
This will tell gcc to generate the assembly output, foo.s. One can take a look at and modify it

according to one's needs.

7 Conclusion

As we have discussed above, ELF is a very
exible binary format. It provides many useful

functionalities. It puts very few restrictions on programs and programmers. It eases the process

of building shared library and integrates dynamic loading with the shared library via an interface

library to the dynamic linker. Under ELF, global constructors and destructors in C++ can be

treated in shared libraries the same way as in static libraries.

References

[1] Operating System API Reference: UNIX SVR4.2, UNIX Press, 1992.

[2] SunOS 5.3 Linker and Libraries Manual, SunSoft, 1993.

[3] Richard M. Stallman, Using and Porting GNU CC for Version 2.6, Free Software Foun-

dation, September 1994.

[4] Steve Chamberlain and Roland Pesch, Using ld: The GNU linker, ld version 2, Cygnus

Support, January 1994.

23

.global errno

.align 16

syscall:

pushl %ebp

movl %esp,%ebp

pushl %edi

pushl %esi

pushl %ebx

call .LL4

.LL4:

popl %ebx

addl $_GLOBAL_OFFSET_TABLE_+[.- .LL4],%ebx

pushl %ebx

movl 8(%ebp),%eax

movl 12(%ebp),%ebx

movl 16(%ebp),%ecx

movl 20(%ebp),%edx

movl 24(%ebp),%esi

movl 28(%ebp),%edi

int $0x80

popl %ebx

movl %eax,%edx

test %edx,%edx

jge .LLexit

negl %edx

movl errno@GOT(%ebx),%eax

movl %edx,(%eax)

movl $-1,%eax

.LLexit:

popl %ebx

popl %esi

popl %edi

movl %ebp,%esp

popl %ebp

ret

.type syscall,@function

.L_syscall_end:

.size syscall,.L_syscall_end - syscall

Finally, if one wants to program in assembly language for PIC and one is not sure how to do it,

one can always write the C code and then do

gcc -O -fPIC -S foo.c

22

syscall (int syscall_number, ...);

looks like:

.file "syscall.S"

.text

.global syscall

.global errno

.align 16

syscall:

pushl %ebp

movl %esp,%ebp

pushl %edi

pushl %esi

pushl %ebx

movl 8(%ebp),%eax

movl 12(%ebp),%ebx

movl 16(%ebp),%ecx

movl 20(%ebp),%edx

movl 24(%ebp),%esi

movl 28(%ebp),%edi

int $0x80

test %eax,%eax

jge .LLexit

negl %eax

movl %eax,errno

movl $-1,%eax

.LLexit:

popl %ebx

popl %esi

popl %edi

movl %ebp,%esp

popl %ebp

ret

.type syscall,@function

.L_syscall_end:

.size syscall,.L_syscall_end - syscall

Under PIC, we have to access any global variable via the global o�set table in addition to pre-

serving the base register ebx. The modi�ed code is:

.file "syscall.S"

.text

.global syscall

21

return -1;

}

The asm statement above puts the system call number, SYS_read, into eax, fd into ebx, buf

into ecx, count into edx and then puts eax in ret upon return from int $0x80. This de�nition

works �ne without -fPIC. Ideally, with -fPIC gcc should dectect that ebx will be clobbered and

save/restore it around the asm statement. But unfortunately, this is not the case. We have to

support PIC in the asm statement ourselves:

#include <sys/syscall.h>

extern int errno;

int read (int fd, void *buf, size count)

{

long ret;

__asm__ __volatile__ ("pushl %%ebx\n\t"

"movl %%esi,%%ebx\n\t"

"int $0x80\n\t"

"popl %%ebx"

: "=a" (ret)

: "0" (SYS_read), "S" ((long) fd),

"c" ((long) buf) "d" ((long) count): "bx");

if (ret >= 0)

{

return (int) ret;

}

errno = -ret;

return -1;

}

Here we put fd into esi �rst, then we save ebx, move esi into ebx and restore ebx after int

$0x80. This ensures ebx is not changed (except during int $0x80, but we don't care).

The same principle also applies to other inline assembly statements. One has to save and

restore ebx anytime when it may be changed.

6.2 Programming in Assembly Language

If we need to pass �ve arguments in a system call, the inline assembly statement won't work

with PIC since x86 doesn't have enough registers to go around. We need to program in assembly

language directly.

