
I

Executable and Linkable Format (ELF)

Contents

Preface

1 OBJECT FILES
Introduction 1-1
ELF Header 1-3
Sections 1-8
String Table 1-16
Symbol Table 1-17
Relocation 1-21

2 PROGRAM LOADING AND DYNAMIC LINKING
Introduction 2-1
Program Header 2-2
Program Loading 2-7
Dynamic Linking 2-10

3 C LIBRARY
C Library 3-1

I Index
Index I-1

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 i

ELF: Executable and Linkable Format

ii Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Figures and Tables

Figure 1-1: Object File Format 1-1
Figure 1-2: 32-Bit Data Types 1-2
Figure 1-3: ELF Header 1-3
Figure 1-4: e _ i d e n t [] Identification Indexes 1-5
Figure 1-5: Data Encoding E L F D A T A 2 L S B 1-6
Figure 1-6: Data Encoding E L F D A T A 2 M S B 1-6
Figure 1-7: 32-bit Intel Architecture Identification, e _ i d e n t 1-7
Figure 1-8: Special Section Indexes 1-8
Figure 1-9: Section Header 1-9
Figure 1-10: Section Types, s h _ t y p e 1-10
Figure 1-11: Section Header Table Entry: Index 0 1-11
Figure 1-12: Section Attribute Flags, s h _ f l a g s 1-12
Figure 1-13: s h _ l i n k and s h _ i n f o Interpretation 1-13
Figure 1-14: Special Sections 1-13
Figure 1-15: String Table Indexes 1-16
Figure 1-16: Symbol Table Entry 1-17
Figure 1-17: Symbol Binding, E L F 3 2 _ S T _ B I N D 1-18
Figure 1-18: Symbol Types, E L F 3 2 _ S T _ T Y P E 1-19
Figure 1-19: Symbol Table Entry: Index 0 1-20
Figure 1-20: Relocation Entries 1-21
Figure 1-21: Relocatable Fields 1-22
Figure 1-22: Relocation Types 1-23
Figure 2-1: Program Header 2-2
Figure 2-2: Segment Types, p _ t y p e 2-3
Figure 2-3: Note Information 2-4
Figure 2-4: Example Note Segment 2-5
Figure 2-5: Executable File 2-7
Figure 2-6: Program Header Segments 2-7
Figure 2-7: Process Image Segments 2-8
Figure 2-8: Example Shared Object Segment Addresses 2-9
Figure 2-9: Dynamic Structure 2-12
Figure 2-10: Dynamic Array Tags, d _ t a g 2-12
Figure 2-11: Global Offset Table 2-17
Figure 2-12: Absolute Procedure Linkage Table 2-17
Figure 2-13: Position-Independent Procedure Linkage Table 2-18
Figure 2-14: Symbol Hash Table 2-19
Figure 2-15: Hashing Function 2-20
Figure 3-1: l i b c Contents, Names without Synonyms 3-1
Figure 3-2: l i b c Contents, Names with Synonyms 3-1
Figure 3-3: l i b c Contents, Global External Data Symbols 3-2

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 iii

Preface

ELF: Executable and Linking Format

The Executable and Linking Format was originally developed and published by UNIX System Labora-
tories (USL) as part of the Application Binary Interface (ABI). The Tool Interface Standards committee
(TIS) has selected the evolving ELF standard as a portable object file format that works on 32-bit Intel
Architecture environments for a variety of operating systems.

The ELF standard is intended to streamline software development by providing developers with a set of
binary interface definitions that extend across multiple operating environments. This should reduce the
number of different interface implementations, thereby reducing the need for recoding and recompiling
code.

About This Document

This document is intended for developers who are creating object or executable files on various 32-bit
environment operating systems. It is divided into the following three parts:

Part 1, ‘‘Object Files’’ describes the ELF object file format for the three main types of object files.

Part 2, ‘‘Program Loading and Dynamic Linking’’ describes the object file information and system
actions that create running programs.

Part 3, ‘‘C Library’’ lists the symbols contained in l i b s y s, the standard ANSI C and l i b c routines,
and the global data symbols required by the l i b c routines.

NOTE

References to X86 architecture have been changed to Intel Architecture.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1

1 OBJECT FILES

Introduction 1-1
File Format 1-1
Data Representation 1-2

ELF Header 1-3
ELF Identification 1-5
Machine Information 1-7

Sections 1-8
Special Sections 1-13

String Table 1-16

Symbol Table 1-17
Symbol Values 1-20

Relocation 1-21
Relocation Types 1-22

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 i

Introduction

Part 1 describes the iABI object file format, called ELF (Executable and Linking Format). There are three
main types of object files.

A relocatable file holds code and data suitable for linking with other object files to create an execut-
able or a shared object file.

An executable file holds a program suitable for execution; the file specifies how e x e c(BA_OS) creates
a program’s process image.

A shared object file holds code and data suitable for linking in two contexts. First, the link editor [see
l d(SD_CMD)] may process it with other relocatable and shared object files to create another object
file. Second, the dynamic linker combines it with an executable file and other shared objects to
create a process image.

Created by the assembler and link editor, object files are binary representations of programs intended to
execute directly on a processor. Programs that require other abstract machines, such as shell scripts, are
excluded.

After the introductory material, Part 1 focuses on the file format and how it pertains to building pro-
grams. Part 2 also describes parts of the object file, concentrating on the information necessary to execute
a program.

File Format

Object files participate in program linking (building a program) and program execution (running a pro-
gram). For convenience and efficiency, the object file format provides parallel views of a file’s contents,
reflecting the differing needs of these activities. Figure 1-1 shows an object file’s organization.

Figure 1-1: Object File Format

Linking View Execution View_ _____________________ _ ______________________
ELF header ELF header_ _____________________ _ ______________________

Program header table Program header table
optional_ _____________________ _ ______________________

Section 1_ _____________________
. . . Segment 1

_ _____________________ _ ______________________
Section n_ _____________________

. . . Segment 2
_ _____________________ _ ______________________

.
_ _____________________ _ ______________________

Section header table Section header table
optional_ _____________________ _ ______________________

An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s organization. Sec-
tions hold the bulk of object file information for the linking view: instructions, data, symbol table, reloca-
tion information, and so on. Descriptions of special sections appear later in Part 1. Part 2 discusses seg-
ments and the program execution view of the file.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-1

ELF: Executable and Linkable Format

A program header table , if present, tells the system how to create a process image. Files used to build a pro-
cess image (execute a program) must have a program header table; relocatable files do not need one. A
section header table contains information describing the file’s sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, etc. Files used during link-
ing must have a section header table; other object files may or may not have one.

NOTE

Although the figure shows the program header table immediately after the ELF header, and the section
header table following the sections, actual files may differ. Moreover, sections and segments have no
specified order. Only the ELF header has a fixed position in the file.

Data Representation

As described here, the object file format supports various processors with 8-bit bytes and 32-bit architec-
tures. Nevertheless, it is intended to be extensible to larger (or smaller) architectures. Object files there-
fore represent some control data with a machine-independent format, making it possible to identify
object files and interpret their contents in a common way. Remaining data in an object file use the encod-
ing of the target processor, regardless of the machine on which the file was created.

Figure 1-2: 32-Bit Data Types

Name Size Alignment Purpose_ __
E l f 3 2 _ A d d r 4 4 Unsigned program address
E l f 3 2 _ H a l f 2 2 Unsigned medium integer
E l f 3 2 _ O f f 4 4 Unsigned file offset
E l f 3 2 _ S w o r d 4 4 Signed large integer
E l f 3 2 _ W o r d 4 4 Unsigned large integer
u n s i g n e d c h a r 1 1 Unsigned small integer_ __

All data structures that the object file format defines follow the ‘‘natural’’ size and alignment guidelines
for the relevant class. If necessary, data structures contain explicit padding to ensure 4-byte alignment for
4-byte objects, to force structure sizes to a multiple of 4, etc. Data also have suitable alignment from the
beginning of the file. Thus, for example, a structure containing an E l f 3 2 _ A d d r member will be aligned
on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

1-2 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF Header

Some object file control structures can grow, because the ELF header contains their actual sizes. If the
object file format changes, a program may encounter control structures that are larger or smaller than
expected. Programs might therefore ignore ‘‘extra’’ information. The treatment of ‘‘missing’’ informa-
tion depends on context and will be specified when and if extensions are defined.

Figure 1-3: ELF Header

d e f i n e E I _ N I D E N T 1 6

t y p e d e f s t r u c t {
u n s i g n e d c h a r e _ i d e n t [E I _ N I D E N T] ;
E l f 3 2 _ H a l f e _ t y p e ;
E l f 3 2 _ H a l f e _ m a c h i n e ;
E l f 3 2 _ W o r d e _ v e r s i o n ;
E l f 3 2 _ A d d r e _ e n t r y ;
E l f 3 2 _ O f f e _ p h o f f ;
E l f 3 2 _ O f f e _ s h o f f ;
E l f 3 2 _ W o r d e _ f l a g s ;
E l f 3 2 _ H a l f e _ e h s i z e ;
E l f 3 2 _ H a l f e _ p h e n t s i z e ;
E l f 3 2 _ H a l f e _ p h n u m ;
E l f 3 2 _ H a l f e _ s h e n t s i z e ;
E l f 3 2 _ H a l f e _ s h n u m ;
E l f 3 2 _ H a l f e _ s h s t r n d x ;

} E l f 3 2 _ E h d r ;

e_ident The initial bytes mark the file as an object file and provide machine-independent data
with which to decode and interpret the file’s contents. Complete descriptions appear
below, in ‘‘ELF Identification.’’

e_type This member identifies the object file type.

Name Value Meaning_ _______________________________________
ET_NONE 0 No file type
ET_REL 1 Relocatable file
ET_EXEC 2 Executable file
ET_DYN 3 Shared object file
ET_CORE 4 Core file
ET_LOPROC 0xff00 Processor-specific
ET_HIPROC 0xffff Processor-specific_ _______________________________________

Although the core file contents are unspecified, type ET_CORE is reserved to mark the
file. Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for
processor-specific semantics. Other values are reserved and will be assigned to new
object file types as necessary.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-3

ELF: Executable and Linkable Format

e_machine This member’s value specifies the required architecture for an individual file.

Name Value Meaning_ ___________________________________
EM_NONE 0 No machine
EM_M32 1 AT&T WE 32100
EM_SPARC 2 SPARC
EM_386 3 Intel 80386
EM_68K 4 Motorola 68000
EM_88K 5 Motorola 88000
EM_860 7 Intel 80860
EM_MIPS 8 MIPS RS3000_ ___________________________________

Other values are reserved and will be assigned to new machines as necessary.
Processor-specific ELF names use the machine name to distinguish them. For example,
the flags mentioned below use the prefix EF_ ; a flag named WIDGET for the EM_XYZ
machine would be called EF_XYZ_WIDGET .

e_version This member identifies the object file version.

Name Value Meaning_ _____________________________________
EV_NONE 0 Invalid version
EV_CURRENT 1 Current version_ _____________________________________

The value 1 signifies the original file format; extensions will create new versions with
higher numbers. The value of EV_CURRENT , though given as 1 above, will change as
necessary to reflect the current version number.

e_entry This member gives the virtual address to which the system first transfers control, thus
starting the process. If the file has no associated entry point, this member holds zero.

e_phoff This member holds the program header table’s file offset in bytes. If the file has no
program header table, this member holds zero.

e_shoff This member holds the section header table’s file offset in bytes. If the file has no sec-
tion header table, this member holds zero.

e_flags This member holds processor-specific flags associated with the file. Flag names take
the form EF_machine_flag. See ‘‘Machine Information’’ for flag definitions.

e_ehsize This member holds the ELF header’s size in bytes.

e_phentsize This member holds the size in bytes of one entry in the file’s program header table; all
entries are the same size.

e_phnum This member holds the number of entries in the program header table. Thus the pro-
duct of e_phentsize and e_phnum gives the table’s size in bytes. If a file has no pro-
gram header table, e_phnum holds the value zero.

e_shentsize This member holds a section header’s size in bytes. A section header is one entry in
the section header table; all entries are the same size.

e_shnum This member holds the number of entries in the section header table. Thus the product
of e_shentsize and e_shnum gives the section header table’s size in bytes. If a file
has no section header table, e_shnum holds the value zero.

