24 53 00 00 00 00 00 00 00 00 2f 00 00 00  ug$S......../...
000000f0   29 02 00 00 58 02 00 00 00 00 00 00 02 00 00 00  )...X...........
00000100   48 10 10 42 2e 64 65 62 75 67 24 54 00 00 00 00  H..B.debug$T....
00000110   00 00 00 00 34 00 00 00 6c 02 00 00 00 00 00 00  ....4...l.......
00000120   00 00 00 00 00 00 00 00 48 00 10 42 2d 64 65 66  ........H..B-def
00000130   61 75 6c 74 6c 69 62 3a 4c 49 42 43 20 2d 64 65  aultlib:LIBC -de
00000140   66 61 75 6c 74 6c 69 62 3a 4f 4c 44 4e 41 4d 45  faultlib:OLDNAME
00000150   53 20 02 00 00 00 11 00 09 00 00 00 00 00 0a 68  S .............h
00000160   65 6c 6c 6f 32 2e 6f 62 6a 43 00 01 00 05 00 00  ello2.objC......
00000170   00 3c 4d 69 63 72 6f 73 6f 66 74 20 28 52 29 20  .<Microsoft (R) 
00000180   33 32 2d 62 69 74 20 43 2f 43 2b 2b 20 4f 70 74  32-bit C/C++ Opt
00000190   69 6d 69 7a 69 6e 67 20 43 6f 6d 70 69 6c 65 72  imizing Compiler
000001a0   20 56 65 72 73 69 6f 6e 20 31 31 2e 30 30 55 8b   Version 11.00U.
000001b0   ec e8 00 00 00 00 5d c3 04 00 00 00 13 00 00 00  ......].........
000001c0   14 00 08 00 00 00 00 00 03 00 00 00 01 00 08 00  ................
000001d0   00 00 02 00 2a 00 0b 10 00 00 00 00 00 00 00 00  ....*...........
000001e0   00 00 00 00 0a 00 00 00 03 00 00 00 08 00 00 00  ................
000001f0   01 10 00 00 00 00 00 00 00 00 01 04 6d 61 69 6e  ............main
00000200   02 00 06 00 20 00 00 00 08 00 00 00 0b 00 24 00  .... .........$.
00000210   00 00 08 00 00 00 0a 00 55 8b ec 5d c3 13 00 00  ........U..]....
00000220   00 00 00 03 00 00 00 01 00 29 00 0b 10 00 00 00  .........)......
00000230   00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00  ................
00000240   00 03 00 00 00 01 10 00 00 00 00 00 00 00 00 01  ................
00000250   03 66 6f 6f 02 00 06 00 20 00 00 00 13 00 00 00  .foo.... .......
00000260   0b 00 24 00 00 00 13 00 00 00 0a 00 02 00 00 00  ..$.............
00000270   2e 00 16 00 33 e1 36 34 01 00 00 00 22 65 3a 5c  ....3.64...."e:\
00000280   62 62 74 5c 74 6f 6f 6c 73 5c 76 63 35 30 5c 62  bbt\tools\vc50\b
00000290   69 6e 5c 78 38 36 5c 76 63 35 30 2e 70 64 62 f1  in\x86\vc50.pdb.
000002a0   2e 66 69 6c 65 00 00 00 00 00 00 00 fe ff 00 00  .file...........
000002b0   67 01 68 65 6c 6c 6f 32 2e 63 00 00 00 00 00 00  g.hello2.c......
000002c0   00 00 00 00 2e 64 72 65 63 74 76 65 00 00 00 00  .....drectve....
000002d0   01 00 00 00 03 01 26 00 00 00 00 00 00 00 00 00  ......&.........
000002e0   00 00 00 00 00 00 00 00 2e 64 65 62 75 67 24 53  .........debug$S
000002f0   00 00 00 00 02 00 00 00 03 01 5c 00 00 00 00 00  ..........\.....
00000300   00 00 00 00 00 00 00 00 00 00 00 00 2e 74 65 78  .............tex
00000310   74 00 00 00 00 00 00 00 03 00 00 00 03 01 0a 00  t...............
00000320   00 00 01 00 03 00 00 00 00 00 00 00 01 00 00 00  ................
00000330   5f 6d 61 69 6e 00 00 00 00 00 00 00 03 00 20 00  _main......... .
00000340   02 01 0a 00 00 00 0a 00 00 00 c2 01 00 00 13 00  ................
00000350   00 00 00 00 2e 62 66 00 00 00 00 00 00 00 00 00  .....bf.........
00000360   03 00 00 00 65 01 00 00 00 00 02 00 00 00 00 00  ....e...........