The normal assembly language code for

20

option only works under Linux. But -Wl,-export-dynamic can be used to pass -export-dynamic

to be the GNU linker on other platforms.

You can �nd the detailed descriptions about gcc and GNU link editor in [3] and [4].

6 Programming in Assembly Language with PIC

When one speci�es -fPIC to gcc, gcc will generate the position independent code (PIC) assembly

language code from the C source code. But sometimes one needs to program in assembly language

and support PIC at the same time. This is what happened in the Linux C library.

PIC under ELF is implemented using the base register. All the symbols are referenced via the

base register under PIC and therefore to write assembly language code with PIC, one has to save

the base register. Due to position independent code, the target destinations of control transfer

instructions must be displacements or computed under PIC. For x86-based machines, the base

register is ebx. Here we introduce two ways to write PIC-safe assembly code under x86. These

techniques are used in the Linux C library.

6.1 Inline Assembly Statements in C

gcc provides the inline assembly statement feature to let programmers use assembly language

from C, which was very useful to write the Linux system call interface as well as to use some

machine-dependent instructions not used by gcc.

System calls under Linux are implemented via int $0x80. Typically, the syscall with three

arguments looks like:

#include <sys/syscall.h>

extern int errno;

int read (int fd, void *buf, size count)

{

long ret;

__asm__ __volatile__ ("int $0x80"

: "=a" (ret)

: "0" (SYS_read), "b" ((long) fd),

"c" ((long) buf), "d" ((long) count): "bx");

if (ret >= 0)

{

return (int) ret;

}

errno = -ret;

19

The environmental varialble LD PRELOAD cab be set to a shared library �lename or a string of

�lenames separated by a colon ':'. The dynamic linker will map them into the address space after

the dynamic executable and before any other required shared libraries. For example:

LD_PRELOAD=./mylibc.so myprog

Here ./mylibc.so will be mapped in �rst for the executable myprog. Since the dynamic

linker always uses the �rst occurrence of the required symbol for the symbol search, one can

use LD PRELOAD to override functions in the standard shared library. This feature is useful for

programmers to experiment with a new implementation of a function in a shared library without

rebulding the whole shared library.

5.5.6 Dynamic loading under Linux

There is a function in the dynamic linker interface library, dlinfo. It lists all modules currently

mapped in by the executable and each shared library opened via dlopen. The output may look

like:

List of loaded modules

00000000 50006163 50006200 Exe 1

50007000 5000620c 50006200 Lib 1 /lib/elf/libdl.so.1

5000a000 500062c8 50006200 Lib 2 /lib/elf/libc.so.4

50000000 50006000 00000000 Int 1 /lib/elf/ld-linux.so.1

500aa000 08006f00 08005ff0 Mod 1 ./libfoo.so

Modules for application (50006200):

50006163

5000620c /lib/elf/libdl.so.1

500062c8 /lib/elf/libc.so.4

50006000 /lib/elf/ld-linux.so.1

Modules for handle 8005ff0

08006f00 ./libfoo.so

500062c8 /lib/elf/libc.so.4

50006163

5000620c /lib/elf/libdl.so.1

500062c8 /lib/elf/libc.so.4

50006000 /lib/elf/ld-linux.so.1

It can be used to examine the dynamic linking and dynamic loading.

gcc con�gured for Linux running ELF passes -export-dynamic to the linker if the -rdynamic

option is used. It is highly recommended for any executables which use dynamic loading. That

is the reason why LDFLAGS=-rdynamic was in Makefile in our example. For the time being, this

18

5.5.4 Linking with a mix of shared and static libraries

By default, the linker will link against the shared libraries if they are available. But -Bdynamic

and -Bstatic provides �ner control of which library, shared or static should searched for each

library speci�ed for the linker. The library search option is toggled by each -Bdynamic or

-Bstatic:

ld ... -Bstatic -lfoo -Bdynamic -lbar

This command tells the linker to search the static library for libfoo, and search the shared version

for libbar and any libraries after it until a -Bstatic is seen.

To pass the -Bdynamic and -Bstatic options to the linker, one needs to do

gcc -o main main.o -Wl,-Bstatic -lfoo -Wl,-Bdynamic -lbar

Since the gcc driver calls the linker with some default libraries,

gcc -o main main.o -Wl,-Bstatic

tells the linker to use the static versions for all default libraries like libc and etc.