1-4 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

e_shstrndx This member holds the section header table index of the entry associated with the sec-
tion name string table. If the file has no section name string table, this member holds
the value SHN_UNDEF . See ‘‘Sections’’ and ‘‘String Table’’ below for more informa-
tion.

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple processors, multiple data
encodings, and multiple classes of machines. To support this object file family, the initial bytes of the file
specify how to interpret the file, independent of the processor on which the inquiry is made and indepen-
dent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_ident member.

Figure 1-4: e_ident[] Identification Indexes

Name Value Purpose_ __
EI_MAG0 0 File identification
EI_MAG1 1 File identification
EI_MAG2 2 File identification
EI_MAG3 3 File identification
EI_CLASS 4 File class
EI_DATA 5 Data encoding
EI_VERSION 6 File version
EI_PAD 7 Start of padding bytes
EI_NIDENT 16 Size of e_ident[]_ __

These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3
A file’s first 4 bytes hold a ‘‘magic number,’’ identifying the file as an ELF object file.

Name Value Position_ ______________________________________
ELFMAG0 0x7f e_ident[EI_MAG0]
ELFMAG1 ’E’ e_ident[EI_MAG1]
ELFMAG2 ’L’ e_ident[EI_MAG2]
ELFMAG3 ’F’ e_ident[EI_MAG3]_ ______________________________________

EI_CLASS The next byte, e_ident[EI_CLASS] , identifies the file’s class, or capacity.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-5

ELF: Executable and Linkable Format

Name Value Meaning_ _____________________________________
ELFCLASSNONE 0 Invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 64-bit objects_ _____________________________________

The file format is designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. Class ELFCLASS32 supports
machines with files and virtual address spaces up to 4 gigabytes; it uses the basic types
defined above.

Class ELFCLASS64 is reserved for 64-bit architectures. Its appearance here shows how
the object file may change, but the 64-bit format is otherwise unspecified. Other classes
will be defined as necessary, with different basic types and sizes for object file data.

EI_DATA Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data in
the object file. The following encodings are currently defined.

Name Value Meaning_ ___
ELFDATANONE 0 Invalid data encoding
ELFDATA2LSB 1 See below
ELFDATA2MSB 2 See below_ ___

More information on these encodings appears below. Other values are reserved and
will be assigned to new encodings as necessary.

EI_VERSION Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this
value must be EV_CURRENT , as explained above for e_version .

EI_PAD This value marks the beginning of the unused bytes in e_ident . These bytes are
reserved and set to zero; programs that read object files should ignore them. The value
of EI_PAD will change in the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As described above, class
ELFCLASS32 files use objects that occupy 1, 2, and 4 bytes. Under the defined encodings, objects are
represented as shown below. Byte numbers appear in the upper left corners.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least significant byte occupying the
lowest address.

Figure 1-5: Data Encoding ELFDATA2LSB

01
0

0x01

02
0

01
1

0x0102

04
0

03
1

02
2

01
3

0x01020304

1-6 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Encoding ELFDATA2MSB specifies 2’s complement values, with the most significant byte occupying the
lowest address.

Figure 1-6: Data Encoding ELFDATA2MSB

01
0

0x01

01
0

02
1

0x0102

01
0

02
1

03
2

04
3

0x01020304

Machine Information

For file identification in e_ident , the 32-bit Intel Architecture requires the following values.

Figure 1-7: 32-bit Intel Architecture Identification, e_ident

Position Value_ ____________________________________
e_ident[EI_CLASS] ELFCLASS32
e_ident[EI_DATA] ELFDATA2LSB_ ____________________________________

Processor identification resides in the ELF header’s e_machine member and must have the value
EM_386 .

The ELF header’s e_flags member holds bit flags associated with the file. The 32-bit Intel Architecture
defines no flags; so this member contains zero.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-7

Sections

An object file’s section header table lets one locate all the file’s sections. The section header table is an
array of Elf32_Shdr structures as described below. A section header table index is a subscript into this
array. The ELF header’s e_shoff member gives the byte offset from the beginning of the file to the sec-
tion header table; e_shnum tells how many entries the section header table contains; e_shentsize
gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sections for these special
indexes.

Figure 1-8: Special Section Indexes

Name Value_ _________________________
SHN_UNDEF 0
SHN_LORESERVE 0xff00
SHN_LOPROC 0xff00
SHN_HIPROC 0xff1f
SHN_ABS 0xfff1
SHN_COMMON 0xfff2
SHN_HIRESERVE 0xffff_ _________________________

SHN_UNDEF This value marks an undefined, missing, irrelevant, or otherwise meaningless section
reference. For example, a symbol ‘‘defined’’ relative to section number SHN_UNDEF
is an undefined symbol.

NOTE

Although index 0 is reserved as the undefined value, the section header table contains an entry for
index 0. That is, if the e_shnum member of the ELF header says a file has 6 entries in the section
header table, they have the indexes 0 through 5. The contents of the initial entry are specified later in
this section.

SHN_LORESERVE This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC through SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_ABS This value specifies absolute values for the corresponding reference. For example,
symbols defined relative to section number SHN_ABS have absolute values and are
not affected by relocation.

SHN_COMMON Symbols defined relative to this section are common symbols, such as FORTRAN
COMMON or unallocated C external variables.

SHN_HIRESERVE This value specifies the upper bound of the range of reserved indexes. The system
reserves indexes between SHN_LORESERVE and SHN_HIRESERVE , inclusive; the
values do not reference the section header table. That is, the section header table
does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the program header table, and the
section header table. Moreover, object files’ sections satisfy several conditions.

1-8 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Every section in an object file has exactly one section header describing it. Section headers may
exist that do not have a section.

Each section occupies one contiguous (possibly empty) sequence of bytes within a file.

Sections in a file may not overlap. No byte in a file resides in more than one section.

An object file may have inactive space. The various headers and the sections might not ‘‘cover’’
every byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure.

Figure 1-9: Section Header

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d s h _ n a m e ;
E l f 3 2 _ W o r d s h _ t y p e ;
E l f 3 2 _ W o r d s h _ f l a g s ;
E l f 3 2 _ A d d r s h _ a d d r ;
E l f 3 2 _ O f f s h _ o f f s e t ;
E l f 3 2 _ W o r d s h _ s i z e ;
E l f 3 2 _ W o r d s h _ l i n k ;
E l f 3 2 _ W o r d s h _ i n f o ;
E l f 3 2 _ W o r d s h _ a d d r a l i g n ;
E l f 3 2 _ W o r d s h _ e n t s i z e ;

} E l f 3 2 _ S h d r ;

sh_name This member specifies the name of the section. Its value is an index into the section
header string table section [see ‘‘String Table’’ below], giving the location of a null-
terminated string.

sh_type This member categorizes the section’s contents and semantics. Section types and their
descriptions appear below.

sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions
appear below.

sh_addr If the section will appear in the memory image of a process, this member gives the
address at which the section’s first byte should reside. Otherwise, the member con-
tains 0.

sh_offset This member’s value gives the byte offset from the beginning of the file to the first
byte in the section. One section type, SHT_NOBITS described below, occupies no
space in the file, and its sh_offset member locates the conceptual placement in the
file.

sh_size This member gives the section’s size in bytes. Unless the section type is
SHT_NOBITS , the section occupies sh_size bytes in the file. A section of type
SHT_NOBITS may have a non-zero size, but it occupies no space in the file.

sh_link This member holds a section header table index link, whose interpretation depends
on the section type. A table below describes the values.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-9

ELF: Executable and Linkable Format

sh_info This member holds extra information, whose interpretation depends on the section
type. A table below describes the values.

sh_addralign Some sections have address alignment constraints. For example, if a section holds a
doubleword, the system must ensure doubleword alignment for the entire section.
That is, the value of sh_addr must be congruent to 0, modulo the value of
sh_addralign . Currently, only 0 and positive integral powers of two are allowed.
Values 0 and 1 mean the section has no alignment constraints.

sh_entsize Some sections hold a table of fixed-size entries, such as a symbol table. For such a sec-
tion, this member gives the size in bytes of each entry. The member contains 0 if the
section does not hold a table of fixed-size entries.

A section header’s sh_type member specifies the section’s semantics.

Figure 1-10: Section Types, sh_type

Name Value_ _____________________________
SHT_NULL 0
SHT_PROGBITS 1
SHT_SYMTAB 2
SHT_STRTAB 3
SHT_RELA 4
SHT_HASH 5
SHT_DYNAMIC 6
SHT_NOTE 7
SHT_NOBITS 8
SHT_REL 9
SHT_SHLIB 10
SHT_DYNSYM 11
SHT_LOPROC 0x70000000
SHT_HIPROC 0x7fffffff
SHT_LOUSER 0x80000000
SHT_HIUSER 0xffffffff_ _____________________________

SHT_NULL This value marks the section header as inactive; it does not have an associated section.
Other members of the section header have undefined values.

SHT_PROGBITS The section holds information defined by the program, whose format and meaning are
determined solely by the program.

SHT_SYMTAB and SHT_DYNSYM
These sections hold a symbol table. Currently, an object file may have only one sec-
tion of each type, but this restriction may be relaxed in the future. Typically,
SHT_SYMTAB provides symbols for link editing, though it may also be used for
dynamic linking. As a complete symbol table, it may contain many symbols unneces-
sary for dynamic linking. Consequently, an object file may also contain a
SHT_DYNSYM section, which holds a minimal set of dynamic linking symbols, to save
space. See ‘‘Symbol Table’’ below for details.

1-10 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

SHT_STRTAB The section holds a string table. An object file may have multiple string table sections.
See ‘‘String Table’’ below for details.

SHT_RELA The section holds relocation entries with explicit addends, such as type Elf32_Rela
for the 32-bit class of object files. An object file may have multiple relocation sections.
See ‘‘Relocation’’ below for details.

SHT_HASH The section holds a symbol hash table. All objects participating in dynamic linking
must contain a symbol hash table. Currently, an object file may have only one hash
table, but this restriction may be relaxed in the future. See ‘‘Hash Table’’ in Part 2 for
details.

SHT_DYNAMIC The section holds information for dynamic linking. Currently, an object file may have
only one dynamic section, but this restriction may be relaxed in the future. See
‘‘Dynamic Section’’ in Part 2 for details.

SHT_NOTE The section holds information that marks the file in some way. See ‘‘Note Section’’ in
Part 2 for details.

SHT_NOBITS A section of this type occupies no space in the file but otherwise resembles
SHT_PROGBITS . Although this section contains no bytes, the sh_offset member
contains the conceptual file offset.

SHT_REL The section holds relocation entries without explicit addends, such as type
Elf32_Rel for the 32-bit class of object files. An object file may have multiple reloca-
tion sections. See ‘‘Relocation’’ below for details.

SHT_SHLIB This section type is reserved but has unspecified semantics. Programs that contain a
section of this type do not conform to the ABI.

SHT_LOPROC through SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_LOUSER This value specifies the lower bound of the range of indexes reserved for application
programs.

SHT_HIUSER This value specifies the upper bound of the range of indexes reserved for application
programs. Section types between SHT_LOUSER and SHT_HIUSER may be used by
the application, without conflicting with current or future system-defined section
types.

Other section type values are reserved. As mentioned before, the section header for index 0
(SHN_UNDEF) exists, even though the index marks undefined section references. This entry holds the fol-
lowing.