00000370   00 00 15 00 00 00 00 00 2e 6c 66 00 00 00 00 00  .........lf.....
00000380   03 00 00 00 03 00 00 00 65 00 2e 65 66 00 00 00  ........e..ef...
00000390   00 00 0a 00 00 00 03 00 00 00 65 01 00 00 00 00  ..........e.....
000003a0   04 00 00 00 00 00 00 00 00 00 00 00 00 00 2e 64  ...............d
000003b0   65 62 75 67 24 53 00 00 00 00 04 00 00 00 03 01  ebug$S..........
000003c0   30 00 00 00 02 00 00 00 00 00 00 00 03 00 05 00  0...............
000003d0   00 00 2e 74 65 78 74 00 00 00 00 00 00 00 05 00  ...text.........
000003e0   00 00 03 01 05 00 00 00 00 00 02 00 00 00 00 00  ................
000003f0   00 00 01 00 00 00 5f 66 6f 6f 00 00 00 00 00 00  ......_foo......
00000400   00 00 05 00 20 00 02 01 15 00 00 00 05 00 00 00  .... ...........
00000410   1d 02 00 00 00 00 00 00 00 00 2e 62 66 00 00 00  ...........bf...
00000420   00 00 00 00 00 00 05 00 00 00 65 01 00 00 00 00  ..........e.....
00000430   07 00 00 00 00 00 00 00 00 00 00 00 00 00 2e 6c  ...............l
00000440   66 00 00 00 00 00 02 00 00 00 05 00 00 00 65 00  f.............e.
00000450   2e 65 66 00 00 00 00 00 05 00 00 00 05 00 00 00  .ef.............
00000460   65 01 00 00 00 00 08 00 00 00 00 00 00 00 00 00  e...............
00000470   00 00 00 00 2e 64 65 62 75 67 24 53 00 00 00 00  .....debug$S....
00000480   06 00 00 00 03 01 2f 00 00 00 02 00 00 00 00 00  ....../.........
00000490   00 00 05 00 05 00 00 00 2e 64 65 62 75 67 24 54  .........debug$T
000004a0   00 00 00 00 07 00 00 00 03 01 34 00 00 00 00 00  ..........4.....
000004b0   00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00  ................

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


Appendix: Calculating Image
Message Digests
Several Attribute Certificates are expected to be used to verify the integrity of the images.
That is, they will be used to ensure that a particular image file, or part of that image file,
has not been altered in any way from its original form. To accomplish this task, these
certificates will typically include something called a Message Digest.

Message digests are similar to a file checksum in that they produce a small value that
relates to the integrity of a file. A checksum is produced by a simple algorithm and its use
is primarily to detect memory failures. That is, it is used to detect whether or not a block
of memory on disk has gone bad and the values stored there have become corrupted. A
message digest is similar to a checksum in that it will also detect file corruption. However,
unlike most checksum algorithms, a message digest also has the property that it is very
difficult to modify a file such that it will have the same message digest as its original
(unmodified) form. That is, a checksum is intended to detect simple memory failures
leading to corruption, but a message digest may be used to detect intentional, and even
crafty modifications to a file, such as those introduced by viruses, hackers, or Trojan
Horse programs.

It is not desirable to include all image file data in the calculation of a message digest. In
some cases it simply presents undesirable characteristics (like the file is no longer
localizable without regenerating certificates) and in other cases it is simply impossible.
For example, it is not possible to include all information within an image file in a message
digest, then insert a certificate containing that message digest in the file, and later be able
to generate an identical message digest by including all image file data in the calculation
again (since the file now contains a certificate that wasn’t originally there).

This specification does not attempt to architect what each Attribute Certificate may be
used for, or which fields or sections of an image file must be included in a message digest.
However, this section does identify which fields you may not want to or may not include
in a message digest.

In addition to knowing which fields are and are not included in the calculation of a
message digest, it is important to know the order in which the contents of the image are
presented to the digest algorithm. This section specifies that order.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm


Fields Not To Include In Digests
There are some parts of an image that you may not want to include in any message digest.
This section identifies those parts, and describes why you might not want to include them
in a message digest.