5.5.5 Loading additional shared libraries

On an ELF system, to execute an ELF executable, the kernel passes the control to the dynamic

linker which is ld-linux.so.1 in case of Linux. The absolute pathname /lib/ld-linux.so.1 is

stored in the binary. If the dynamic linker is not present, no ELF executables will run.

The dynamic linker performs the following actions to �nish the process image for the program:

� Analyzes the executable's dynamic information section and determines what shared libraries

are needed.

� Locates and maps in these shared libraries, and analyzes the their dynamic information

sections to determine what additional shared libraries are requried.

� Performs relocations for the executable and the required shared libraries.

� Calls any initialization functions provided by the required shared libraries and arranges the

cleanup functions provided by the shared libraries to be executed when the shared libraries

are detached from the address space of the program.

� Transfers control to the program.

� Provides the delayed function binding service to the application.

� Provides the dynamic loading service to the application.

17

necessary warnings from the DLL linker sometimes ELF LD LIBRARY PATH is a better choice to

provide additional directories to the ELF dynamic linker under Linux.

Another feature is the /etc/ld.so.conf �le. This �le consists of a list of directories, e.g.:

/lib/elf

/usr/X11R6/lib

/usr/local/lib

/usr/i486-linuxaout/lib

The program ldcon�g will search the directories listed in /etc/ld.so.conf and store all of the

shared libraries which are found in /etc/ld.so.cache. The Linux ELF dynamic linker will �nd

the shared libraries in /etc/ld.so.cache if the shared libraries have been moved from the default

directories.

5.5.3 Library versions for shared libraries

On an ELF system, if two shared libraries have the same subset of an application binary interface

(ABI), those two shared libraries are interchangable for the executables which only use the subet

of the ABI, assuming they have the same functionality.

When a library is changed, as long as the new ABI is 100% compatible with the previous version,

all executables linked with the previous version of the shared library will run �ne with the new

shared library. To support this, the library foo has to be maintained with care:

� A shared library, should be built with

gcc -shared -Wl,-soname,libfoo.so.major \

-o libfoo.so.major.minor.patch-level libfoo.o

Then the dynamic linker will try to locate and map in libfoo.so.major at run time regard-

less the actual shared library �lename libfoo.so.major.minor.patch-level is used at link

time.

� A symbolic link should be provided to point to the correct shared library.

ln -s libfoo.so.major.minor.patch-level libfoo.so.major

� When the ABI is changed to be incompatible with the previous versions, the major version

number should be updated.

While searching for a shared library, the Linux linker will use the latest shared library which has

the highest major, minor and patch level version numbers.

16

5.5.1 ELF macros

In <gnu-stabs.h>, we de�ned a few macros which can be used to manipulate the symbols.

elf alias(name1, name2)

De�nes an alias name2 for the symbol name1. It should be used in the �le where the symbol

name1 is de�ned.

weak alias(name1, name2)

De�nes a weak alias name2 for the symbol name1. The linker will use name1 to resolve the

reference to name2 only if name2 is not de�ned anywhere else. It should also be used in the

�le where the symbol name1 is de�ned.

elf set element(set, symbol)

Forces symbol becomes an element of set. A new section is created for each set.

symbol set declare (set)

Declares set for use in this module. It actually decalres two symbols:

� A symbol for the start of set.

extern void *const __start_set.

� A symbol for the end of set.

extern void *const __stop_set.

symbol set �rst element(set)

Returns a pointer (void *const *) to the �rst element of set.

symbol set end p(set, ptr)

Returns true if and only if ptr (a void *const *) has been incremented past the last element

in set.

Using these macros, programmers can create lists from di�erent sources �le at will.

5.5.2 Library locations and search paths

Under Linux, most of system libraries are installed under /usr/lib. Only a few essential

shared libraries are installed in /lib. Those libraries are libc.so, libcurses.so, libm.so and

libtermcap.so which are necessary for starting up the Linux system before other partitions

are mounted. The default search paths for linker are /lib, /usr/lib, /usr/local/lib and

/usr/i486-linux/lib in this order.

The environment variable LD LIBRARY PATH may hold a list of directories, separated by colons

(:), which is checked by the dynamic linker to search for shared libraries. For example, the

string /usr/X11R6/lib:/usr/local/lib: tells the dynamic linker to search �rst the directory

/usr/X11R6/lib, then /usr/local/lib, and then the current directory to �nd the shared libraries

required in addition to the default directories.

There is a new environment variable ELF LD LIBRARY PATHwhich plays a similar role to LD LIBRARY PATH.