Figure 1-11: Section Header Table Entry: Index 0

Name Value Note_ ___
sh_name 0 No name
sh_type SHT_NULL Inactive
sh_flags 0 No flags
sh_addr 0 No address
sh_offset 0 No file offset
sh_size 0 No size

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-11

ELF: Executable and Linkable Format

Figure 1-11: Section Header Table Entry: Index 0 (continued)

sh_link SHN_UNDEF No link information
sh_info 0 No auxiliary information
sh_addralign 0 No alignment
sh_entsize 0 No entries_ ___

A section header’s sh_flags member holds 1-bit flags that describe the section’s attributes. Defined
values appear below; other values are reserved.

Figure 1-12: Section Attribute Flags, sh_flags

Name Value_ ______________________________
SHF_WRITE 0x1
SHF_ALLOC 0x2
SHF_EXECINSTR 0x4
SHF_MASKPROC 0xf0000000_ ______________________________

If a flag bit is set in sh_flags , the attribute is ‘‘on’’ for the section. Otherwise, the attribute is ‘‘off’’ or
does not apply. Undefined attributes are set to zero.

SHF_WRITE The section contains data that should be writable during process execution.

SHF_ALLOC The section occupies memory during process execution. Some control sections do
not reside in the memory image of an object file; this attribute is off for those sections.

SHF_EXECINSTR The section contains executable machine instructions.

SHF_MASKPROC All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info , hold special information, depending on
section type.

1-12 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Figure 1-13: sh_link and sh_info Interpretation

sh_type sh_link sh_info_ ___
The section header index of
the string table used by
entries in the section.

SHT_DYNAMIC 0

_ ___
The section header index of
the symbol table to which
the hash table applies.

SHT_HASH 0

_ ___
SHT_REL
SHT_RELA

The section header index of
the associated symbol table.

The section header index of
the section to which the
relocation applies._ ___

SHT_SYMTAB
SHT_DYNSYM

The section header index of
the associated string table.

One greater than the sym-
bol table index of the last
local symbol (binding
STB_LOCAL)._ ___

other SHN_UNDEF 0_ ___

Special Sections

Various sections hold program and control information. Sections in the list below are used by the system
and have the indicated types and attributes.

Figure 1-14: Special Sections

Name Type Attributes_ ___
.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE
.comment SHT_PROGBITS none
.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.debug SHT_PROGBITS none
.dynamic SHT_DYNAMIC see below
.dynstr SHT_STRTAB SHF_ALLOC
.dynsym SHT_DYNSYM SHF_ALLOC
.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR
.got SHT_PROGBITS see below
.hash SHT_HASH SHF_ALLOC
.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR
.interp SHT_PROGBITS see below
.line SHT_PROGBITS none
.note SHT_NOTE none
.plt SHT_PROGBITS see below
.relname SHT_REL see below

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-13

ELF: Executable and Linkable Format

Figure 1-14: Special Sections (continued)

.relaname SHT_RELA see below

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR_ ___

.bss This section holds uninitialized data that contribute to the program’s memory image. By
definition, the system initializes the data with zeros when the program begins to run. The
section occupies no file space, as indicated by the section type, SHT_NOBITS .

.comment This section holds version control information.

.data and .data1
These sections hold initialized data that contribute to the program’s memory image.

.debug This section holds information for symbolic debugging. The contents are unspecified.

.dynamic This section holds dynamic linking information. The section’s attributes will include the
SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor specific. See Part 2 for
more information.

.dynstr This section holds strings needed for dynamic linking, most commonly the strings that
represent the names associated with symbol table entries. See Part 2 for more information.

.dynsym This section holds the dynamic linking symbol table, as ‘‘Symbol Table’’ describes. See
Part 2 for more information.

.fini This section holds executable instructions that contribute to the process termination code.
That is, when a program exits normally, the system arranges to execute the code in this
section.

.got This section holds the global offset table. See ‘‘Special Sections’’ in Part 1 and ‘‘Global
Offset Table’’ in Part 2 for more information.

.hash This section holds a symbol hash table. See ‘‘Hash Table’’ in Part 2 for more information.

.init This section holds executable instructions that contribute to the process initialization code.
That is, when a program starts to run, the system arranges to execute the code in this sec-
tion before calling the main program entry point (called main for C programs).

.interp This section holds the path name of a program interpreter. If the file has a loadable seg-
ment that includes the section, the section’s attributes will include the SHF_ALLOC bit; oth-
erwise, that bit will be off. See Part 2 for more information.

.line This section holds line number information for symbolic debugging, which describes the
correspondence between the source program and the machine code. The contents are
unspecified.

1-14 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

.note This section holds information in the format that ‘‘Note Section’’ in Part 2 describes.

.plt This section holds the procedure linkage table. See ‘‘Special Sections’’ in Part 1 and ‘‘Pro-
cedure Linkage Table’’ in Part 2 for more information.

.relname and .relaname
These sections hold relocation information, as ‘‘Relocation’’ below describes. If the file has
a loadable segment that includes relocation, the sections’ attributes will include the
SHF_ALLOC bit; otherwise, that bit will be off. Conventionally, name is supplied by the
section to which the relocations apply. Thus a relocation section for .text normally
would have the name .rel.text or .rela.text .

.rodata and .rodata1
These sections hold read-only data that typically contribute to a non-writable segment in
the process image. See ‘‘Program Header’’ in Part 2 for more information.

.shstrtab This section holds section names.

.strtab This section holds strings, most commonly the strings that represent the names associated
with symbol table entries. If the file has a loadable segment that includes the symbol string
table, the section’s attributes will include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab This section holds a symbol table, as ‘‘Symbol Table’’ in this section describes. If the file
has a loadable segment that includes the symbol table, the section’s attributes will include
the SHF_ALLOC bit; otherwise, that bit will be off.

.text This section holds the ‘‘text,’’ or executable instructions, of a program.

Section names with a dot (.) prefix are reserved for the system, although applications may use these sec-
tions if their existing meanings are satisfactory. Applications may use names without the prefix to avoid
conflicts with system sections. The object file format lets one define sections not in the list above. An
object file may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an abbreviation of the architec-
ture name ahead of the section name. The name should be taken from the architecture names used for
e_machine. For instance .FOO.psect is the psect section defined by the FOO architecture. Existing
extensions are called by their historical names.

Pre-existing Extensions_ _______________________

.sdata .tdesc

.sbss .lit4

.lit8 .reginfo

.gptab .liblist

.conflict

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-15

String Table

String table sections hold null-terminated character sequences, commonly called strings. The object file
uses these strings to represent symbol and section names. One references a string as an index into the
string table section. The first byte, which is index zero, is defined to hold a null character. Likewise, a
string table’s last byte is defined to hold a null character, ensuring null termination for all strings. A
string whose index is zero specifies either no name or a null name, depending on the context. An empty
string table section is permitted; its section header’s sh_size member would contain zero. Non-zero
indexes are invalid for an empty string table.

A section header’s sh_name member holds an index into the section header string table section, as desig-
nated by the e_shstrndx member of the ELF header. The following figures show a string table with 25
bytes and the strings associated with various indexes.

Index + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9__
0 \0 n a m e . \0 V a r__

10 i a b l e \0 a b l e__
20 \0 \0 x x \0__

Figure 1-15: String Table Indexes

Index String_ _________________
0 none
1 name.
7 Variable

11 able
16 able
24 null string_ _________________

As the example shows, a string table index may refer to any byte in the section. A string may appear
more than once; references to substrings may exist; and a single string may be referenced multiple times.
Unreferenced strings also are allowed.

1-16 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a program’s symbolic
definitions and references. A symbol table index is a subscript into this array. Index 0 both designates
the first entry in the table and serves as the undefined symbol index. The contents of the initial entry are
specified later in this section.

Name Value___________________
STN_UNDEF 0___________________

A symbol table entry has the following format.

Figure 1-16: Symbol Table Entry

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d s t _ n a m e ;
E l f 3 2 _ A d d r s t _ v a l u e ;
E l f 3 2 _ W o r d s t _ s i z e ;
u n s i g n e d c h a r s t _ i n f o ;
u n s i g n e d c h a r s t _ o t h e r ;
E l f 3 2 _ H a l f s t _ s h n d x ;

} E l f 3 2 _ S y m ;

st_name This member holds an index into the object file’s symbol string table, which holds the
character representations of the symbol names. If the value is non-zero, it represents a
string table index that gives the symbol name. Otherwise, the symbol table entry has no
name.

NOTE

External C symbols have the same names in C and object files’ symbol tables.

st_value This member gives the value of the associated symbol. Depending on the context, this
may be an absolute value, an address, etc.; details appear below.

st_size Many symbols have associated sizes. For example, a data object’s size is the number of
bytes contained in the object. This member holds 0 if the symbol has no size or an
unknown size.

st_info This member specifies the symbol’s type and binding attributes. A list of the values and
meanings appears below. The following code shows how to manipulate the values.

d e f i n e E L F 3 2 _ S T _ B I N D (i) ((i) > > 4)
d e f i n e E L F 3 2 _ S T _ T Y P E (i) ((i) & 0 x f)
d e f i n e E L F 3 2 _ S T _ I N F O (b , t) (((b) < < 4) + ((t) & 0 x f))

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-17

ELF: Executable and Linkable Format

st_other This member currently holds 0 and has no defined meaning.

st_shndx Every symbol table entry is ‘‘defined’’ in relation to some section; this member holds the
relevant section header table index. As Figure 1-7 and the related text describe, some
section indexes indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Figure 1-17: Symbol Binding, ELF32_ST_BIND

Name Value_ ____________________
STB_LOCAL 0
STB_GLOBAL 1
STB_WEAK 2
STB_LOPROC 13
STB_HIPROC 15_ ____________________

STB_LOCAL Local symbols are not visible outside the object file containing their definition. Local
symbols of the same name may exist in multiple files without interfering with each
other.

STB_GLOBAL Global symbols are visible to all object files being combined. One file’s definition of a
global symbol will satisfy another file’s undefined reference to the same global symbol.

STB_WEAK Weak symbols resemble global symbols, but their definitions have lower precedence.

STB_LOPROC through STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Global and weak symbols differ in two major ways.

When the link editor combines several relocatable object files, it does not allow multiple definitions
of STB_GLOBAL symbols with the same name. On the other hand, if a defined global symbol
exists, the appearance of a weak symbol with the same name will not cause an error. The link edi-
tor honors the global definition and ignores the weak ones. Similarly, if a common symbol exists
(i.e., a symbol whose st_shndx field holds SHN_COMMON), the appearance of a weak symbol with
the same name will not cause an error. The link editor honors the common definition and ignores
the weak ones.

When the link editor searches archive libraries, it extracts archive members that contain definitions
of undefined global symbols. The member’s definition may be either a global or a weak symbol.
The link editor does not extract archive members to resolve undefined weak symbols. Unresolved
weak symbols have a zero value.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and global symbols. As
‘‘Sections’’ above describes, a symbol table section’s sh_info section header member holds the symbol
table index for the first non-local symbol.

1-18 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

A symbol’s type provides a general classification for the associated entity.

Figure 1-18: Symbol Types, ELF32_ST_TYPE

Name Value_ _____________________
STT_NOTYPE 0
STT_OBJECT 1
STT_FUNC 2
STT_SECTION 3
STT_FILE 4
STT_LOPROC 13
STT_HIPROC 15_ _____________________

STT_NOTYPE The symbol’s type is not specified.

STT_OBJECT The symbol is associated with a data object, such as a variable, an array, etc.

STT_FUNC The symbol is associated with a function or other executable code.

STT_SECTION The symbol is associated with a section. Symbol table entries of this type exist pri-
marily for relocation and normally have STB_LOCAL binding.

STT_FILE Conventionally, the symbol’s name gives the name of the source file associated with the
object file. A file symbol has STB_LOCAL binding, its section index is SHN_ABS , and it
precedes the other STB_LOCAL symbols for the file, if it is present.

STT_LOPROC through STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Function symbols (those with type STT_FUNC) in shared object files have special significance. When
another object file references a function from a shared object, the link editor automatically creates a pro-
cedure linkage table entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage table.