Information related to Attribute Certificates - It is not possible to include a
certificate in the calculation of a message digest that resides within the certificate.
Since certificates can be added to or removed from an image without effecting the
overall integrity of the image this is not a problem. Therefore, it is best to leave all
attribute certificates out of the image even if there are certificates already in the
image at the time you are calculating your message digest. There is no guarantee
those certificates will still be there later, or that other certificates won’t have been
added. To exclude attribute certificate information from the message digest
calculation, you must exclude the following information from that calculation:

The Certificate Table field of the Optional Header Data Directories.●   

The Certificate Table and corresponding certificates pointed to by the
Certificate Table field listed immediately above.

●   

1.  

Debug information - Debug information may generally be considered advisory (to
debuggers) and does not effect the actual integrity of the executable program. It is
quite literally possible to remove debug information from an image after a product
has been delivered and not effect the functionality of the program. This is, in fact, a
disk saving measure that is sometimes utilized. If you do not want to include debug
information in your message digest, then you should not include the following
information in your message digest calculation:

The Debug entry of the Data Directory in with optional header.●   

The .debug section●   

2.  

File Checksum field of the Windows NT-Specific Fields of the Optional Header -
This checksum includes the entire file (including any attribute certificates included
in the file) and will, in all likelihood, be different after inserting your certificate than
when you were originally calculating a message digest to include in your certificate.

3.  

Unused, or obsolete fields - There are several fields that are either unused or
obsolete. The value of these fields is undefined and may change after you calculate
your message digest. These fields include:

Reserved field of the Optional Header Windows NT-Specific Fields (offset
52).

●   

The DLL Flags field of the Optional Header Windows NT-Specific Fields.
This field is obsolete.

●   

Loader Flags field of the Optional Header Windows NT-Specific Fields. This●   

4.  



field is obsolete.

Reserved entries of the Data Directory in the object header.●   

Resources (makes localization easier) - depending upon the specifics of your
Attribute Certificate, it may be desirable or undesirable to include resources in the
message digest. If you want to allow localization without the generation of new
certificates, then you do not want to include resources in your message digest. If the
values of the resources are critical to your application, then you probably do want
them included in your message digest, and you will accept the overhead of
generating a certificate for each localized copy of the image. If you do not want to
include resources in your message digest, then you should not include the following
information in the message digest calculation:

Resource Table entry of the Optional Header Data Directory.●   

The .rsrc section.●   

5.  

Microsoft, MS, MS-DOS, and CodeView are registered trademarks, and Windows,
Windows NT, Win32, Win32s, and Visual C++ are trademarks of Microsoft Corporation
in the USA and other countries.

Alpha AXP is a trademark of Digital Equipment Corporation.

Intel is a registered trademark, and Intel386 is a trademark of Intel Corporation.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

Unicode is a trademark of Unicode, Incorporated.

UNIX is a registered trademark of UNIX Systems Laboratories.

Send feedback to MSDN. Look here for MSDN Online Resources.

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

mailto:msdn@microsoft.com
http://msdn.microsoft.com/library/welcome/dsmsdn/msdn_dgonline.htm
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/misc/cpyright.htm

	microsoft.com
	Microsoft Portable Executable and Common Object File Format Specification
	1. General Concepts
	2. Overview
	3. File Headers
	3.1. MS-DOS Stub (Image Only)
	3.2. Signature (Image Only)
	3.3. COFF File Header (Object & Image)
	3.4. Optional Header (Usually Image Only)
	4. Section Table (Section Headers)
	4.1. Section Flags
	4.2. Grouped Sections (Object Only)
	5. Other Contents of the File
	5.1. Section Data
	5.2. COFF Relocations (Object Only)
	5.3. COFF Line Numbers
	5.4. COFF Symbol Table
	5.5. Auxiliary Symbol Records
	5.6. COFF String Table
	5.7. The Attribute Certificate Table (Image Only)
	5.8 Delay-Load Import Tables (Image Only)
	6. Special Sections
	6.1. The .debug Section
	6.2. The .drectve Section (Object Only)
	6.3. The .edata Section (Image Only)
	6.4. The .idata Section
	6.5. The .pdata Section
	6.6. The .reloc Section (Image Only)
	6.7. The .tls Section
	6.8. The .rsrc Section
	7. Archive (Library) File Format
	7.1. Archive File Signature
	7.2. Archive Member Headers
	7.3. First Linker Member
	7.4. Second Linker Member
	7.5. Longnames Member
	8. Import Library Format
	8.1. Import Header
	8.2. Import Type
	8.3. Import Name Type
	Appendix: Example Object File
	Appendix: Calculating Image Message Digests
	Fields Not To Include In Digests