Since LD LIBRARY PATH is also used with the old a.out DLL Linux shared libraries, to avoid un-

15

the dynamic linker to /lib/ld-linker.so.1. That makes both ELF and old a.out DLL shared

libraries coexist without problems.

One interesting feature when one builds a shared library is if one passes an option -lfoo, e.g.:

gcc -shared -o libbar.so libbar.o -lfoo

The side e�ect is that if libfoo.so is used for building the shared library, when libbar.so is

mapped into the address space of a process image, the dynamic linker will also map libfoo.so

into the memory. This feature is very useful if libbar.so needs libfoo.so. One doesn't have to

add -lfoo to link an executable which uses libbar.so. If the archive version libfoo.a is used,

it will only be searched when there are symbols in libfoo.a which are referenced by libbar.o.

Sometimes it is desirable to include libfoo.a in libbar.so even if they are not referenced by

libbar.o at all. In that case, one has to add the .o �les in libbar.o literally by:

rm -rf /tmp/foo

mkdir /tmp/foo

(cd /tmp/foo; ar -x/libfoo.a)

gcc -shared -o libbar.so libbar.o /tmp/foo/*.o

rm -rf /tmp/foo

The .o �les in libfoo.a have to be compiled with -fPIC or at least are compatible with PIC.

When one uses

static void * __libc_subinit_bar__

__attribute__ ((section ("_libc_subinit"))) = &(bar);

to put a symbol into a section which is not de�ned in the linker (in this case it is _libc_subinit,)

the linker will put all the symbols in the _libc_subinit section together and create two special

symbols, __start__libc_subinit and __stop__libc_subinit, which can be used as C identi-

�ers.

A word of caution: It is entirely possible that the linker may not even search the �les

which contain the _libc_subinit section if no symbols in them are needed by the

executable. It is up to the programmer to make sure the _libc_subinit section is

seen by the linker.

One way to do it is to put a dummy symbol in the _libc_subinit section and de�ne it in the

�le which makes references to the _libc_subinit section.

5.5 ELF under Linux

The ELF implementation under Linux has some unique features which are very useful to Linux

users. It is very close to the Solaris ELF implementation [2] with a few Linux's own extentions.

14

The -static option will generate an executable linked with the static libraries. When the -static

option is not used, the linker will �rst try the shared library, then the static library if the shared

version is not available.

There are a few other command line options of the GNU linker which are very useful or speci�c

to ELF.

-dynamic-linker �le

Set the name of the dynamic linker. The default dynamic linker is either /usr/lib/libc.so.1

or /usr/lib/libdl.so.1.

-export-dynamic

Tell the linker to make all global symbols in the executable available to the dynamic linker. It

is especially useful in the dynamic loading when a dynamically loaded shared library makes

references to symbols in the executable which are normally not available to the dynamic

linker.

-l�le

Add �le to the list of �les to link. This option may be used any number of times. ld

will search its path-list for occurrences of lib�le.so, or lib�le.a if the -static option is also

used, for each speci�ed �le. In the former case, the shared library name lib�le.so will be

recorded in the resulting executable or shared library. When the resulting executable or

shared library is loaded into memory, the dynamic linker will also map all of the recorded

shared libraries into the address space of the process image. In the later case, the bodies

of the needed functions and data are copied into the executables, accounting for much code

bloat.

-m emulation

Emulate the emulation linker. One can list the available emulations with the -V option.

-M | -Map map�le

Print, to standard output or the �le map�le, a link map | diagnostic information about

where symbols are mapped by ld, and information on global common storage allocation.

-rpath directory

Add a directory to the run-time library search path. All -rpath arguments are concatenated

and passed to the dynamic linker. They are used to locate shared libraries at run time.

-soname name

When creating an shared library, the speci�ed name is recorded in the shared library. When

an executable linked with this shared library is run, the dynamic linker will attempt to map

the shared library speci�ed by the recorded name instead of the �le name given to the linker.

-static

Tell the linker not to link with any shared libraries. It is only applied to executables.

-verbose

Tell the linker to print out every �le it tries to open.