If a symbol’s value refers to a specific location within a section, its section index member, st_shndx ,
holds an index into the section header table. As the section moves during relocation, the symbol’s value
changes as well, and references to the symbol continue to ‘‘point’’ to the same location in the program.
Some special section index values give other semantics.

SHN_ABS The symbol has an absolute value that will not change because of relocation.

SHN_COMMON The symbol labels a common block that has not yet been allocated. The symbol’s value
gives alignment constraints, similar to a section’s sh_addralign member. That is, the
link editor will allocate the storage for the symbol at an address that is a multiple of
st_value . The symbol’s size tells how many bytes are required.

SHN_UNDEF This section table index means the symbol is undefined. When the link editor combines
this object file with another that defines the indicated symbol, this file’s references to the
symbol will be linked to the actual definition.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-19

ELF: Executable and Linkable Format

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the following.

Figure 1-19: Symbol Table Entry: Index 0

Name Value Note_ __
st_name 0 No name
st_value 0 Zero value
st_size 0 No size
st_info 0 No type, local binding
st_other 0
st_shndx SHN_UNDEF No section_ __

Symbol Values

Symbol table entries for different object file types have slightly different interpretations for the
st_value member.

In relocatable files, st_value holds alignment constraints for a symbol whose section index is
SHN_COMMON .

In relocatable files, st_value holds a section offset for a defined symbol. That is, st_value is an
offset from the beginning of the section that st_shndx identifies.

In executable and shared object files, st_value holds a virtual address. To make these files’ sym-
bols more useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual
address (memory interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the data allow efficient
access by the appropriate programs.

1-20 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Relocation

Relocation is the process of connecting symbolic references with symbolic definitions. For example, when
a program calls a function, the associated call instruction must transfer control to the proper destination
address at execution. In other words, relocatable files must have information that describes how to
modify their section contents, thus allowing executable and shared object files to hold the right informa-
tion for a process’s program image. Relocation entries are these data.

Figure 1-20: Relocation Entries

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;

} E l f 3 2 _ R e l ;

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;
E l f 3 2 _ S w o r d r _ a d d e n d ;

} E l f 3 2 _ R e l a ;

r_offset This member gives the location at which to apply the relocation action. For a relocatable
file, the value is the byte offset from the beginning of the section to the storage unit affected
by the relocation. For an executable file or a shared object, the value is the virtual address of
the storage unit affected by the relocation.

r_info This member gives both the symbol table index with respect to which the relocation must be
made, and the type of relocation to apply. For example, a call instruction’s relocation entry
would hold the symbol table index of the function being called. If the index is STN_UNDEF ,
the undefined symbol index, the relocation uses 0 as the ‘‘symbol value.’’ Relocation types
are processor-specific. When the text refers to a relocation entry’s relocation type or symbol
table index, it means the result of applying ELF32_R_TYPE or ELF32_R_SYM , respectively,
to the entry’s r_info member.

d e f i n e E L F 3 2 _ R _ S Y M (i) ((i) > > 8)
d e f i n e E L F 3 2 _ R _ T Y P E (i) ((u n s i g n e d c h a r) (i))
d e f i n e E L F 3 2 _ R _ I N F O (s , t) (((s) < < 8) + (u n s i g n e d c h a r) (t))

r_addend This member specifies a constant addend used to compute the value to be stored into the
relocatable field.

As shown above, only Elf32_Rela entries contain an explicit addend. Entries of type Elf32_Rel store
an implicit addend in the location to be modified. Depending on the processor architecture, one form or
the other might be necessary or more convenient. Consequently, an implementation for a particular
machine may use one form exclusively or either form depending on context.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-21

ELF: Executable and Linkable Format

A relocation section references two other sections: a symbol table and a section to modify. The section
header’s sh_info and sh_link members, described in ‘‘Sections’’ above, specify these relationships.
Relocation entries for different object files have slightly different interpretations for the r_offset
member.

In relocatable files, r_offset holds a section offset. That is, the relocation section itself describes
how to modify another section in the file; relocation offsets designate a storage unit within the
second section.

In executable and shared object files, r_offset holds a virtual address. To make these files’ relo-
cation entries more useful for the dynamic linker, the section offset (file interpretation) gives way to
a virtual address (memory interpretation).

Although the interpretation of r_offset changes for different object files to allow efficient access by the
relevant programs, the relocation types’ meanings stay the same.

Relocation Types

Relocation entries describe how to alter the following instruction and data fields (bit numbers appear in
the lower box corners).

Figure 1-21: Relocatable Fields

word32
31 0

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary byte alignment. These values use
the same byte order as other word values in the 32-bit Intel Architecture.

01
3

31
02

2
03

1
04

0

0
0x01020304

Calculations below assume the actions are transforming a relocatable file into either an executable or a
shared object file. Conceptually, the link editor merges one or more relocatable files to form the output.
It first decides how to combine and locate the input files, then updates the symbol values, and finally per-
forms the relocation. Relocations applied to executable or shared object files are similar and accomplish
the same result. Descriptions below use the following notation.

A This means the addend used to compute the value of the relocatable field.

B This means the base address at which a shared object has been loaded into memory during
execution. Generally, a shared object file is built with a 0 base virtual address, but the execu-
tion address will be different.

1-22 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

G This means the offset into the global offset table at which the address of the relocation entry’s
symbol will reside during execution. See ‘‘Global Offset Table’’ in Part 2 for more informa-
tion.

GOT This means the address of the global offset table. See ‘‘Global Offset Table’’ in Part 2 for more
information.

L This means the place (section offset or address) of the procedure linkage table entry for a sym-
bol. A procedure linkage table entry redirects a function call to the proper destination. The
link editor builds the initial procedure linkage table, and the dynamic linker modifies the
entries during execution. See ‘‘Procedure Linkage Table’’ in Part 2 for more information.

P This means the place (section offset or address) of the storage unit being relocated (computed
using r_offset).

S This means the value of the symbol whose index resides in the relocation entry.

A relocation entry’s r_offset value designates the offset or virtual address of the first byte of the
affected storage unit. The relocation type specifies which bits to change and how to calculate their values.
The SYSTEM V architecture uses only Elf32_Rel relocation entries, the field to be relocated holds the
addend. In all cases, the addend and the computed result use the same byte order.

Figure 1-22: Relocation Types

Name Value Field Calculation_ __
R_386_NONE 0 none none
R_386_32 1 word32 S + A
R_386_PC32 2 word32 S + A - P
R_386_GOT32 3 word32 G + A - P
R_386_PLT32 4 word32 L + A - P
R_386_COPY 5 none none
R_386_GLOB_DAT 6 word32 S
R_386_JMP_SLOT 7 word32 S
R_386_RELATIVE 8 word32 B + A
R_386_GOTOFF 9 word32 S + A - GOT
R_386_GOTPC 10 word32 GOT + A - P_ __

Some relocation types have semantics beyond simple calculation.

R_386_GOT32 This relocation type computes the distance from the base of the global offset
table to the symbol’s global offset table entry. It additionally instructs the link
editor to build a global offset table.

R_386_PLT32 This relocation type computes the address of the symbol’s procedure linkage
table entry and additionally instructs the link editor to build a procedure linkage
table.

R_386_COPY The link editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a shared
object. During execution, the dynamic linker copies data associated with the
shared object’s symbol to the location specified by the offset.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-23

ELF: Executable and Linkable Format

R_386_GLOB_DAT This relocation type is used to set a global offset table entry to the address of the
specified symbol. The special relocation type allows one to determine the
correspondence between symbols and global offset table entries.

R_3862_JMP_SLOT The link editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The dynamic
linker modifies the procedure linkage table entry to transfer control to the desig-
nated symbol’s address [see ‘‘Procedure Linkage Table’’ in Part 2].

R_386_RELATIVE The link editor creates this relocation type for dynamic linking. Its offset
member gives a location within a shared object that contains a value represent-
ing a relative address. The dynamic linker computes the corresponding virtual
address by adding the virtual address at which the shared object was loaded to
the relative address. Relocation entries for this type must specify 0 for the sym-
bol table index.

R_386_GOTOFF This relocation type computes the difference between a symbol’s value and the
address of the global offset table. It additionally instructs the link editor to build
the global offset table.

R_386_GOTPC This relocation type resembles R_386_PC32 , except it uses the address of the
global offset table in its calculation. The symbol referenced in this relocation
normally is _GLOBAL_OFFSET_TABLE_ , which additionally instructs the link
editor to build the global offset table.

1-24 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

2 PROGRAM LOADING AND DYNAMIC LINKING

Introduction 2-1

Program Header 2-2
Base Address 2-4
Note Section 2-4

Program Loading 2-7

Dynamic Linking 2-10
Program Interpreter 2-10
Dynamic Linker 2-10
Dynamic Section 2-11
Shared Object Dependencies 2-15
Global Offset Table 2-16
Procedure Linkage Table 2-17
Hash Table 2-19
Initialization and Termination Functions 2-20

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 i

Introduction

Part 2 describes the object file information and system actions that create running programs. Some infor-
mation here applies to all systems; other information is processor-specific.

Executable and shared object files statically represent programs. To execute such programs, the system
uses the files to create dynamic program representations, or process images. A process image has seg-
ments that hold its text, data, stack, and so on. The major sections in this part discuss the following.

Program header. This section complements Part 1, describing object file structures that relate directly
to program execution. The primary data structure, a program header table, locates segment images
within the file and contains other information necessary to create the memory image for the pro-
gram.

Program loading. Given an object file, the system must load it into memory for the program to run.

Dynamic linking. After the system loads the program, it must complete the process image by resolv-
ing symbolic references among the object files that compose the process.

NOTE

There are naming conventions for ELF constants that have specified processor ranges. Names such as
DT_, PT_, for processor-specific extensions, incorporate the name of the processor:
DT_M32_SPECIAL, for example. Pre–existing processor extensions not using this convention will be
supported.

Pre-existing Extensions_ ____________________

D T _ J M P _ R E L

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-1

Program Header

An executable or shared object file’s program header table is an array of structures, each describing a seg-
ment or other information the system needs to prepare the program for execution. An object file segment
contains one or more sections , as ‘‘Segment Contents’’ describes below. Program headers are meaningful
only for executable and shared object files. A file specifies its own program header size with the ELF
header’s e _ p h e n t s i z e and e _ p h n u m members [see ‘‘ELF Header’’ in Part 1].

Figure 2-1: Program Header

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d p _ t y p e ;
E l f 3 2 _ O f f p _ o f f s e t ;
E l f 3 2 _ A d d r p _ v a d d r ;
E l f 3 2 _ A d d r p _ p a d d r ;
E l f 3 2 _ W o r d p _ f i l e s z ;
E l f 3 2 _ W o r d p _ m e m s z ;
E l f 3 2 _ W o r d p _ f l a g s ;
E l f 3 2 _ W o r d p _ a l i g n ;

} E l f 3 2 _ P h d r ;

p_type This member tells what kind of segment this array element describes or how to interpret
the array element’s information. Type values and their meanings appear below.

p_offset This member gives the offset from the beginning of the file at which the first byte of the
segment resides.

p_vaddr This member gives the virtual address at which the first byte of the segment resides in
memory.

p_paddr On systems for which physical addressing is relevant, this member is reserved for the
segment’s physical address. Because System V ignores physical addressing for applica-
tion programs, this member has unspecified contents for executable files and shared
objects.

p_filesz This member gives the number of bytes in the file image of the segment; it may be zero.

p_memsz This member gives the number of bytes in the memory image of the segment; it may be
zero.

p_flags This member gives flags relevant to the segment. Defined flag values appear below.

p_align As ‘‘Program Loading’’ later in this part describes, loadable process segments must have
congruent values for p_vaddr and p_offset , modulo the page size. This member
gives the value to which the segments are aligned in memory and in the file. Values 0
and 1 mean no alignment is required. Otherwise, p_align should be a positive, integral
power of 2, and p_vaddr should equal p_offset , modulo p_align .