The beta version of gcc for Linux running ELF uses the -dynamic-linker �le option to set

13

5.3.1 The Initialization Functions in the C library

Another gcc feature is __attribute__ ((section (\sectionname"))). With this, one can put a

function or a data structure in any section.

static void

foo (int argc, char **argv, char **envp)

__attribute__ ((section ("_libc_foo")));

static void

foo (int argc, char **argv, char **envp)

{

}

static void

bar (int argc, char **argv, char **envp)

{

}

static void * __libc_subinit_bar__

__attribute__ ((section ("_libc_subinit"))) = &(bar);

Here we place foo in the _libc_foo section and __libc_subinit_bar__ in the _libc_subinit

section. In the Linux C library _libc_subinit is a special section which contains an array of

function pointers with prototype

void (*) (int argc, char **argv, char **envp);

where argc, argv and envp has the same meaning as in main. Functions in this section will be

called before entering the main function. They are used in the Linux C library to initialize a few

global variables.

5.4 Using ELF with GCC and GNU ld

There are several command line options for gcc and GNU ld which are especially useful to ELF.

The -shared option tells the gcc driver to produce a shared library which can then be linked

with other object �les to form an executable at link time and which also can be mapped into the

address space of the executable at run time. Using -shared is the preferred way to build a shared

ELF library.

Another very useful command line option for gcc is -Wl,ldoption, which passes ldoption as an

option to the linker. If ldoption contains commas, it is split into multiple options at the commas.

12

When a shared library is mapped into the address space, the dynamic linker will execute the

_init function before transferring the control to the program and will arrange for the _fini

function to be executed when the shared library is no longer needed.

The link option -shared for the gcc driver places the necessary auxiliary �les in the right order

and tells the link editor to generate a shared library. The -v option will show what �les and

options are passed to the link editor.

gcc -v -shared -o libbar.so libbar.o

Reading specs from

/usr/lib/gcc-lib/i486-linux/2.6.4-950305/specs

gcc driver version 2.6.4 snapshot 950305 executing gcc version 2.6.4

ld -m elf_i386 -shared -o libbar.so /usr/lib/crti.o

/usr/lib/crtbeginS.o -L/usr/lib/gcc-lib/i486-linux/2.6.4-950305

-L/usr/i486-linux/lib libbar.o /usr/lib/crtendS.o /usr/lib/crtn.o

crtbeginS.o and crtendS.o are the special version compiled with -fPIC. It is very important

that a shared library is always built with gcc -shared since those auxiliary �les also serve other

purposes. We will discuss this in Section 5.3.

5.3 Extended GCC Features

There are many extended features in gcc. Some of them are especially useful in ELF. One of

them is __attribute__. One can place a function on the __CTOR_LIST__ or __DTOR_LIST__

with __attribute__. For example,

static void foo () __attribute__ ((constructor));

static void bar () __attribute__ ((destructor));

static void

foo ()

{

}

static void

bar ()

{

}

The __attribute__ ((constructor)) causes foo to be called automatically before execution

enters main. Similarly, the __attribute__ ((destructor)) causes bar to be executed automat-

ically after main returns or when exit has been called. Both foo and bar must take no arguments

and must be static void functions. Under ELF, this feature works in both normal executables

and shared libraries.

11

5 ELF Support in GCC, GNU Link Editor and Linux

Thanks to Eric Youngdale (eric@aib.com), Ian Lance Taylor (ian@cygnus.com) and many

people working on ELF support in gcc, GNU binary utilities and Linux, we can now use gcc and

GNU binary utilities to build and run ELF executables as well as build shared libraries.

5.1 The Shared C Library

Building a shared library has never been easier under ELF. But we need ELF support in the

compiler, assembler and link editor. First we need to generate position-independent code. Under

gcc, that is done by adding -fPIC to the compiler options:

gcc -fPIC -O -c libbar.c

We now have compiled libbar.o suitable for building the shared library. Next we can generate

the shared library by

gcc -shared -o libbar.so libbar.o

We now have built the shared library libbar.sowhich can be used by the link editor and dynamic

linker. One can add as many relocatable object �les to a shared library as long as they are compiled

with -fPIC. To link baz.o with the shared library you can just do

gcc -O -c baz.c

gcc -o baz baz.o -L. -lbar

After installing libbar.so in the right place where the dynamic linker can �nd it, running baz will

make libbar.so map into the address space of the process image of baz. One copy of libbar.so

in memory will be shared by all executables which are linked with it or which load it dynamically

at run time.

5.2 The Shared C++ Library

The main obstacle in the shared C++ library is how to treat global constructors and destructors.

Under SunOS, building and using a shared C library is almost as easy as under ELF. But one

cannot build a shared C++ library under SunOS because of the special requirements of the

constructors and destructors. The .init and .�ni sections in ELF provide a perfect solution for

the problem.