Some entries describe process segments; others give supplementary information and do not contribute to
the process image. Segment entries may appear in any order, except as explicitly noted below. Defined
type values follow; other values are reserved for future use.

2-2 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Figure 2-2: Segment Types, p_type

Name Value___________________________
PT_NULL 0
PT_LOAD 1
PT_DYNAMIC 2
PT_INTERP 3
PT_NOTE 4
PT_SHLIB 5
PT_PHDR 6
PT_LOPROC 0x70000000
PT_HIPROC 0x7fffffff___________________________

PT_NULL The array element is unused; other members’ values are undefined. This type lets the
program header table have ignored entries.

PT_LOAD The array element specifies a loadable segment, described by p_filesz and p_memsz .
The bytes from the file are mapped to the beginning of the memory segment. If the
segment’s memory size (p_memsz) is larger than the file size (p_filesz), the ‘‘extra’’
bytes are defined to hold the value 0 and to follow the segment’s initialized area. The file
size may not be larger than the memory size. Loadable segment entries in the program
header table appear in ascending order, sorted on the p_vaddr member.

PT_DYNAMIC The array element specifies dynamic linking information. See ‘‘Dynamic Section’’ below
for more information.

PT_INTERP The array element specifies the location and size of a null-terminated path name to
invoke as an interpreter. This segment type is meaningful only for executable files
(though it may occur for shared objects); it may not occur more than once in a file. If it is
present, it must precede any loadable segment entry. See ‘‘Program Interpreter’’ below
for further information.

PT_NOTE The array element specifies the location and size of auxiliary information. See ‘‘Note Sec-
tion’’ below for details.

PT_SHLIB This segment type is reserved but has unspecified semantics. Programs that contain an
array element of this type do not conform to the ABI.

PT_PHDR The array element, if present, specifies the location and size of the program header table
itself, both in the file and in the memory image of the program. This segment type may
not occur more than once in a file. Moreover, it may occur only if the program header
table is part of the memory image of the program. If it is present, it must precede any
loadable segment entry. See ‘‘Program Interpreter’’ below for further information.

PT_LOPROC through PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-3

ELF: Executable and Linkable Format

NOTE

Unless specifically required elsewhere, all program header segment types are optional. That is, a file’s
program header table may contain only those elements relevant to its contents.

Base Address

Executable and shared object files have a base address , which is the lowest virtual address associated with
the memory image of the program’s object file. One use of the base address is to relocate the memory
image of the program during dynamic linking.

An executable or shared object file’s base address is calculated during execution from three values: the
memory load address, the maximum page size, and the lowest virtual address of a program’s loadable
segment. As ‘‘Program Loading’’
in this chapter describes, the virtual addresses in the program headers might not represent the actual vir-
tual addresses of the program’s memory image. To compute the base address, one determines the
memory address associated with the lowest p_vaddr value for a PT_LOAD segment. One then obtains
the base address by truncating the memory address to the nearest multiple of the maximum page size.
Depending on the kind of file being loaded into memory, the memory address might or might not match
the p_vaddr values.

As ‘‘Sections’’ in Part 1 describes, the .bss section has the type SHT_NOBITS . Although it occupies no
space in the file, it contributes to the segment’s memory image. Normally, these uninitialized data reside
at the end of the segment, thereby making p_memsz larger than p_filesz in the associated program
header element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special information that other
programs will check for conformance, compatibility, etc. Sections of type SHT_NOTE and program
header elements of type PT_NOTE can be used for this purpose. The note information in sections and
program header elements holds any number of entries, each of which is an array of 4-byte words in the
format of the target processor. Labels appear below to help explain note information organization, but
they are not part of the specification.

Figure 2-3: Note Information
_ _________
namesz_ _________
descsz_ _________
type_ _________
name
. . .

_ _________
desc
. . .

_ _________

2-4 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

namesz and name
The first namesz bytes in name contain a null-terminated character representation of the
entry’s owner or originator. There is no formal mechanism for avoiding name conflicts. By
convention, vendors use their own name, such as ‘‘XYZ Computer Company,’’ as the
identifier. If no name is present, namesz contains 0. Padding is present, if necessary, to
ensure 4-byte alignment for the descriptor. Such padding is not included in namesz .

descsz and desc
The first descsz bytes in desc hold the note descriptor. The ABI places no constraints on a
descriptor’s contents. If no descriptor is present, descsz contains 0. Padding is present, if
necessary, to ensure 4-byte alignment for the next note entry. Such padding is not included
in descsz .

type This word gives the interpretation of the descriptor. Each originator controls its own types;
multiple interpretations of a single type value may exist. Thus, a program must recognize
both the name and the type to ‘‘understand’’ a descriptor. Types currently must be non-
negative. The ABI does not define what descriptors mean.

To illustrate, the following note segment holds two entries.

Figure 2-4: Example Note Segment

+0 +1 +2 +3_ _____________________
namesz 7_ _____________________
descsz 0 No descriptor_ _____________________
type 1_ _____________________
name X Y Z_ _____________________

C

o

\0

pad_ ______________________ _____________________
namesz 7_ _____________________
descsz 8_ _____________________
type 3_ _____________________
name X Y Z_ _____________________

C

o

\0

pad_ _____________________
desc word 0_ _____________________

word 1_ _____________________

NOTE

The system reserves note information with no name (namesz= =0) and with a zero-length name
(name[0]= =’\0’) but currently defines no types. All other names must have at least one non-null
character.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-5

ELF: Executable and Linkable Format

NOTE

Note information is optional. The presence of note information does not affect a program’s ABI confor-
mance, provided the information does not affect the program’s execution behavior. Otherwise, the pro-
gram does not conform to the ABI and has undefined behavior.

2-6 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Program Loading

As the system creates or augments a process image, it logically copies a file’s segment to a virtual
memory segment. When—and if—the system physically reads the file depends on the program’s execu-
tion behavior, system load, etc. A process does not require a physical page unless it references the logical
page during execution, and processes commonly leave many pages unreferenced. Therefore delaying
physical reads frequently obviates them, improving system performance. To obtain this efficiency in
practice, executable and shared object files must have segment images whose file offsets and virtual
addresses are congruent, modulo the page size.

Virtual addresses and file offsets for the SYSTEM V architecture segments are congruent modulo 4 KB
(0x1000) or larger powers of 2. Because 4 KB is the maximum page size, the files will be suitable for pag-
ing regardless of physical page size.

Figure 2-5: Executable File

File Offset File Virtual Address_ ___________________
0 ELF header_ ___________________

Program header table _ ___________________
Other information_ ___________________

0x100 Text segment 0x8048100
. . .

0x2be00 bytes 0x8073eff_ ___________________
0x2bf00 Data segment 0x8074f00

. . .
0x4e00 bytes 0x8079cff_ ___________________

0x30d00 Other information
. . .

_ ___________________

Figure 2-6: Program Header Segments

Member Text Data_ ___
p_type PT_LOAD PT_LOAD
p_offset 0x100 0x2bf00
p_vaddr 0x8048100 0x8074f00
p_paddr unspecified unspecified
p_filesz 0x2be00 0x4e00
p_memsz 0x2be00 0x5e24
p_flags PF_R + PF_X PF_R + PF_W + PF_X
p_align 0x1000 0x1000_ ___

Although the example’s file offsets and virtual addresses are congruent modulo 4 KB for both text and
data, up to four file pages hold impure text or data (depending on page size and file system block size).

The first text page contains the ELF header, the program header table, and other information.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-7

ELF: Executable and Linkable Format

The last text page holds a copy of the beginning of data.

The first data page has a copy of the end of text.

The last data page may contain file information not relevant to the running process.

Logically, the system enforces the memory permissions as if each segment were complete and separate;
segments’ addresses are adjusted to ensure each logical page in the address space has a single set of per-
missions. In the example above, the region of the file holding the end of text and the beginning of data
will be mapped twice: at one virtual address for text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data, which the system defines to
begin with zero values. Thus if a file’s last data page includes information not in the logical memory
page, the extraneous data must be set to zero, not the unknown contents of the executable file. ‘‘Impuri-
ties’’ in the other three pages are not logically part of the process image; whether the system expunges
them is unspecified. The memory image for this program follows, assuming 4 KB (0x1000) pages.

Figure 2-7: Process Image Segments

Virtual Address Contents Segment_ ___________________
0x8048000 Header padding

0x100 bytes_ ___________________
0x8048100

Text

Text segment

. . .

0x2be00 bytes_ ___________________
0x8073f00 Data padding

0x100 bytes

_ ___________________

_ ___________________
0x8074000 Text padding

0xf00 bytes_ ___________________
0x8074f00

Data

Data segment

. . .

0x4e00 bytes_ ___________________
0x8079d00 Uninitialized data

0x1024 zero bytes_ ___________________
0x807ad24 Page padding

0x2dc zero bytes_ ___________________

One aspect of segment loading differs between executable files and shared objects. Executable file seg-
ments typically contain absolute code. To let the process execute correctly, the segments must reside at
the virtual addresses used to build the executable file. Thus the system uses the p_vaddr values
unchanged as virtual addresses.

2-8 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

On the other hand, shared object segments typically contain position-independent code. This lets a
segment’s virtual address change from one process to another, without invalidating execution behavior.
Though the system chooses virtual addresses for individual processes, it maintains the segments’ relative
positions . Because position-independent code uses relative addressing between segments, the difference
between virtual addresses in memory must match the difference between virtual addresses in the file.
The following table shows possible shared object virtual address assignments for several processes, illus-
trating constant relative positioning. The table also illustrates the base address computations.

Figure 2-8: Example Shared Object Segment Addresses

Sourc Text Data Base Address_ ___
File 0x200 0x2a400 0x0
Process 1 0x80000200 0x8002a400 0x80000000
Process 2 0x80081200 0x800ab400 0x80081000
Process 3 0x900c0200 0x900ea400 0x900c0000
Process 4 0x900c6200 0x900f0400 0x900c6000_ ___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-9

Dynamic Linking

Program Interpreter

An executable file may have one PT_INTERP program header element. During exec(BA_OS), the sys-
tem retrieves a path name from the PT_INTERP segment and creates the initial process image from the
interpreter file’s segments. That is, instead of using the original executable file’s segment images, the sys-
tem composes a memory image for the interpreter. It then is the interpreter’s responsibility to receive
control from the system and provide an environment for the application program.

The interpreter receives control in one of two ways. First, it may receive a file descriptor to read the exe-
cutable file, positioned at the beginning. It can use this file descriptor to read and/or map the executable
file’s segments into memory. Second, depending on the executable file format, the system may load the
executable file into memory instead of giving the interpreter an open file descriptor. With the possible
exception of the file descriptor, the interpreter’s initial process state matches what the executable file
would have received. The interpreter itself may not require a second interpreter. An interpreter may be
either a shared object or an executable file.

A shared object (the normal case) is loaded as position-independent, with addresses that may vary
from one process to another; the system creates its segments in the dynamic segment area used by
mmap(KE_OS) and related services. Consequently, a shared object interpreter typically will not
conflict with the original executable file’s original segment addresses.

An executable file is loaded at fixed addresses; the system creates its segments using the virtual
addresses from the program header table. Consequently, an executable file interpreter’s virtual
addresses may collide with the first executable file; the interpreter is responsible for resolving
conflicts.

Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program header ele-
ment of type PT_INTERP to an executable file, telling the system to invoke the dynamic linker as the pro-
gram interpreter.

NOTE

The locations of the system provided dynamic linkers are processor–specific.

Exec(BA_OS) and the dynamic linker cooperate to create the process image for the program, which
entails the following actions:

Adding the executable file’s memory segments to the process image;

Adding shared object memory segments to the process image;

Performing relocations for the executable file and its shared objects;

Closing the file descriptor that was used to read the executable file, if one was given to the dynamic
linker;

Transferring control to the program, making it look as if the program had received control directly
from exec(BA_OS).

2-10 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

The link editor also constructs various data that assist the dynamic linker for executable and shared object
files. As shown above in ‘‘Program Header,’’ these data reside in loadable segments, making them avail-
able during execution. (Once again, recall the exact segment contents are processor-specific. See the pro-
cessor supplement for complete information.)

A .dynamic section with type SHT_DYNAMIC holds various data. The structure residing at the
beginning of the section holds the addresses of other dynamic linking information.

The .hash section with type SHT_HASH holds a symbol hash table.

The .got and .plt sections with type SHT_PROGBITS hold two separate tables: the global offset
table and the procedure linkage table. Sections below explain how the dynamic linker uses and
changes the tables to create memory images for object files.

Because every ABI-conforming program imports the basic system services from a shared object library,
the dynamic linker participates in every ABI-conforming program execution.

As ‘‘Program Loading’’ explains in the processor supplement, shared objects may occupy virtual memory
addresses that are different from the addresses recorded in the file’s program header table. The dynamic
linker relocates the memory image, updating absolute addresses before the application gains control.
Although the absolute address values would be correct if the library were loaded at the addresses
specified in the program header table, this normally is not the case.

If the process environment [see exec(BA_OS)] contains a variable named LD_BIND_NOW with a non-null
value, the dynamic linker processes all relocation before transferring control to the program. For exam-
ple, all the following environment entries would specify this behavior.

LD_BIND_NOW=1

LD_BIND_NOW=on

LD_BIND_NOW=off

Otherwise, LD_BIND_NOW either does not occur in the environment or has a null value. The dynamic
linker is permitted to evaluate procedure linkage table entries lazily, thus avoiding symbol resolution and
relocation overhead for functions that are not called. See ‘‘Procedure Linkage Table’’ in this part for more
information.

Dynamic Section

If an object file participates in dynamic linking, its program header table will have an element of type
PT_DYNAMIC . This ‘‘segment’’ contains the .dynamic section. A special symbol, _DYNAMIC , labels the
section, which contains an array of the following structures.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-11

ELF: Executable and Linkable Format

Figure 2-9: Dynamic Structure

t y p e d e f s t r u c t {
E l f 3 2 _ S w o r d d _ t a g ;
u n i o n {

E l f 3 2 _ W o r d d _ v a l ;
E l f 3 2 _ A d d r d _ p t r ;

} d _ u n ;
} E l f 3 2 _ D y n ;

e x t e r n E l f 3 2 _ D y n _ D Y N A M I C [] ;

For each object with this type, d_tag controls the interpretation of d_un .

d_val These Elf32_Word objects represent integer values with various interpretations.

d_ptr These Elf32_Addr objects represent program virtual addresses. As mentioned previously,
a file’s virtual addresses might not match the memory virtual addresses during execution.
When interpreting addresses contained in the dynamic structure, the dynamic linker com-
putes actual addresses, based on the original file value and the memory base address. For
consistency, files do not contain relocation entries to ‘‘correct’’ addresses in the dynamic
structure.

The following table summarizes the tag requirements for executable and shared object files. If a tag is
marked ‘‘mandatory,’’ then the dynamic linking array for an ABI-conforming file must have an entry of
that type. Likewise, ‘‘optional’’ means an entry for the tag may appear but is not required.

Figure 2-10: Dynamic Array Tags, d_tag

Name Value d_un Executable Shared Object_ __
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored ignored optional

2-12 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Figure 2-10: Dynamic Array Tags, d_tag (continued)

Name Value d_un Executable Shared Object_ __
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_LOPROC 0x70000000 unspecified unspecified unspecified
DT_HIPROC 0x7fffffff unspecified unspecified unspecified_ __

DT_NULL An entry with a DT_NULL tag marks the end of the _DYNAMIC array.

DT_NEEDED This element holds the string table offset of a null-terminated string, giving the name of
a needed library. The offset is an index into the table recorded in the DT_STRTAB
entry. See ‘‘Shared Object Dependencies’’ for more information about these names.
The dynamic array may contain multiple entries with this type. These entries’ relative
order is significant, though their relation to entries of other types is not.

DT_PLTRELSZ This element holds the total size, in bytes, of the relocation entries associated with the
procedure linkage table. If an entry of type DT_JMPREL is present, a DT_PLTRELSZ
must accompany it.

DT_PLTGOT This element holds an address associated with the procedure linkage table and/or the
global offset table. See this section in the processor supplement for details.

DT_HASH This element holds the address of the symbol hash table, described in ‘‘Hash Table.’’
This hash table refers to the symbol table referenced by the DT_SYMTAB element.

DT_STRTAB This element holds the address of the string table, described in Part 1. Symbol names,
library names, and other strings reside in this table.

DT_SYMTAB This element holds the address of the symbol table, described in Part 1, with
Elf32_Sym entries for the 32-bit class of files.

DT_RELA This element holds the address of a relocation table, described in Part 1. Entries in the
table have explicit addends, such as Elf32_Rela for the 32-bit file class. An object file
may have multiple relocation sections. When building the relocation table for an exe-
cutable or shared object file, the link editor catenates those sections to form a single
table. Although the sections remain independent in the object file, the dynamic linker
sees a single table. When the dynamic linker creates the process image for an execut-
able file or adds a shared object to the process image, it reads the relocation table and
performs the associated actions. If this element is present, the dynamic structure must
also have DT_RELASZ and DT_RELAENT elements. When relocation is ‘‘mandatory’’
for a file, either DT_RELA or DT_REL may occur (both are permitted but not required).

DT_RELASZ This element holds the total size, in bytes, of the DT_RELA relocation table.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-13

ELF: Executable and Linkable Format

DT_RELAENT This element holds the size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ This element holds the size, in bytes, of the string table.

DT_SYMENT This element holds the size, in bytes, of a symbol table entry.

DT_INIT This element holds the address of the initialization function, discussed in ‘‘Initialization
and Termination Functions’’ below.

DT_FINI This element holds the address of the termination function, discussed in ‘‘Initialization
and Termination Functions’’ below.

DT_SONAME This element holds the string table offset of a null-terminated string, giving the name of
the shared object. The offset is an index into the table recorded in the DT_STRTAB
entry. See ‘‘Shared Object Dependencies’’ below for more information about these
names.

DT_RPATH This element holds the string table offset of a null-terminated search library search path
string, discussed in ‘‘Shared Object Dependencies.’’ The offset is an index into the table
recorded in the DT_STRTAB entry.

DT_SYMBOLIC This element’s presence in a shared object library alters the dynamic linker’s symbol
resolution algorithm for references within the library. Instead of starting a symbol
search with the executable file, the dynamic linker starts from the shared object itself. If
the shared object fails to supply the referenced symbol, the dynamic linker then
searches the executable file and other shared objects as usual.

DT_REL This element is similar to DT_RELA , except its table has implicit addends, such as
Elf32_Rel for the 32-bit file class. If this element is present, the dynamic structure
must also have DT_RELSZ and DT_RELENT elements.

DT_RELSZ This element holds the total size, in bytes, of the DT_REL relocation table.

DT_RELENT This element holds the size, in bytes, of the DT_REL relocation entry.

DT_PLTREL This member specifies the type of relocation entry to which the procedure linkage table
refers. The d_val member holds DT_REL or DT_RELA , as appropriate. All relocations
in a procedure linkage table must use the same relocation.

DT_DEBUG This member is used for debugging. Its contents are not specified for the ABI; pro-
grams that access this entry are not ABI-conforming.

DT_TEXTREL This member’s absence signifies that no relocation entry should cause a modification to
a non-writable segment, as specified by the segment permissions in the program header
table. If this member is present, one or more relocation entries might request
modifications to a non-writable segment, and the dynamic linker can prepare accord-
ingly.

DT_JMPREL If present, this entries’s d_ptr member holds the address of relocation entries associ-
ated solely with the procedure linkage table. Separating these relocation entries lets the
dynamic linker ignore them during process initialization, if lazy binding is enabled. If
this entry is present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
also be present.

DT_LOPROC through DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

2-14 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Except for the DT_NULL element at the end of the array, and the relative order of DT_NEEDED elements,
entries may appear in any order. Tag values not appearing in the table are reserved.

Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and copies them into the
output object file. These statically linked services are available during execution without involving the
dynamic linker. Shared objects also provide services, and the dynamic linker must attach the proper
shared object files to the process image for execution. Thus executable and shared object files describe
their specific dependencies.

When the dynamic linker creates the memory segments for an object file, the dependencies (recorded in
DT_NEEDED entries of the dynamic structure) tell what shared objects are needed to supply the
program’s services. By repeatedly connecting referenced shared objects and their dependencies, the
dynamic linker builds a complete process image. When resolving symbolic references, the dynamic
linker examines the symbol tables with a breadth-first search. That is, it first looks at the symbol table of
the executable program itself, then at the symbol tables of the DT_NEEDED entries (in order), then at the
second level DT_NEEDED entries, and so on. Shared object files must be readable by the process; other
permissions are not required.

NOTE

Even when a shared object is referenced multiple times in the dependency list, the dynamic linker will
connect the object only once to the process.

Names in the dependency list are copies either of the DT_SONAME strings or the path names of the shared
objects used to build the object file. For example, if the link editor builds an executable file using one
shared object with a DT_SONAME entry of lib1 and another shared object library with the path name
/usr/lib/lib2 , the executable file will contain lib1 and /usr/lib/lib2 in its dependency list.

If a shared object name has one or more slash (/) characters anywhere in the name, such as
/usr/lib/lib2 above or directory/file , the dynamic linker uses that string directly as the path
name. If the name has no slashes, such as lib1 above, three facilities specify shared object path search-
ing, with the following precedence.

First, the dynamic array tag DT_RPATH may give a string that holds a list of directories, separated
by colons (:). For example, the string /home/dir/lib:/home/dir2/lib: tells the dynamic
linker to search first the directory /home/dir/lib , then /home/dir2/lib , and then the current
directory to find dependencies.

Second, a variable called LD_LIBRARY_PATH in the process environment [see exec(BA_OS)] may
hold a list of directories as above, optionally followed by a semicolon (;) and another directory list.
The following values would be equivalent to the previous example:

LD_LIBRARY_PATH=/home/dir/lib:/home/dir2/lib:

LD_LIBRARY_PATH=/home/dir/lib;/home/dir2/lib:

LD_LIBRARY_PATH=/home/dir/lib:/home/dir2/lib:;

All LD_LIBRARY_PATH directories are searched after those from DT_RPATH . Although some pro-
grams (such as the link editor) treat the lists before and after the semicolon differently, the dynamic
linker does not. Nevertheless, the dynamic linker accepts the semicolon notation, with the

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-15

ELF: Executable and Linkable Format

semantics described above.

Finally, if the other two groups of directories fail to locate the desired library, the dynamic linker
searches /usr/lib .

NOTE

For security, the dynamic linker ignores environmental search specifications (such as
LD_LIBRARY_PATH) for set-user and set-group ID programs. It does, however, search DT_RPATH
directories and /usr/lib.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses. Global offset tables
hold absolute addresses in private data, thus making the addresses available without compromising the
position-independence and sharability of a program’s text. A program references its global offset table
using position-independent addressing and extracts absolute values, thus redirecting position-
independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation entries [see ‘‘Relocation’’ in
Part 1]. After the system creates memory segments for a loadable object file, the dynamic linker processes
the relocation entries, some of which will be type R_386_GLOB_DAT referring to the global offset table.
The dynamic linker determines the associated symbol values, calculates their absolute addresses, and sets
the appropriate memory table entries to the proper values. Although the absolute addresses are
unknown when the link editor builds an object file, the dynamic linker knows the addresses of all
memory segments and can thus calculate the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will have a global
offset table entry. Because the executable file and shared objects have separate global offset tables, a
symbol’s address may appear in several tables. The dynamic linker processes all the global offset table
relocations before giving control to any code in the process image, thus ensuring the absolute addresses
are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure, referenced with the sym-
bol _DYNAMIC . This allows a program, such as the dynamic linker, to find its own dynamic structure
without having yet processed its relocation entries. This is especially important for the dynamic linker,
because it must initialize itself without relying on other programs to relocate its memory image. On the
32-bit Intel Architecture, entries one and two in the global offset table also are reserved. ‘‘Procedure
Linkage Table’’ below describes them.