When building a shared C++ library, we use two special versions of crtbegin.o and crtend.o

which have been compiled with -fPIC. To the link editor, building the shared C++ library is

almost exactly the same as building a normal executable. the global constructors and destructors

are handled by the same .init and .�ni sections we have discussed in Section 3.1.

10

libbar.so: libbar.o

$(CC) $(SHLDFLAGS) -shared -o $@ $^

dltest: dltest.o libbar.so libfoo.so

$(CC) $(LDFLAGS) -o $@ dltest.o -ldl

clean:

$(RM) *.o *.so dltest

Here is the
ow of the program:

export ELF_LD_LIBRARY_PATH=.

dltest

Call `foo' in `libfoo.so':

From dltest: CALLED FROM LIBFOO

libfoo: tseT gnidaoL cimanyD

dltest -f bar

bar: dlsym: `Unable to resolve symbol'

dltest -f bar -l libbare.so

Call `bar' in `libbar.so':

From dltest: CALLED FROM LIBBAR.

libbar: Dynamic Loading Test

dlopen is the �rst function to call in the dynamic loading process which makes a shared library,

libfoo.so, available to a running process. dlopen returns a handle which should be used in sub-

sequent calls to the dlsym and dlclose functions for operation on libfoo.so. Using NULL for the

�lename argument of dlopen has a special meaning | it will make the exported symbols in the

executable and the currently loaded shared libraries available via dlsym.

After a shared library has been loaded into the address space of the running process, dlsym may

be used to obtain the address of an exported symbol in that shared library. One can then access

the function or data through the address returned from dlsym.

dlclose can be called to detach the shared library loaded in via the dlopen call when the shared

library is no longer needed. The shared library will not be removed from the address space of

the calling process if the shared library has been loaded in during startup time or through other

dlopen calls.

dlclose returns 0 if the operation on the shared library is successful. Both dlopen and dlsym will

return NULL in case of any error condition. dlerror can be called in that case to obtain diagnostic

information. More detailed programming information on dlopen/dlsym/dlclose/dlerror can be

found in [1].

9

printf("libbar: %s\n", s);

}

cat libfoo.c

#include <stdio.h>

extern void dltest (const char *s);

const char *const libname = "libfoo.so";

void

foo (const char *s)

{

const char *saved = s;

dltest ("called from libfoo");

printf("libfoo: ");

for (; *s; s++);

for (s--; s >= saved; s--)

{

putchar (*s);

}

putchar ('\n');

}

Make�le is used to build the shared libraries and the main program since libbar.so and libfoo.so

call the function dltest in the main program.

cat Makefile

CC=gcc

LDFLAGS=-rdynamic

SHLDFLAGS=

all: dltest

libfoo.o: libfoo.c

$(CC) -c -fPIC $<

libfoo.so: libfoo.o

$(CC) $(SHLDFLAGS) -shared -o $@ $^

libbar.o: libbar.c

$(CC) -c -fPIC $<

8

handle = dlopen (libname, mode);

if (handle == NULL)

{

fprintf (stderr, "%s: dlopen: `%s'\n", libname, dlerror ());

exit (1);

}

fptr = (func_t) dlsym (handle, funcname);

if (fptr == NULL)

{

fprintf (stderr, "%s: dlsym: `%s'\n", funcname, dlerror ());

exit (1);

}

name = (char **) dlsym (handle, "libname");

if (name == NULL)

{

fprintf (stderr, "%s: dlsym: `libname'\n", dlerror ());

exit (1);

}

printf ("Call `%s' in `%s':\n", funcname, *name);

/* call that function with `param' */

(*fptr) (param);

dlclose (handle);

return 0;

}

There are two shared libraries here, libfoo.so and libbar.so. Each has the same global string

variable, libname, but their own functions, foo and bar, respectively. They are both available to

the program via dlsym.

cat libbar.c

#include <stdio.h>

extern void dltest (const char *);

const char *const libname = "libbar.so";

void bar (const char *s)

{

dltest ("called from libbar.");

7

}

putchar ('\n');

}

main (int argc, char **argv)

{

void *handle;

func_t fptr;

char *libname = "libfoo.so";

char **name = NULL;

char *funcname = "foo";

char *param = "Dynamic Loading Test";

int ch;

int mode = RTLD_LAZY;

while ((ch = getopt (argc, argv, "a:b:f:l:")) != EOF)