The system may choose different memory segment addresses for the same shared object in different pro-
grams; it may even choose different library addresses for different executions of the same program.
Nonetheless, memory segments do not change addresses once the process image is established. As long
as a process exists, its memory segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor-specific. For the 32-bit Intel Architecture,
the symbol _GLOBAL_OFFSET_TABLE_ may be used to access the table.

2-16 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Figure 2-11: Global Offset Table

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got section, allowing both
negative and non-negative ‘‘subscripts’’ into the array of addresses.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations to absolute locations,
the procedure linkage table redirects position-independent function calls to absolute locations. The link
editor cannot resolve execution transfers (such as function calls) from one executable or shared object to
another. Consequently, the link editor arranges to have the program transfer control to entries in the pro-
cedure linkage table. On the SYSTEM V architecture, procedure linkage tables reside in shared text, but
they use addresses in the private global offset table. The dynamic linker determines the destinations’
absolute addresses and modifies the global offset table’s memory image accordingly. The dynamic linker
thus can redirect the entries without compromising the position-independence and sharability of the
program’s text. Executable files and shared object files have separate procedure linkage tables.

Figure 2-12: Absolute Procedure Linkage Table

.PLT0:pushl got_plus_4
jmp *got_plus_8
nop; nop
nop; nop

.PLT1:jmp *name1_in_GOT
pushl $offset@PC

.PLT2:jmp *name2_in_GOT
push $offset
jmp .PLT0@PC
...

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-17

ELF: Executable and Linkable Format

Figure 2-13: Position-Independent Procedure Linkage Table

.PLT0:pushl 4(%ebx)
jmp *8(%ebx)
nop; nop
nop; nop

.PLT1:jmp *name1@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

.PLT2:jmp *name2@GOT(%ebx)
pushl $offset
jmp .PLT0@PC
...

NOTE

As the figures show, the procedure linkage table instructions use different operand addressing modes
for absolute code and for position-independent code. Nonetheless, their interfaces to the dynamic linker
are the same.

Following the steps below, the dynamic linker and the program ‘‘cooperate’’ to resolve symbolic refer-
ences through the procedure linkage table and the global offset table.

1 . When first creating the memory image of the program, the dynamic linker sets the second and the
third entries in the global offset table to special values. Steps below explain more about these
values.

2 . If the procedure linkage table is position-independent, the address of the global offset table must
reside in %ebx . Each shared object file in the process image has its own procedure linkage table,
and control transfers to a procedure linkage table entry only from within the same object file. Con-
sequently, the calling function is responsible for setting the global offset table base register before
calling the procedure linkage table entry.

3 . For illustration, assume the program calls name1 , which transfers control to the label .PLT1 .

4 . The first instruction jumps to the address in the global offset table entry for name1 . Initially, the
global offset table holds the address of the following pushl instruction, not the real address of
name1 .

5 . Consequently, the program pushes a relocation offset (offset) on the stack. The relocation offset is a
32-bit, non-negative byte offset into the relocation table. The designated relocation entry will have
type R_386_JMP_SLOT , and its offset will specify the global offset table entry used in the previous
jmp instruction. The relocation entry also contains a symbol table index, thus telling the dynamic
linker what symbol is being referenced, name1 in this case.

6 . After pushing the relocation offset, the program then jumps to .PLT0 , the first entry in the pro-
cedure linkage table. The pushl instruction places the value of the second global offset table entry
(got_plus_4 or 4(%ebx)) on the stack, thus giving the dynamic linker one word of identifying
information. The program then jumps to the address in the third global offset table entry

2-18 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

(got_plus_8 or 8(%ebx)), which transfers control to the dynamic linker.

7 . When the dynamic linker receives control, it unwinds the stack, looks at the designated relocation
entry, finds the symbol’s value, stores the ‘‘real’’ address for name1 in its global offset table entry,
and transfers control to the desired destination.

8 . Subsequent executions of the procedure linkage table entry will transfer directly to name1 , without
calling the dynamic linker a second time. That is, the jmp instruction at .PLT1 will transfer to
name1 , instead of ‘‘falling through’’ to the pushl instruction.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is non-null,
the dynamic linker evaluates procedure linkage table entries before transferring control to the program.
That is, the dynamic linker processes relocation entries of type R_386_JMP_SLOT during process initiali-
zation. Otherwise, the dynamic linker evaluates procedure linkage table entries lazily, delaying symbol
resolution and relocation until the first execution of a table entry.

NOTE

Lazy binding generally improves overall application performance, because unused symbols do not incur
the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable for some
applications. First, the initial reference to a shared object function takes longer than subsequent calls,
because the dynamic linker intercepts the call to resolve the symbol. Some applications cannot tolerate
this unpredictability. Second, if an error occurs and the dynamic linker cannot resolve the symbol, the
dynamic linker will terminate the program. Under lazy binding, this might occur at arbitrary times. Once
again, some applications cannot tolerate this unpredictability. By turning off lazy binding, the dynamic
linker forces the failure to occur during process initialization, before the application receives control.

Hash Table

A hash table of Elf32_Word objects supports symbol table access. Labels appear below to help explain
the hash table organization, but they are not part of the specification.

Figure 2-14: Symbol Hash Table
_ _______________________

nbucket_ _______________________
nchain_ _______________________

bucket[0]
. . .

bucket[nbucket - 1]_ _______________________
chain[0]
. . .

chain[nchain - 1]_ _______________________

The bucket array contains nbucket entries, and the chain array contains nchain entries; indexes
start at 0. Both bucket and chain hold symbol table indexes. Chain table entries parallel the symbol
table. The number of symbol table entries should equal nchain ; so symbol table indexes also select
chain table entries. A hashing function (shown below) accepts a symbol name and returns a value that
may be used to compute a bucket index. Consequently, if the hashing function returns the value x for
some name, bucket[x%nbucket] gives an index, y , into both the symbol table and the chain table. If
the symbol table entry is not the one desired, chain[y] gives the next symbol table entry with the same
hash value. One can follow the chain links until either the selected symbol table entry holds the desired

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2-19

ELF: Executable and Linkable Format

name or the chain entry contains the value STN_UNDEF .

Figure 2-15: Hashing Function

u n s i g n e d l o n g
e l f _ h a s h (c o n s t u n s i g n e d c h a r * n a m e)
{

u n s i g n e d l o n g h = 0 , g ;

w h i l e (* n a m e)
{

h = (h < < 4) + * n a m e + + ;
i f (g = h & 0 x f 0 0 0 0 0 0 0)

h ̂ = g > > 2 4 ;
h & = ~ g ;

}
r e t u r n h ;

}

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the relocations, each shared object
gets the opportunity to execute some initialization code. These initialization functions are called in no
specified order, but all shared object initializations happen before the executable file gains control.

Similarly, shared objects may have termination functions, which are executed with the atexit(BA_OS)
mechanism after the base process begins its termination sequence. Once again, the order in which the
dynamic linker calls termination functions is unspecified.

Shared objects designate their initialization and termination functions through the DT_INIT and
DT_FINI entries in the dynamic structure, described in ‘‘Dynamic Section’’ above. Typically, the code
for these functions resides in the .init and .fini sections, mentioned in ‘‘Sections’’ of Part 1.

NOTE

Although the atexit(BA_OS) termination processing normally will be done, it is not guaranteed to
have executed upon process death. In particular, the process will not execute the termination process-
ing if it calls _exit [see exit(BA_OS)] or if the process dies because it received a signal that it nei-
ther caught nor ignored.

2-20 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

3 C LIBRARY

C Library 3-1
Global Data Symbols 3-2

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 i

C Library

The C library, l i b c, contains all of the symbols contained in l i b s y s, and, in addition, contains the rou-
tines listed in the following two tables. The first table lists routines from the ANSI C standard.

Figure 3-1: l i b c Contents, Names without Synonyms

a b o r t f p u t c i s p r i n t p u t c s t r n c m p
a b s f p u t s i s p u n c t p u t c h a r s t r n c p y
a s c t i m e f r e a d i s s p a c e p u t s s t r p b r k
a t o f f r e o p e n i s u p p e r q s o r t s t r r c h r
a t o i f r e x p i s x d i g i t r a i s e s t r s p n
a t o l f s c a n f l a b s r a n d s t r s t r
b s e a r c h f s e e k l d e x p r e w i n d s t r t o d
c l e a r e r r f s e t p o s l d i v s c a n f s t r t o k
c l o c k f t e l l l o c a l t i m e s e t b u f s t r t o l
c t i m e f w r i t e l o n g j m p s e t j m p s t r t o u l
d i f f t i m e g e t c m b l e n s e t v b u f t m p f i l e
d i v g e t c h a r m b s t o w c s s p r i n t f t m p n a m
f c l o s e g e t e n v m b t o w c s r a n d t o l o w e r
f e o f g e t s m e m c h r s s c a n f t o u p p e r
f e r r o r g m t i m e m e m c m p s t r c a t u n g e t c
f f l u s h i s a l n u m m e m c p y s t r c h r v f p r i n t f
f g e t c i s a l p h a m e m m o v e s t r c m p v p r i n t f
f g e t p o s i s c n t r l m e m s e t s t r c p y v s p r i n t f
f g e t s i s d i g i t m k t i m e s t r c s p n w c s t o m b s
f o p e n i s g r a p h p e r r o r s t r l e n w c t o m b
f p r i n t f i s l o w e r p r i n t f s t r n c a t

Additionally, l i b c holds the following services.

Figure 3-2: l i b c Contents, Names with Synonyms

_ _ a s s e r t g e t d a t e l o c k f † s l e e p t e l l †
c f g e t i s p e e d g e t o p t l s e a r c h s t r d u p t e m p n a m
c f g e t o s p e e d g e t p a s s m e m c c p y s w a b t f i n d
c f s e t i s p e e d g e t s u b o p t m k f i f o t c d r a i n t o a s c i i
c f s e t o s p e e d g e t w m k t e m p t c f l o w _ t o l o w e r
c t e r m i d h c r e a t e m o n i t o r t c f l u s h t s e a r c h
c u s e r i d h d e s t r o y n f t w t c g e t a t t r _ t o u p p e r
d u p 2 h s e a r c h n l _ l a n g i n f o t c g e t p g r p t w a l k
f d o p e n i s a s c i i p c l o s e t c g e t s i d t z s e t
_ _ f i l b u f i s a t t y p o p e n t c s e n d b r e a k _ x f t w
f i l e n o i s n a n p u t e n v t c s e t a t t r
_ _ f l s b u f i s n a n d † p u t w t c s e t p g r p
f m t m s g † l f i n d s e t l a b e l t d e l e t e

† Function is at Level 2 in the SVID Issue 3 and therefore at Level 2 in the ABI.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 3-1

ELF: Executable and Linkable Format

Besides the symbols listed in the With Synonyms table above, synonyms of the form _name exist for name
entries that are not listed with a leading underscore prepended to their name. Thus l i b c contains both
g e t o p t and _ g e t o p t, for example.

Of the routines listed above, the following are not defined elsewhere.

i n t _ _ f i l b u f (F I L E * f) ;
This function returns the next input character for f, filling its buffer as appropriate. It
returns E O F if an error occurs.

i n t _ _ f l s b u f (i n t x , F I L E * f) ;
This function flushes the output characters for f as if p u t c (x , f) had been called and then
appends the value of x to the resulting output stream. It returns E O F if an error occurs and
x otherwise.

i n t _ x f t w (i n t , c h a r * , i n t (*) (c h a r * , s t r u c t s t a t * , i n t) , i n t) ;
Calls to the f t w(BA_LIB) function are mapped to this function when applications are com-
piled. This function is identical to f t w(BA_LIB), except that _ x f t w () takes an interposed
first argument, which must have the value 2.