{

switch (ch)

{

case 'a': /* argument. */

param = optarg;

break;

case 'b': /* how to bind. */

switch (*optarg)

{

case 'l': /* lazy */

mode = RTLD_LAZY;

break;

case 'n': /* now */

mode = RTLD_NOW;

break;

}

break;

case 'l': /* which shared library. */

libname = optarg;

break;

case 'f': /* which function? */

funcname = optarg;

}

}

6

library and information about the symbols referenced by the executable. At run time

the dynamic linker, a.k.a. the program interpreter in ELF, will map the shared library

into the virtual address space of the process image of the executable and resolve by

name the symbols in the shared library used by the executable. That is process is also

called dynamic linking.

There is nothing special which needs to be done by the programmer to take advantage of shared

libraries with dynamic linking. Everything is transparent to programmers as well as to users.

4.2 Dynamic Loading

Dynamic loading is the process in which one can attach a shared library to the address space of

the process during execution, look up the address of a function in the library, call that function

and then detach the shared library when it is no longer needed. It is implemented as an interface

to the services of the dynamic linker.

Under ELF, the programming interface is usually de�ned in <dlfcn.h>. These are:

void *dlopen (const char * filename, int flag);

const char * dlerror (void);

const void * dlsym (void handle*, const char * symbol);

int dlclose (void * handle);

These functions are contained in libdl.so. Here is an example of how dynamic loading works.

We have a main program which loads in the shared library dynamically at the run time. One can

specify which shared library to use and which function to call. One can also access the data in

the shared library.

cat dltest.c

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <dlfcn.h>

#include <ctype.h>

typedef void (*func_t) (const char *);

void

dltest (const char *s)

{

printf ("From dltest: ");

for (; *s; s++)

{

putchar (toupper (*s));

5

crtn.o

It has only a return instruction each in the .init and .�ni sections.

At compile time while generating the relocatable �les, gcc puts each global constructor on __CTOR_LIST__

by putting a pointer to the constructor function in the .ctors section. It also puts each global

destructor on __DTOR_LIST__ by putting a pointer to the destructor function in the .dtors section.

At link time, the gcc driver places crtbegin.o immediately before all the relocatable �les and

crtend.o immediately after all the relocatable �les. In addition, crti.o was placed before crtbe-

gin.o and crtn.o was placed after crtend.o.

While generating the executable �le, the link editor, ld, concatenates the .ctors sections and

the .dtors sections from all the relocatable �les to form __CTOR_LIST__ and __DTOR_LIST__,

respectively. The .init sections from all the relocatable �les form the _init function and the

.�ni sections form the _fini function.

At run time, the system will execute the _init function before the main function and execute

the _fini function after the main function returns.

4 Dynamic Linking and Dynamic Loading in ELF

4.1 Dynamic Linking

When one uses a C compiler under a Unix system to generate an executable from the C source

code, the C compiler driver will usually invoke a C preprocessor, compiler, assembler and link

editor in that order to translate the C language code into the executable �le.

� The C compiler driver will �rst pass the C source code into a C preprocessor which outputs

the pure C language code with the processed macros and directives,

� The C compiler translates the resultant C language code into machine-dependent assembly

language code.

� The assembler translates the resultant assembly language code into the machine instructions

of the target machine. The resultant machine instructions are stored in an object �le in a

speci�c binary format. In our case, the object �les use the ELF binary format.

� In the last stage, the link editor links all the object �les together with the start up codes

and library functions which are referenced in the program. There are two kinds of libraries

one can use:

{ A static library is a collection of object �les which contain library routines and data. It

is built in such a way that the link editor will incorporate a copy of only those object

�les that hold the functions and data referenced in the program into the executable at

link time.

{ A shared library is a shared object �le that contains functions and data. It is built in

such a way that the link editor will only store in the executable the name of the shared

4

3.1 Global Constructors and Destructors in C++

Global constructors and destructors in C++ have to be handled very carefully to meet the language

speci�cation. Constructors have to be called before the main function. Destructors have to be

executed after it returns. Under ELF, this can be treated gracefully by the compiler. For example,

the GNU C/C++ compiler, gcc, provides two auxiliary start up �les called crtbegin.o and crtend.o,

in addition to two normal auxiliary �les crti.o and crtn.o. Together with the .ctors and .dtors

sections described below, the C++ global constructors and destructors can be executed in the

proper order with minimal run-time overhead.