See this chapter’s other library sections for more SVID, ANSI C, and POSIX facilities. See ‘‘System Data
Interfaces’’ later in this chapter for more information.

Global Data Symbols

The l i b c library requires that some global external data symbols be defined for its routines to work
properly. All the data symbols required for the l i b s y s library must be provided by l i b c, as well as the
data symbols listed in the table below.

For formal declarations of the data objects represented by these symbols, see the System V Interface
Definition, Third Edition or the ‘‘Data Definitions’’ section of Chapter 6 in the appropriate processor sup-
plement to the System V ABI.

For entries in the following table that are in name - _name form, both symbols in each pair represent the
same data. The underscore synonyms are provided to satisfy the ANSI C standard.

Figure 3-3: l i b c Contents, Global External Data Symbols

g e t d a t e _ e r r o p t a r g
_ g e t d a t e _ e r r o p t e r r
_ _ i o b o p t i n d

o p t o p t

3-2 Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1

I Index

Index I-1

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 i

Index

2’s complement 1: 6

A
ABI conformance 1: 11, 2: 3, 6, 12, 14

a b o r t 3: 1

a b s 3: 1

absolute code 2: 9

absolute symbols 1: 8

address, virtual 2: 7

a d d s e v e r i t y 3: 1

alignment
executable file 2: 7

section 1: 10

ANSI C 3: 2

archive file 1: 18, 2: 15

a s c t i m e 3: 1

assembler 1: 1

symbol names 1: 17

_ _ a s s e r t 3: 1

a t e x i t(BA_OS) 2: 20

a t o f 3: 1

a t o i 3: 1

a t o l 3: 1

B
base address 1: 22, 2: 9, 12

definition 2: 4

b s e a r c h 3: 1

byte order 1: 6

C
C language

assembly names 1: 17

library (see library)
C library 3: 1

c f g e t i s p e e d 3: 1

c f g e t o s p e e d 3: 1

c f s e t i s p e e d 3: 1

c f s e t o s p e e d 3: 1

c l e a r e r r 3: 1

c l o c k 3: 1

common symbols 1: 8

core file 1: 3

c t e r m i d 3: 1

c t i m e 3: 1

c u s e r i d 3: 1

D
data, uninitialized 2: 8

data representation 1: 2, 6

d i f f t i m e 3: 1

d i v 3: 1

d u p 2 3: 1

_ D Y N A M I C 2: 11

see also dynamic linking 2: 11

dynamic library (see shared object file)
dynamic linker 1: 1, 2: 10–11

see also dynamic linking 2: 10

see also link editor 2: 10

see also shared object file 2: 10

dynamic linking 2: 10

base address 2: 4

_ D Y N A M I C 2: 11

environment 2: 11, 15, 19

hash function 2: 19

initialization function 2: 14, 20

lazy binding 2: 11, 19

L D _ B I N D _ N O W 2: 11, 19

L D _ L I B R A R Y _ P A T H 2: 15

relocation 2: 13, 16, 18

see also dynamic linker 2: 10

see also hash table 2: 13

see also procedure linkage table 2: 13

string table 2: 13

symbol resolution 2: 15

symbol table 1: 10, 14, 2: 13

termination function 2: 14, 20

dynamic segments 2: 9

E
ELF 1: 1

entry point (see process, entry point)
environment 2: 11, 15, 19

e x e c(BA_OS) 1: 1, 2: 10–11, 15

paging 2: 7

executable file 1: 1

segments 2: 9

e x i t 2: 20

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 I-1

ELF: Executable and Linkable Format

F
f c l o s e 3: 1

f d o p e n 3: 1

f e o f 3: 1

f e r r o r 3: 1

f f l u s h 3: 1

f g e t c 3: 1

f g e t p o s 3: 1

f g e t s 3: 1

_ _ f i l b u f 3: 1–2

file, object (see object file)
file offset 2: 7

f i l e n o 3: 1

_ _ f l s b u f 3: 1–2

f m t m s g 3: 1

f o p e n 3: 1

formats, object file 1: 1

FORTRAN 1: 8

f p r i n t f 3: 1

f p u t c 3: 1

f p u t s 3: 1

f r e a d 3: 1

f r e o p e n 3: 1

f r e x p 3: 1

f s c a n f 3: 1

f s e e k 3: 1

f s e t p o s 3: 1

f t e l l 3: 1

f t w(BA_LIB) 3: 2

f w r i t e 3: 1

G
g e t c 3: 1

g e t c h a r 3: 1

g e t d a t e 3: 1

_ g e t d a t e _ e r r 3: 2

g e t d a t e _ e r r 3: 2

g e t e n v 3: 1

g e t o p t 3: 1

_ g e t o p t 3: 2

g e t o p t 3: 2

g e t p a s s 3: 1

g e t s 3: 1

g e t s u b o p t 3: 1

g e t w 3: 1

global data symbols 3: 2

global offset table 1: 14, 23–24, 2: 11, 16

g m t i m e 3: 1

H
hash function 2: 19

hash table 1: 12, 14, 2: 11, 13, 19

h c r e a t e 3: 1

h d e s t r o y 3: 1

h s e a r c h 3: 1

I
interpreter, see program interpreter 2: 10

_ _ i o b 3: 2

i s a l n u m 3: 1

i s a l p h a 3: 1

i s a s c i i 3: 1

i s a t t y 3: 1

i s c n t r l 3: 1

i s d i g i t 3: 1

i s g r a p h 3: 1

i s l o w e r 3: 1

i s n a n 3: 1

i s n a n d 3: 1

i s p r i n t 3: 1

i s p u n c t 3: 1

i s s p a c e 3: 1

i s u p p e r 3: 1

i s x d i g i t 3: 1

J
j m p instruction 2: 17–18

L
l a b s 3: 1

lazy binding 2: 11, 19

L D _ B I N D _ N O W 2: 11, 19

l d e x p 3: 1

l d i v 3: 1

L D _ L I B R A R Y _ P A T H 2: 15

l d(SD_CMD) (see link editor)
l f i n d 3: 1

l i b c 3: 0, 2

see also library 3: 0

l i b c contents 3: 1–2

I-2 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

library
dynamic (see shared object file)
see also l i b c 3: 0

shared (see shared object file)
l i b s y s 3: 1–2

link editor 1: 1, 18–19, 23, 2: 11, 13, 15–16

see also dynamic linker 2: 10

l o c a l t i m e 3: 1

l o c k f 3: 1

l o n g j m p 3: 1

l s e a r c h 3: 1

M
magic number 1: 4–5

m a i n 1: 14

m b l e n 3: 1

m b s t o w c s 3: 1

m b t o w c 3: 1

m e m c c p y 3: 1

m e m c h r 3: 1

m e m c m p 3: 1

m e m c p y 3: 1

m e m m o v e 3: 1

m e m s e t 3: 1

m k f i f o 3: 1

m k t e m p 3: 1

m k t i m e 3: 1

m m a p(KE_OS) 2: 10

m o n i t o r 3: 1

N
n f t w 3: 1

n l _ l a n g i n f o 3: 1

O
object file 1: 1

archive file 1: 18

data representation 1: 2

data types 1: 2

ELF header 1: 1, 3

extensions 1: 4

format 1: 1

hash table 2: 11, 13, 19

program header 1: 2, 2: 2

program loading 2: 2

relocation 1: 12, 21, 2: 13

section 1: 1, 8

section alignment 1: 10

section attributes 1: 12

section header 1: 2, 8

section names 1: 15

section types 1: 10

see also archive file 1: 1

see also dynamic linking 2: 10

see also executable file 1: 1

see also relocatable file 1: 1

see also shared object file 1: 1

segment 2: 1–2, 7

shared object file 2: 10

special sections 1: 13

string table 1: 12, 16–17

symbol table 1: 12, 17

type 1: 3

version 1: 4

o p t a r g 3: 2

o p t e r r 3: 2

o p t i n d 3: 2

P
page size 2: 7

paging 2: 7

performance 2: 7

p c l o s e 3: 1

performance, paging 2: 7

p e r r o r 3: 1

p o p e n 3: 1

position-independent code 2: 9, 11

POSIX 3: 2

p r i n t f 3: 1

procedure linkage table 1: 15, 19, 23–24, 2: 11,

13–14, 17

process
entry point 1: 4, 14, 2: 20

image 1: 1, 2: 1–2

virtual addressing 2: 2

processor-specific 2: 10

processor-specific information 1: 4, 6–8, 11–12,

18–19, 21, 2: 1, 3, 7, 11, 14, 16–17, 19

program header 2: 2

program interpreter 1: 14, 2: 10

program loading 2: 1, 7

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 I-3

ELF: Executable and Linkable Format

p u s h l instruction 2: 17–18

p u t c 3: 1

p u t c(BA_LIB) 3: 2

p u t c h a r 3: 1

p u t e n v 3: 1

p u t s 3: 1

p u t w 3: 1

Q
q s o r t 3: 1

R
r a i s e 3: 1

r a n d 3: 1

relocatable file 1: 1

relocation, see object file 1: 21

r e w i n d 3: 1

S
s c a n f 3: 1

section, object file 2: 7

segment
dynamic 2: 10–11

object file 2: 1–2

permissions 2: 8

process 2: 1, 7, 10, 15–16

program header 2: 2

s e t b u f 3: 1

s e t j m p 3: 1

set-user ID programs 2: 16

s e t v b u f 3: 1

shared library (see shared object file)
shared object file 1: 1

functions 1: 19

see also dynamic linking 2: 10

see also object file 2: 10

segments 2: 9

shell scripts 1: 1

s l e e p 3: 1

s p r i n t f 3: 1

s r a n d 3: 1

s s c a n f 3: 1

s t r c a t 3: 1

s t r c h r 3: 1

s t r c m p 3: 1

s t r c p y 3: 1

s t r c s p n 3: 1

s t r d u p 3: 1

string table, see object file 1: 16

s t r l e n 3: 1

s t r n c a t 3: 1

s t r n c m p 3: 1

s t r n c p y 3: 1

s t r p b r k 3: 1

s t r r c h r 3: 1

s t r s p n 3: 1

s t r s t r 3: 1

s t r t o d 3: 1

s t r t o k 3: 1

s t r t o l 3: 1

s t r t o u l 3: 1

s w a b 3: 1

symbol names, C and assembly 1: 17

symbol table, see object file 1: 17

symbols
absolute 1: 8

binding 1: 18

common 1: 8

see also hash table 1: 14

shared object file functions 1: 19

type 1: 18

undefined 1: 8

value 1: 18, 20

SYSTEM V 2: 7

T
t c d r a i n 3: 1

t c f l o w 3: 1

t c f l u s h 3: 1

t c g e t a t t r 3: 1

t c g e t p g r p 3: 1

t c g e t s i d 3: 1

t c s e n d b r e a k 3: 1

t c s e t a t t r 3: 1

t c s e t p g r p 3: 1

t d e l e t e 3: 1

t e l l 3: 1

t e m p n a m 3: 1

t f i n d 3: 1

t m p f i l e 3: 1

t m p n a m 3: 1

I-4 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

t o a s c i i 3: 1

_ t o l o w e r 3: 1

t o l o w e r 3: 1

_ t o u p p e r 3: 1

t o u p p e r 3: 1

t s e a r c h 3: 1

t w a l k 3: 1

t z s e t 3: 1

U
undefined behavior 1: 10, 2: 6–7

undefined symbols 1: 8

u n g e t c 3: 1

uninitialized data 2: 8

unspecified property 1: 2–3, 9, 11, 14, 2: 2–3, 5, 7–8,

14, 20

V
v f p r i n t f 3: 1

virtual addressing 2: 2

v p r i n t f 3: 1

v s p r i n t f 3: 1

W
w c s t o m b s 3: 1

w c t o m b 3: 1

X
_ x f t w 3: 1–2

Z
zero, uninitialized data 2: 8

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 I-5