.ctors

This section holds an array of the global constructor function pointers of a program.

.dtors

This section holds an array of the global destructor function pointers of a program.

crtbegin.o

There are four sections:

� The .ctors section. It has a local symbol, __CTOR_LIST__, which is the head of the

global constructor function pointer array. This array in crtbegin.o only has one dummy

element.

� The .dtors section. It has a local symbol, __DTOR_LIST__, which is the head of the

global destructor function pointer array. This array in crtbegin.o only has only one

dummy element.

� The .text section. It contains only one function, __do_global_dtors_aux, which goes

through __DTOR_LIST__ from the head and calls each destructor function on the list.

� The .�ni section. It contains only a call to __do_global_dtors_aux. Please remember

it has just a function call without return since the .�ni section in crtbegin.o is part

of the body of a function.

crtend.o

There are also four sections:

� The .ctors section. It has a local symbol, __CTOR_END__, which is the label for the tail

of the global constructor function pointer array.

� The .dtors section. It has a local symbol, __DTOR_END__, which is the label for the tail

of the global destructor function pointer array.

� The .text section. It contains only one function, __do_global_ctors_aux, which goes

through __CTOR_LIST__ from the tail and calls each constructor function on the list.

� The .init section. It contains only a function call to __do_global_ctors_aux. Please

remember it has just a function call without return since the .init section in crtend.o

is part of the body of a function.

crti.o

It has only a function label _init in the .init section and a function label _fini in the .�ni

section.

3

� A shared object �le (a.k.a. shared library) contains code and data suitable for the link editor

ld at link time and the dynamic linker at run time. The dynamic linker may be called

ld.so.1, libc.so.1 or ld-linux.so.1, depending on the implementation.

The most useful part of ELF lies in its section structure. With the right tools and techniques,

programmers can manipulate the execution of executables with great
exibility.

3 The .init and .�ni Sections

On an ELF system, a program consists of one executable �le and zero or more shared object �les.

To execute such a program, the system uses those �les to create a process image in memory. A

process image has segments which contain executable instructions, data and so on. For an ELF

�le to be loaded into memory, it has to have a program header which is an array of structures

which describe segments and other information which the system needs to prepare the program

for execution.

A segment consists of sections, which is the most important aspect of ELF from the programmer's

point of view.

Each executable or shared object �le generally contains a section table, which is an array of

structure describing the sections inside the ELF object �le. There are several special sections

de�ned by the ELF documentations which hold program and control information. The following

ones are very useful to programmers.

.�ni

This section holds executable instructions that contribute to the process termination code.

That is, when a program exits normally, the system arranges to execute the code in this

section.

.init

This section holds executable instructions that contribute to the process initialization code.

That is, when a program starts to run the system arranges to execute the code in this section

before the main program entry point (called main in C programs).

The .init and .�ni sections have a special purpose. If a function is placed in the .init section, the

system will execute it before the main function. Also the functions placed in the .�ni section will

be executed by the system after the main function returns. This feature is utilized by compilers

to implement global constructors and destructors in C++.

When an ELF executable is executed, the system will load in all the shared object �les before

transferring control to the executable. With the properly constructed .init and .�ni sections,

constructors and destructors will be called in the right order.

2

ELF: From The Programmer's Perspective

Hongjiu Lu

hjl@nynexst.com

NYNEX Science & Technology, Inc.

500 Westchester Avenue

White Plains, NY 10604, USA

May 17, 1995

Abstract

In this paper, we discuss the new ELF binary format for Linux speci�cally from the view of the

programmer. We introduce some techniques which can be used with ELF to control the execution

of a program at run time. We show how to use dynamic linking and dynamic loading under ELF.

We also demonstrate how to use the GNU C/C++ compiler and binary utilities to create shared

C/C++ libraries under Linux.

1 Introduction

The Executable and Linking Format (ELF) is a binary format originally developed and published

by UNIX System Laboratories (USL). It is the default binary format for the executable �les used

by SVR4 and Solaris 2.x. ELF is more powerful and
exible than the a.out and COFF binary

formats. Combined with appropriate tools, programmers can use ELF to control the
ow of

execution at run time.

2 ELF Types

There are three main types for ELF �les.

� An executable �le contains code and data suitable for execution. It speci�es the memory

layout of the process.

� A relocatable �le contains code and data suitable for linking with other relocatable and shared

object �les.

1

